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Abstract: In this paper, we consider the Steiner problem in graphs, which is the problem of connecting
together, at minimum cost, a number of vertices in an undirected graph with nonnegative edge costs.
We use the formulation of this problem as a shortest spanning tree (SST) problem with additional
constraints given previously in the literature. We strengthen this SST formulation and present a branch
and cut algorithm to solve the problem to optimality. This algorithm incorporates reduction tests and is
used to solve a number of problems drawn from the literature. A number of general issues relating to
branch and cut algorithms are also highlighted. q 1998 John Wiley & Sons, Inc. Networks 31: 39–59, 1998
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1. INTRODUCTION we shall only deal here with papers additional to those
discussed in [28]. We should also mention here the book

The Steiner problem in graphs (henceforth, SPG) is the by Hwang et al. [29] relating to the Steiner problem.
problem of connecting together, at minimum cost, a set Berman and Ramaiyer [7] presented an approximation
of vertices in an undirected graph. In a previous paper, algorithm with a known worst-case ratio based upon ver-
Beasley [4] introduced a formulation of the SPG as a tex restricted edge-disjoint full Steiner trees. Chopra and
shortest spanning tree (SST) problem with additional Rao [10, 11] presented papers studying both undirected
constraints. In this paper, we derive a lower bound for the and directed (replace each undirected edge by two di-
SPG based upon a linear programming (LP) relaxation of rected edges) formulations of the SPG. They showed [10]
a strengthened version of this SST formulation of the that the LP relaxation of the directed formulation is
problem. This procedure for generating a lower bound stronger than the LP relaxation of the undirected formula-
leads naturally to a branch and cut tree search procedure tion. Facet-defining inequalities were also presented. No
for optimally solving the problem. computational results were given.

Chopra et al. [9] presented a branch and cut algorithm
1.1. Literature Survey based upon the directed formulation of the problem sug-
In a comprehensive survey paper [28], the literature relat- gested in Chopra and Rao [10, 11]. Cutting planes associ-
ing to the SPG was reviewed and so, for reasons of space, ated with cut-sets separating vertices that must be in the

solution tree were used. Extensive computational results
were given.Correspondence to: J. E. Beasley

q 1998 John Wiley & Sons, Inc. CCC 0028-3045/98/010039-21
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40 LUCENA AND BEASLEY

Chopra and Gorres [8] considered the node-weighted tional results were given for problems with up to 100
vertices and 4950 edges. Plesnik [46] presented an im-SPG and applied a similar approach to that given in [9] .

Dowsland [14] presented an algorithm for the SPG based proved analysis of the worst-case performance of his ear-
lier contraction heuristic [45] together with a revised con-upon a local optimization heuristic and simulated anneal-

ing. Computational results were given for problems with traction heuristic. He also presented an analysis compar-
ing standard heuristics that have been presented in theup to 100 vertices and 4950 edges.

Duin [15], in a PhD thesis, presented a number of new literature.
Pornavalai et al. [47] presented a Hopfield neural net-results for the SPG. In particular, reduction tests were

presented that, computationally, appear very effective. In- work model for the SPG. Computational results were pre-
sented for problems involving up to 14 vertices. Ver-corporating these reduction tests into a tree search proce-

dure, using a lower bound due to Wong [57], enables hoeven et al. [51] presented a local search heuristic for
the SPG based upon a neighborhood involving edge ex-him to solve to optimality problems involving up to 1000

vertices and 25,000 edges in impressive computational changes and presented computational results for large-
sized problems.times.

Duin and Voß [19] presented a heuristic for the SPG Voß [52] presented a classification of a large number
of heuristics for the SPG. Extensive computational resultsbased upon vertex and edge exchanges and presented

computational results for problems involving up to 1000 with regard to the quality of solution obtained by these
heuristics were given. Voß [53] also presented details ofvertices. Esbensen [20] presented a genetic algorithm for

the SPG. He used problem reduction tests and presented a number of special cases of the SPG which are solvable
in polynomial time (e.g., if the underlying graph is series-computational results for problems involving up to 2500

vertices and 62,500 edges. Floren [25] presented a simpli- parallel) . He posed the question as to whether, for SPG
with degree constraints, there are also special cases solv-fication of the algorithm due to Mehlhorn [40].

Goemans and Myung [26] presented some formula- able in polynomial time. Voss [54] presented an analysis
of the worst-case performance of a number of heuristicstions of the SPG and showed that a number of these are

equivalent. No computational results were given. Kapsalis for the directed version of SPG and concluded that no
one heuristic dominated the others with respect to worst-et al. [30] presented a genetic algorithm for the SPG.

Computational results were given for problems involving case performance.
Wade and Rayward-Smith [55] presented a numberup to 100 vertices and 200 edges.

Khoury and Pardalos [31] presented a heuristic for the of heuristics for the SPG based upon simulated annealing
and presented computational results for problems involv-SPG based upon Prim’s [48] algorithm for the minimal

spanning tree. Computational results were given for a ing up to 2500 vertices and 62,500 edges. Winter and
Smith [56] presented an integrative overview of a numbernumber of problems involving up to 500 vertices and

2500 edges. Khoury et al. [32] presented a procedure for of heuristics for the SPG. Extensive computational results
were given.generating nontrivial test problems for the SPG that have

known optimal solutions. Khoury et al. [33] presented a
number of formulations of the SPG and of the directed
version of the problem. 2. PROBLEM FORMULATION

Lucena [35] applied a number of the ideas presented
in this paper, but in the context of Lagrangean relaxation, In this section, we first formulate the SPG as a restricted

SST problem (as in [4]) and then strengthen that formula-rather than branch and cut. Computational results were
given for problems involving up to 2500 vertices and tion.
62,500 edges. Lucena [36] also presented an algorithm
for the SPG incorporating Lagrangean relaxation, La- 2.1. Restricted SST Formulation
grange cuts, and linear programming. Computational re-
sults were given for problems involving up to 2500 verti- Let
ces and 62,500 edges. Additionally, Lucena [37] pre-
sented an algorithm for the SPG improving on the V be the entire vertex set

K be the set of vertices which are to be connectedpreliminary results presented in [35]. A significant differ-
ence between the work presented in [37] and the work together (K ⊆ V ) and, without loss of generality,

assume that 1 √ Kpresented in this paper was his use of generalized subtour
elimination constraints. Computational results were given E be the set of (undirected) edges {( i , j)Éi õ j , i

√ V, j √ V } of the graphfor problems involving up to 2500 vertices and 62,500
edges. cij be the cost of edge ( i , j) √ E(cij ú 0).

Matsui and Yabe [39] presented a lower bound for the
SPG based upon an edge-covering problem. Computa- Then, the SPG is to choose a subset of E which connects
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BRANCH AND CUT ALGORITHM FOR STEINER PROBLEM IN GRAPHS 41

together all the vertices in K at minimum cost. The solu- √ V 0 K connected by the edge (0, i) to vertex 0
must have degree one.tion to this problem constitutes a minimum-cost spanning

tree (called the Steiner tree) on some set of vertices K
< S , where S ⊆ V 0 K is called the set of Steiner vertices. In [4] , it is shown that the above restricted SST formula-

Beasley [4] showed that this problem can be regarded tion, defined with respect to the graph involving the
as equivalent to the problem of finding the SST, subject artificial vertex, can be regarded as equivalent to the
to additional constraints, on a related graph. Specifically, original SPG on the graph (V, E ) . In particular, they have

the same optimal solution value and a similar solution
structure.(a) add an artificial vertex (vertex 0) to the graph;

Figure 1 (from [4]) illustrates the optimal solution to
(b) for each vertex i √ V 0 K , add an edge (0, i) of the restricted SST problem. Note from that figure that

cost zero; vertices not in the Steiner tree are directly connected only
(c) for vertex 1 √ K , add an edge (0, 1) of cost zero; to vertex 0 while the Steiner tree is based around vertex

and 1 (√ K) .
To formulate the restricted SST problem mathemati-(d) find the SST of the resulting graph subject to the

additional restriction that in that SST any vertex i cally, let

Fig. 1.
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42 LUCENA AND BEASLEY

V0 represent V < {0}, tion). This constraint can be expressed (e.g., see [16])
asE0 represent E < {(0, i)Éi √ V 0 K / {1}}, and

Pi represent {( i , j)É( i , j) √ E} < {( j , i)É( j , i) √ E}
so that Pi is the set of edges of E which involve ∑

(p ,q )√Pi

xpq ¢ 2(1 0 x0i ) ∀i √ V 0 K (6)
vertex i .

(since if x0i Å 0, vertex i √ V 0 K is in the Steiner treeDefining,
and constraint (6) ensures that at least two edges involv-
ing vertex i are used; if x0i Å 1, then constraint (6) isc0i Å 0 ∀i √ V 0 K / {1}
redundant) .xij Å 1 if edge ( i , j) √ E0 is in the optimal solution

Å 0 otherwise.
(2 ) Connectivity Constraints

The formulation of SPG as a restricted SST problem is In any feasible solution to the SPG there must be a path
from vertex 1 √ K to all other vertices k √ K 0 {1}

minimize ∑
(i , j )√E0

cijxij (1) (for the solution to be connected). This constraint can be
expressed as

subject to ∑
(p,q )√E0

xpq Å ÉV0É 0 1 (2)
∑

p√W q√V00W (p ,q )√E0

xpq ¢ 1 1 √ W k √ V0 0 W

∑
p ,q√T (p ,q )√E0

xpq ° ÉTÉ 0 1 ∀T ⊆ V0 (3) ∀W ⊆ V0 ∀k √ K 0 {1},
(7)

i.e., there must be an edge connecting any subset W (⊆ V0)
x0i / xpq ° 1 ∀(p , q) √ Pi ∀i √ V 0 K (4) of vertices (with 1 √ W ) to vertices outside the subset.

This constraint was used in [1] as well as in [3, 9] .xij √ (0, 1) ∀( i , j) √ E0 . (5)

(3 ) Edge (0, 1)Constraints (2) and (3) ensure that the edges chosen form
a spanning tree on the graph with vertex set V0 and edge Since edge (0, 1) must appear in the optimal solution,
set E0 [constraint (2) relates to the number of edges used we can add to the formulation the constraint
and constraint (3) relates to subtour elimination]. The
exclusion constraint (4) ensures that if edge (0, i) is used x01 Å 1. (8)
( i √ V 0 K) no other edge which involves vertex i can
be used (and, hence, that vertex i is directly connected (4 ) Strengthened Formulation
only to vertex 0, implying that it is not in the Steiner

Hence, the complete strengthened formulation of thetree—see Fig. 1) . Constraint (5) is the integrality con-
problem isstraint.

minimize ∑
(i ,j )√E0

cijxij (9)
2.2. Stronger Formulation

To obtain a tighter LP relaxation than that otherwise de- subject to ∑
(p ,q )√Pi

xpq ¢ 2(1 0 x0i )
rived from Eqs. (1) – (5) , we strengthen the formulation
by introducing degree constraints, a connectivity con- ∀i √ V 0 K

(10)

straint, and a constraint ensuring edge (0, 1) is in the
solution. As a result, a better approximation of the convex x01 Å 1 (11)
hull of integer solutions is obtained from the LP relaxation
of the problem. We deal with each of these constraints ∑

p√W q√V00W (p ,q )√E0

xpq ¢ 1 1 √ W
in turn.

k √ V0 0 W ∀W ⊆ V0 ∀k √ K 0 {1}
(12)

(1 ) Degree Constraints

In the optimal solution to the SPG, any Steiner vertex ∑
(p ,q )√E0

xpq Å ÉV0É 0 1 (13)
must have a vertex degree of at least two (since, if not,
it would have degree one, whereupon the vertex, and the
edge connecting it to the rest of the optimal Steiner tree, ∑

p ,q√T (p ,q )√E0

xpq ° ÉTÉ 0 1 ∀T ⊆ V0 (14)
could be removed—contradicting the optimality assump-

8U1D 793/ 8U1D$$0793 11-11-97 09:14:01 netwa W: Networks



BRANCH AND CUT ALGORITHM FOR STEINER PROBLEM IN GRAPHS 43

that we have initially neglected [constraints (12), (14),x0i / xpq ° 1 ∀(p , q) √ Pi ∀i √ V 0 K (15)
and (15)] . Constraints which are not satisfied by the
current LP solution {Xij}, but which are valid constraintsxij √ (0, 1) ∀( i , j) √ E0 . (16)
for the original problem (SPG), are called violated con-
straints.This formulation of the problem has ÉE0É variables, 0(ÉV

The separation problem is to identify violated con-0 KÉ / ÉEÉ) explicit constraints, and an exponential
straints: exclusion, connectivity, or subtour eliminationnumber of connectivity and subtour elimination con-
constraints (or to determine that no such violated con-straints.
straints exist) . Any violated constraints which can be
identified can be added to the LP to (hopefully)
strengthen the lower bound (ZLB) obtained from that LP.3. LP LOWER BOUND

(1 ) Exclusion ConstraintsIn this section, we derive an initial LP lower bound for
the SPG by neglecting all exclusion, connectivity, and It is clear that any exclusion constraints (15) which are
subtour elimination constraints [constraints (15), (12), violated can be easily identified (namely, in linear time
and (14), respectively] . We then discuss how we solve by inspection).
the separation problem (see Nemhauser and Wolsey [41])
for these constraints. (2 ) Connectivity Constraints

Violated connectivity constraints (12) can be easily iden-3.1. Initial LP
tified by, for each k √ K 0 {1},

To generate an LP lower bound for SPG from our
strengthened formulation [Eqs. (9) – (16)] , we obviously (a) finding the maximum flow from vertex 1 (√ K) to
need to replace the integrality constraint (16) by the cor- k in a graph with edge capacities {Xij}; and
responding linear constraint. We also chose to initially (b) examining the capacity of the cutset associated with
neglect all exclusion, connectivity, and subtour elimina- that maximum flow.
tion constraints.

Therefore, very much in accordance with branch and If the capacity of this cutset is less than 1, then the cutset
cut algorithms in the literature (e.g., Padberg and Rinaldi defines a violated connectivity constraint.
[43]) , our initial LP relaxation of the problem is

(3 ) Subtour Elimination Constraints
minimize ∑

(i ,j )√E0

cijxij (17)
Identifying violated subtour elimination constraints (14)
is computationally more demanding than identifying vio-

subject to ∑
(p ,q )√Pi

xpq ¢ 2(1 0 x0i ) lated exclusion or connectivity constraints. Padberg and
Wolsey [44] showed that, given an LP solution {Xij}, it

∀i √ V 0 K
(18)

is possible to find a subtour elimination constraint that is
violated by this solution (or to prove that there is no such

x01 Å 1 (19) violated constraint) by solving a sequence of maximum
flow problems in an appropriately defined directed net-
work.∑

(p ,q )√E0

xpq Å ÉV0É 0 1 (20)
Padberg and Wolsey [44] showed that, at most, ÉV0É

0 2 maximum flow problems need to be solved in a
0 ° xij ° 1 ∀( i , j) √ E0 . (21) directed network which has (essentially) , at most, (ÉV0É

/ 2) vertices and 2É{XijÉXij ú 0}É arcs. This implies that
This LP has only ÉE0É variables and (ÉV 0 KÉ / 2) solving the separation problem for subtour elimination
constraints and so, computationally, should be relatively constraints requires, at most, 0(ÉV0É

4) operations.
easy to solve. However, in practice, the size of the network that we

need to consider can be reduced by applying the shrinking
heuristic of Padberg and Grötschel [42]. Our computa-3.2. Separation Problem
tional experience has been that applying the shrinking
heuristic results in the network having substantially lessLet the solution to the above LP [Eqs. (17) – (21)] be

given by {Xij} with value ZLB (a lower bound on the than (ÉV0É / 2) vertices. Note here that in the computa-
tional results reported below we used the maximum flowoptimal solution to the original SPG). The likelihood is

that this LP solution does not satisfy all the constraints code due to Goldfarb and Grigoriadis [27].
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4. PROBLEM REDUCTION < { j}, where the cost of any edge (p , q) (p √ K*, q
√ K*) in this graph is given by dpq . Let Tij be the set of
all such paths and let Qijt t √ Tij be the set of edges inThere are a number of reduction tests that have been
path t . The special distance sij is given by the minimumgiven in the literature [2–4, 15–18] that can be used to
bottleneck edge cost over paths Tij , i.e., sij Å minreduce the size of the problem that we need to consider. In
{max{dpqÉ(p , q) √ Qijt} t √ Tij}. Then, the edge ( i , j)this section, we outline those that we used in the algorithm
can be deleted from the problem if sij õ cij . This test ispresented in this paper.
due to Duin [15, 17, 18].

(1) Degree
(6) Local Special Distance (LSD) Test

As ÉPiÉ represents the degree of vertex i , we have
Let Ni Å { jÉ( i , j) √ Pi } be the set of vertices adjacent
to i . Then, any vertex i √ V 0 K can be deleted from(a) any vertex i √ V 0 K for which ÉPiÉ ° 1 can be
the problem if for every subset N* ⊆ Ni with ÉN*É ¢ 3deleted from the problem; and
the cost of the MST of N* using special distances (sij)(b) a vertex i √ K with ÉPiÉ Å 1 implies that the single
is ° (j√N* cij . If vertex i is deleted, then an edge (p , q)edge in Pi is in the Steiner tree if ÉKÉ ¢ 2.
of cost cpi / ciq needs to be added for every p √ Ni , q
√ Ni 0 p with spq Å cpi / ciq . This test is due to Duin

(2) Nearest Vertex [15, 17] and was implemented by him in [15] for all
vertices i √ V 0 K with ÉNiÉ õ 8. In the computationalFor any vertex k √ K , let i √ V be the nearest vertex to
results presented later, we implemented it for all verticesk which is connected by an edge to k , and j √ V, be the
i √ V 0 K with ÉNiÉ ° 5.second nearest such vertex. Letting dpq represent the least

cost of an elementary path from p to q , we have that the
edge joining k to i is in the Steiner tree if (7) LP-based Tests

At any stage, either at the initial LP or after adding vio-(a) i √ K ; or
lated constraints to the initial LP and resolving, we have

(b) i √ V 0 K but there exists a vertex p √ K (p x k) an LP solution {Xij} of value ZLB (which is a lower bound
connected by an edge to i and cki / cip ° ck j ; or on the optimal solution to the original SPG). Let ZUB be

(c) i √ V 0 K and cki / min{dipÉp √ K , p x k} ° ck j . any upper bound upon the optimal solution to the problem
(e.g., derived from a heuristic) . Then, the LP-based re-

Note here that (a) and (b) are special cases of (c) . duction tests that we used were the following:

(a ) Reduced Cost(3) Edge Deletion
As we have an LP solution {Xij}, each nonbasic variableFor any edge ( i , j) √ E0 if there exists k √ K such that
in that solution has a reduced cost. Hence, any nonbasiccij ¢ max(cik , cjk) , then edge ( i , j) can be deleted from
variable xpq (where currently Xpq Å 0) for which (ZLBthe problem.
/ the reduced cost for xpq) exceeds ZUB can be eliminated
from the problem (since if xpq Å 1, it would increase the

(4) Nearest Special Vertices (NSV) Test lower bound above the upper bound ZUB) .

Suppose that edge ( i , j) is in an MST of the graph G
(b) Dual VariablesÅ (V, E) . If edge ( i , j) is deleted from G , then the

MST of the graph remaining can be found by adding the Limited computational experience indicated that rela-
minimum cost edge (£, w) between the two vertex subsets tively few variables (edges) were eliminated by the re-
left after the removal of edge ( i , j) from the MST. Then, duced cost test given above. Accordingly, we also used
edge ( i , j) is in the Steiner tree if c

£w ¢ min{dikÉk √ K , a reduction test based upon the dual variables.
dik õ djk} / cij / min{djkÉk √ K , djk õ dik}. This test As we have an LP solution, we have, for each con-
is due to Duin [15, 17]. straint in the LP, a dual variable. Consider the complete

strengthened formulation of the problem given previously
[Eqs. (9) – (16)] .(5) Special Distance (SD) Test

Suppose now that we relax, in a Lagrangean fashion
(e.g., see [6, 23, 24]) , constraints (10), (11), and (15)Define the concept of a special i– j path (for any i , j

√ V ) as any elementary path between i and j in the where we use as Lagrange multipliers for these constraints
the corresponding dual variable values obtained from thecomplete graph based on the vertex set K* Å K < { i}
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LP solution. Note here that, obviously, only exclusion A similar analysis applies in the case of forcing an
edge out of solution (xij Å 0). The mathematical detailsconstraints (15) that have been added to the LP are in-

cluded in the Lagrangean relaxation. of how to carry out this test are given in [4] and so are
not repeated here.Letting Cij represent the cost, in the Lagrangean relax-

ation, of edge ( i , j) , the Lagrangean program is We would note here that the approach given above,
namely, to use LP dual variable values as Lagrange multi-
pliers in a partial Lagrangean relaxation (i.e., relax onlyminimize ∑

(i ,j )√E0

Cijxij / a constant (22)
a subset of the constraints) in order to derive variable
penalty values for use in problem reduction, is an ap-subject to ∑

p√W q√V00W (p ,q )√E0

xpq ¢ 1 1 √ W
proach that could be used in any branch and cut algorithm.
More about this approach can be found in [38]. Note

k √ V0 0 W ∀W ⊆ V0 ∀k √ K 0 {1}
(23)

also that similar ideas have been used by Fischetti and
Vigo [22] in their branch and cut algorithm for the re-

∑
(p ,q )√E0

xpq Å ÉV0É 0 1 (24) source-constrained minimum-weight arborescence prob-
lem and by Fischetti and Toth [21] in their algorithm for
the asymmetric traveling salesman problem.

∑
p ,q√T (p ,q )√E0

xpq ° ÉTÉ 0 1 ∀T ⊆ V0 (25)

(8) Compression
xij √ (0, 1) ∀( i , j) √ E0 (26)

Note here that if, as a consequence of these reduction
tests, we set x0j to 1 (for some j √ V 0 K) then this

(where the precise nature of Cij and the appropriate con-
implies that vertex j cannot be in the optimal Steiner tree,

stant term in the objective function [Eq. (22)] need not
so vertex j (and the edges in Pj) can be deleted from the

concern us here) .
problem. Note also that if we set xij to 1 (for some i

The solution to this Lagrangean relaxation will yield
x 0 i √ V, j √ V ), then we can ‘‘compress’’ the underly-

a lower bound upon the optimal solution to the original
ing graph (condense vertices i and j together and combine

problem. But constraints (23) – (26) merely specify that
their associated edges Pi and Pj in an obvious fashion).

the set of edges chosen constitute a spanning tree on (V0 ,
E0) , i.e., we have a lower bound, derived from the LP
solution that is simply to find the SST of the graph with

5. TREE SEARCH PROCEDUREedge costs {Cij} and, in fact, is essentially the same as
the lower bound given in [4] .

To find the optimal solution to SPG, we used a binary,The difference between the lower bound presented in
depth-first, branch and cut tree search procedure, comput-[4] and the lower bound given above is that
ing a lower bound from the LP (and adding violated
constraints) at each tree node. The details of the procedure(a) in [4] , we did not consider the degree constraints
are given below:[constraint (10)];

(b) in [4] , all the exclusion constraints were considered,
whereas in the lower bound given above, we consider 5.1. Initial Tree Node
only a subset of the exclusion constraints, namely, (1 ) Initial Reductionthose generated as violated constraints; and

We first reduced the problem using all the reduction tests(c) in [4] , connectivity constraints were not used.
given above (except for the LP-based tests) until no fur-
ther reduction could be achieved.It is possible to use this lower bound [Eqs. (22) – (26)]

in exactly the same manner as given in [4] to eliminate
(2 ) Root Vertexedges (variables) from the problem.

Informally, since the lower bound is an unconstrained We then chose the vertex to act as the root vertex (denoted
SST problem, it is easily solved (e.g., use [34] or [48]) . by 1 √ K in this paper) . Here, we used the same rule as
It is then simple to calculate the change in the SST for in [4] , namely, to choose the vertex i √ K with the largest
the addition or removal of an edge ( i , j) . degree (ties broken arbitrarily) .

Suppose that we calculate the lower bound for the
situation where an edge ( i , j) is in the solution (xij Å 1). (3 ) Upper Bound
If this lower bound exceeds ZUB, then it is clear that edge
( i , j) cannot appear in the optimal solution and so can Find a feasible solution (upper bound) by applying the

algorithm of Takahashi and Matsuyama [50] as modifiedbe deleted from the problem.
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by Rayward-Smith and Clare [49] to the graph (V, E) an attempt to reduce the size of the problem. Limited
computational experience indicated that applying thesewith edge costs {cij}. If it is the first feasible solution

found, or if it is an improved feasible solution (i.e., of tests at every iteration was too time-consuming and so
they were only applied every fifth iteration.cost less than ZUB) , then update ZUB appropriately. Note

here that the quality of the upper bound found by this
heuristic is not crucial as we shall repeatedly (below) use (8 ) Restarting
LP solutions in order to seek improved feasible solutions.

Limited computational experience indicated that a good
strategy was to restart the algorithm after a certain amount(4 ) LP Solution
of reduction had been achieved. For the purposes of this

Solve the current LP (where initially the LP has no exclu- paper, once the number of edges eliminated from the
sion, connectivity, or subtour elimination constraints) . As problem (by the reduction tests) exceeded 0.1ÉE0É ( i.e.,
before, let the LP solution be given by {Xij} of value 10% of the edges had been eliminated), then the problem
ZLB. Note here that in the computational results reported was restarted [go to step (1) above].
below we used the CPLEX LP code [12]. The logic here is that by restarting the problem we can

compress the graph that we need to consider (as men-
(5 ) Constraint Removal tioned under reduction tests above). This has a favorable

impact: upon the size of the LP that we need to solve,Examine the current LP solution and if there are any
upon the size of the directed network that we need toexclusion, connectivity, or subtour elimination constraints
consider when solving the separation problem for subtourwhich are no longer active (i.e., have a nonzero slack
elimination constraints, and upon the maximum LP valuevariable) , then remove these constraints from the prob-
achievable (see below).lem. Note here that to avoid the possibility of cycling

In addition, restarting the problem can help to avoid thethis removal was only done at iterations at which the LP
problem of ‘‘tailing-off ’’ (smaller and smaller objectivesolution value changed (increased).
function changes) encountered in branch and cut algo-
rithms (e.g., see [9, 43]) . Without restarting, we may(6 ) Feasible Solution
have no choice but to commence the tree search once

In an attempt to find an improved feasible solution, apply ‘‘tailing-off ’’ occurs.
the algorithm of Takahashi and Matsuyama [50] as modi-
fied by Rayward-Smith and Clare [49] to the graph (V, (9 ) Violated Constraints
E) with the cost for edge ( i , j) given by (1 0 Xij)cij .

Examine the current LP solution {Xij} andConceptually, this implies that any edge ( i , j) not in the
current LP solution (Xij Å 0) retains its original cost and
any edge ( i , j) in the current LP solution (Xij ú 0) gets (a) add all violated exclusion constraints to the LP;
a cost lower than its original cost. (b) add all violated connectivity constraints to the LP;

Let R(⊆ V ) be the set of vertices used in the spanning and
tree given by applying the modified Takahashi and Matsu- (c) for each vertex i √ V involved in a violated subtour
yama algorithm to this graph (where we will have K elimination constraint, add a single subtour elimina-⊆ R) . Find the SST of R and prune it of any vertices i tion constraint ( the most violated constraint for i) to√ R 0 K . The tree left after this pruning will be a feasible the LP.
solution to the original SPG. If it is an improved feasible

(d) If any violated constraints have been added at (a) ,solution (i.e., of cost less than ZUB) , then update ZUB
(b) , or (c) above, go to step (4) .appropriately.

Note here that, conceptually, this means that we repeat-
Note here that when we restart the problem [step (8)edly search (over the course of the algorithm) for an
above] we do not carry forward any of the exclusion,improved feasible solution based upon the structure of
connectivity, or subtour elimination constraints that havethe current LP solution. We believe that this approach,
been previously added to the problem.namely, using the structure of the LP solution in a system-

atic fashion to seek improved feasible solutions, is an
(10) Terminationapproach that will be of value in other branch and cut

algorithms.
The above procedure will terminate with a solution of
value ZLP (associated with variables {Xij}) for which(7 ) Reduction
there are no violated exclusion, connectivity, or subtour
elimination constraints. As such, this solution is the solu-Apply the degree, nearest vertex [(a) and (b)] , edge

deletion, and LP-based reduction tests given above in tion of the LP relaxation of the complete strengthened
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formulation of SPG [Eqs. (9) – (16)] . This solution has steininfo to o.rlibrary@ic.ac.uk or see the www address
http://mscmga.ms.ic.ac.uk/jeb/orlib/steininfo.html) .either

(a) {Xij} integer, i.e., {Xij}, of value ZLP , is the optimal 6.2. Resultssolution to SPG; or
Tables I–III give the results of BC-BL on problem sets(b) {Xij} fractional and ZLPÅ ZUB, i.e., ZUB is the optimal
C, D, and E, respectively. In those tables, we give, forsolution to SPG; or
each problem,(c) {Xij} fractional and ZLP õ ZUB.

(a) the size of the problem after initial reduction;In case (c) above, we resolve the problem using a binary
(b) the number of violated exclusion, connectivity, anddepth-first tree search procedure as detailed below.

subtour elimination constraints (cuts) added (over
all restarts) at the initial tree node;

5.2. Other Tree Nodes
(c) the number of restarts;

We branched in the tree search by setting edges into (d) the gap between the final LP solution (ZLP) at the
solution, performing reduction tests, and adding violated initial tree node and the optimal solution [as mea-
constraints as appropriate. The details are given below: sured by 100 (optimal value 0 ZLP) /(optimal

value)] ;
(1 ) Forward Branching (e) the size of the final (reduced) problem at the initial

tree node; andIn forward branching, we chose the (edge) variable xij

(f ) the computation time in Silicon Graphics Indigo CPUwhich had a fractional value in the current LP solution
seconds for the initial tree node.and for which ÉXij 0 0.5É was a minimum and branched

by setting that variable equal to 1.
For those problems which did not terminate at the initial
tree node, we also give(2 ) Lower Bound

At each tree node, we performed the same procedure
(a) the additional number of violated exclusion, connec-[steps (3) – (10) inclusive] as given above for the initial

tivity, and subtour elimination constraints (cuts)tree node except that we did not do any restarts in the
added (over all tree search nodes);tree [i.e., no step (8)] . Note here that this typically means

(b) the number of tree search nodes; andthat
(c) the additional computation time in Silicon Graphics

Indigo CPU seconds for these nodes.(a) violated constraints are added at each tree node—
i.e., we have a branch and cut algorithm; and

For all problems, we give(b) problem reduction takes place based upon the vari-
ables (edges) set as a result of branching.

(a) the maximum size (over all iterations/ tree nodes) of
the network involved in detecting violated subtour(3 ) Backtracking
elimination constraints (see above);

We can backtrack in the tree when ZLB ¢ ZUB. (b) the maximum size (over all iterations/ tree nodes) of
the LP relaxation (as measured by the number of
constraints) ; and

6. COMPUTATIONAL RESULTS
(c) the optimal solution value.

6.1. Test Problems
6.3. Effect of Duin Reductions

The branch and cut algorithm presented in this paper
(henceforth, denoted by BC-BL) was programmed in Recall that we included in BC-BL a number of reduction

tests (nearest special vertices [NSV], special distanceFORTRAN and run on a Silicon Graphics Indigo worksta-
tion for a number of test problems drawn from the litera- [SD], and local special distance [LSD]) due to Duin. To

quantify the effects of these Duin reductions on our re-ture. These test problems were problem sets C, D, and E
as solved by Beasley [4] . (As in [9] , problem set B from sults, Tables IV–VI give the results of BC-BL, but with-

out these reductions, on problem sets C, D, and E, respec-[4] was easily solved by BC-BL and the results are not
worth reporting here.) These test problems are publically tively. Comparing Tables I–III and Tables IV–VI, it is

apparent thatavailable from the OR-Library [5] (E-mail the message
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TABLE I. Computational results for BC-BL on problem set C

Tree Search
Initial Tree Node

No.
No. Cuts Additional Cuts Maximum No.Maximum

Exclusion: Exclusion: No. Constraints in OptimalInitial Reduction Network
Problem Connectivity: No. Gap Connectivity: Tree Additional the LP Solution

No. ÉVÉ ÉEÉ ÉKÉ ÉVÉ ÉEÉ ÉKÉ Subtour Restarts (%) ÉVÉ ÉEÉ ÉKÉ Time Subtour Nodes Time Nodes Arcs Relaxation Value

C-1 500 625 5 103 184 5 89:45:42 2 — — — — 13 — — — 20 56 176 85

2 10 75 134 8 175:112:76 1 — — — — 16 — — — 34 102 275 144

3 83 23 36 13 29:21:14 0 — — — — 2 — — — 22 34 80 754

4 125 7 10 5 5:4:3 0 — — — — 1 — — — 7 10 20 1079

5 250 — — — — — — — — — 1 — — — — — — 1579

6 500 1000 5 348 800 5 1024:441:431 7 — — — — 346 — — — 40 150 569 55

7 10 346 784 9 909:508:359 3 — — — — 230 — — — 42 132 1073 102

8 83 42 80 14 73:52:33 0 — — — — 11 — — — 34 78 152 509

9 125 72 132 36 135:91:116 0 — — — — 23 — — — 67 268 246 707

10 250 12 17 8 12:7:12 0 — — — — 9 — — — 12 20 38 1093

11 500 2500 5 487 1904 5 3485:1233:1637 10 — — — — 2058 — — — 46 202 1666 32

12 10 452 1595 9 2384:1215:972 7 — — — — 868 — — — 51 180 1325 46

13 83 138 334 32 534:301:269 2 — — — — 65 — — — 84 320 553 258

14 125 5 7 4 0:0:3 0 — — — — 13 — — — — — 14 323

15 250 — — — — — — — — — 17 — — — — — — 556

16 500 12,500 5 500 3594 5 2446:334:1200 3 — — — — 3655 — — — 43 92 3681 11

17 10 498 3324 8 4685:1358:2066 3 — — — — 8095 — — — 52 202 4683 18

18 83 444 2291 47 16,035:4338:32,175 9 0.8850 159 501 40 42,900 3:1:8 4 78 365 2022 3857 113

19 125 379 1754 41 324:262:66 1 — — — — 126 — — — 95 194 954 146

20 250 — — — — — — — — — 116 — — — — — — 267
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TABLE II. Computational results for BC-BL on problem set D

Tree Search
Initial Tree Node

No. Maximum
No. Cuts Additional Cuts No.Maximum

Exclusion: Exclusion: No. Constraints OptimalInitial Reduction Network
Problem Connectivity: No. Gap Connectivity: Tree Additional in the LP Solution

No. ÉVÉ ÉEÉ ÉKÉ ÉVÉ ÉEÉ ÉKÉ Subtour Restarts (%) ÉVÉ ÉEÉ ÉKÉ Time Subtour Nodes Time Nodes Arcs Relaxation Value

D-1 1000 1250 5 226 424 5 432:227:177 3 — — — — 106 — — — 31 94 376 106

2 10 247 454 10 530:225:184 2 — — — — 77 — — — 61 210 580 220

3 167 — — — — — — — — — 5 — — — — — — 1565

4 250 13 18 8 11:9:6 0 — — — — 5 — — — 13 20 38 1935

5 500 8 12 6 6:2:1 0 — — — — 8 — — — 8 28 19 3250

6 1000 2000 5 737 1694 5 2867:1401:1125 6 5.7836 107 298 5 2088 254:70:157 12 103 85 532 1432 67

7 10 711 1634 10 1618:568:667 3 — — — — 744 — — — 47 136 1718 103

8 167 103 178 47 186:118:151 0 — — — — 90 — — — 97 352 333 1072

9 250 7 10 5 5:3:1 0 — — — — 71 — — — 7 18 18 1448

10 500 15 28 11 11:5:9 0 — — — — 52 — — — 15 26 37 2110

11 1000 5000 5 975 4190 5 6303:1198:2847 11 — — — — 8076 — — — 84 484 2764 29

12 10 950 3568 9 4353:1382:1665 7 2.3810 11 26 5 3446 1:1:0 2 1 66 346 2265 42

13 167 12 20 7 14:9:8 0 — — — — 111 — — — 11 20 40 500

14 250 — — — — — — — — — 110 — — — — — — 667

15 500 8 13 6 4:2:0 0 — — — — 114 — — — 8 10 17 1116

16 1000 25,000 5 1000 8296 5 466:270:198 3 — — — — 1200 — — — 24 70 1276 13

17 10 999 7997 9 5111:392:2412 1 — — — — 17,856 — — — 71 158 8181 23

18 167 896 4737 94 12,115:4124:9654 2 — — — — 14,968 — — — 768 4328 7806 223

19 250 801 4112 97 3802:1289:2344 0 — — — — 20,893 — — — 342 1666 6669 310

20 500 — — — — — — — — — 791 — — — — — — 537
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TABLE III. Computational results for BC-BL on problem set E

Tree Search

No.Initial Tree Node
Additional

No. Cuts Cuts Maximum No.Maximum
Exclusion: Exclusion: No. Constraints in OptimalInitial Reduction Network

Problem Connectivity: No. Gap Connectivity: Tree Additional the LP Solution
No. ÉVÉ ÉEÉ ÉKÉ ÉVÉ ÉEÉ ÉKÉ Subtour Restarts (%) ÉVÉ ÉEÉ ÉKÉ Time Subtour Nodes Time Nodes Arcs Relaxation Value

E-1 2500 3125 5 647 1234 5 1357:295:650 5 — — — — 1028 — — — 30 68 1716 111

2 10 666 1244 9 3079:1525:1295 4 — — — — 1765 — — — 64 310 2530 214

3 417 81 135 46 115:77:120 0 — — — — 113 — — — 79 222 248 4013

4 625 19 33 13 17:9:6 0 — — — — 75 — — — 19 34 48 5101

5 1250 7 10 5 5:4:3 0 — — — — 99 — — — 7 10 19 8128

6 2500 5000 5 1816 4268 5 8846:2028:4179 8 — — — — 8547 — — — 51 168 5792 73

7 10 1861 4322 10 17,461:4000:1107 8 0.3448 341 652 10 11,801 1:1:0 4 52 492 1630 8430 145

8 417 188 349 90 371:234:470 0 — — — — 1204 — — — 171 464 642 2640

9 625 78 136 42 94:61:35 0 — — — — 1083 — — — 72 152 193 3604

10 1250 11 18 8 10:4:4 0 — — — — 814 — — — 11 20 28 5600

11 2500 12,500 5 2479 11,479 5 2350:1337:757 8 — — — — 10,426 — — — 56 268 3005 34

12 10 2455 10,834 10 (21,600)

13 417 300 655 116 2041:890:3517 2 — — — — 7484 — — — 280 1128 1128 1280

14 625 34 61 19 45:33:22 0 — — — — 1806 — — — 33 68 113 1732

15 1250 — — — — — — — — — 1599 — — — — — — 2784

16 2500 62,500 5 2500 23,397 5 1192:639:448 4 — — — — 13,517 — — — 34 98 3524 15

17 10 2500 21,783 10 (21,600)

18 417 2259 12,255 247 (21,600)

19 625 1777 8173 183 (21,600)

20 1250 — — — — — — — — — 10,277 — — — — — — 1342

A time in parentheses signifies that the algorithm did not finish in the time shown.
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TABLE IV. Computational results for BC-BL (without Duin reductions) on problem set C

Tree Search
Initial Tree Node

No.
No. Cuts Additional Cuts Maximum No.Maximum

Exclusion: Exclusion: No. Constraints inInitial Reduction Network
Problem Connectivity: No. Gap Connectivity: Tree Additional the LP

No. ÉVÉ ÉEÉ ÉKÉ ÉVÉ ÉEÉ ÉKÉ Subtour Restarts (%) ÉVÉ ÉEÉ ÉKÉ Time Subtour Nodes Time Nodes Arcs Relaxation

C-1 500 625 5 138 241 5 172:100:91 3 — — — — 16 — — — 23 56 220

2 10 128 228 8 465:289:219 5 — — — — 34 — — — 34 108 423

3 83 103 162 31 276:155:125 3 — — — — 12 — — — 69 150 319

4 125 87 132 30 204:135:96 1 — — — — 10 — — — 63 128 273

5 250 18 23 11 15:7:7 0 — — — — 1 — — — 16 20 47

6 500 1000 5 366 830 5 1637:679:755 9 — — — — 352 — — — 61 196 605

7 10 381 848 9 1326:825:515 4 — — — — 270 — — — 45 162 997

8 83 342 731 53 2148:1071:1125 6 — — — — 273 — — — 146 338 1215

9 125 317 644 68 2476:1182:2144 3 0.2829 178 395 63 1052 209:140:678 66 1153 170 714 1080

10 250 51 77 22 53:32:20 0 — — — — 7 — — — 39 62 141

11 500 2500 5 500 1967 5 2239:761:1176 10 — — — — 1789 — — — 56 172 1742

12 10 497 1856 9 3377:1549:1381 10 — — — — 1065 — — — 50 172 1307

13 83 425 1301 48 2517:1091:1409 3 0.7623 173 475 41 761 328:382:749 50 1841 146 754 1421

14 125 383 1068 62 966:500:544 1 — — — — 131 — — — 152 386 1309

15 250 85 158 22 145:121:59 2 — — — — 21 — — — 48 138 232

16 500 12,500 5 500 3661 5 144:108:83 2 — — — — 174 — — — 17 40 592

17 10 498 3535 8 2390:417:1097 1 — — — — 3039 — — — 57 116 4095

18 83 463 2718 47 21,486:5844:33,229 17 0.8850 59 101 30 30,344 0:0:0 4 31 371 2014 3699

19 125 416 1952 41 571:451:176 2 — — — — 130 — — — 89 152 1000

20 250 190 521 10 63:56:16 0 — — — — 142 — — — 23 38 314
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TABLE V. Computational results for BC-BL (without Duin reductions) on problem set D

Tree Search

No.Initial Tree Node
Additional

No. Cuts Cuts Maximum No.Maximum
Exclusion: Exclusion: No. Constraints inInitial Reduction Network

Problem Connectivity: No. Gap Connectivity: Tree Additional the LP
No. ÉVÉ ÉEÉ ÉKÉ ÉVÉ ÉEÉ ÉKÉ Subtour Restarts (%) ÉVÉ ÉEÉ ÉKÉ Time Subtour Nodes Time Nodes Arcs Relaxation

D-1 1000 1250 5 276 508 5 858:530:361 9 3.7736 14 26 5 142 13:12:5 8 2 33 112 499

2 10 287 518 10 647:274:224 2 — — — — 81 — — — 69 282 687

3 167 177 273 54 363:241:150 2 — — — — 21 — — — 116 208 539

4 250 99 144 41 140:72:70 0 — — — — 12 — — — 78 200 298

5 500 48 62 26 58:42:163 0 — — — — 29 — — — 45 142 193

6 1000 2000 5 759 1727 5 2994:1431:1181 7 5.2239 101 272 5 1558 140:59:139 8 54 80 380 1352

7 10 747 1700 10 1595:589:645 3 — — — — 620 — — — 49 148 1811

8 167 707 1501 113 3636:2025:2089 4 — — — — 717 — — — 319 710 2395

9 250 613 1294 136 4299:2501:3094 8 — — — — 1219 — — — 326 816 2036

10 500 294 623 92 1021:651:903 4 — — — — 190 — — — 177 370 830

11 1000 5000 5 992 4297 5 6295:1452:3035 12 — — — — 5943 — — — 53 128 3016

12 10 995 4031 9 3245:954:1347 8 2.3810 8 12 4 2316 1:1:0 2 1 67 352 2816

13 167 891 2855 108 7620:4176:4892 8 — — — — 2107 — — — 297 792 2959

14 250 759 2141 115 6341:3460:4293 6 — — — — 1554 — — — 289 634 2640

15 500 210 425 56 731:410:315 3 — — — — 149 — — — 117 222 690

16 1000 25,000 5 1000 8338 5 509:348:249 4 — — — — 1128 — — — 24 82 1267

17 10 999 8308 9 5315:580:2852 2 — — — — 16,928 — — — 745 3964 8168

18 167 927 5948 94 13,951:3598:10,582 2 — — — — 15,223 — — — 787 4486 7406

19 250 841 4559 97 4477:1205:6013 0 — — — — 9020 — — — 685 4054 6397

20 500 418 1142 33 218:168:49 0 — — — — 905 — — — 80 154 828
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TABLE VI. Computational results for BC-BL (without Duin reductions) on problem set E

Tree Search

No.Initial Tree Node
Additional

No. Cuts Cuts Maximum No.Maximum
Exclusion: Exclusion: No. Constraints inInitial Reduction Network

Problem Connectivity: No. Gap Connectivity: Tree Additional the LP
No. ÉVÉ ÉEÉ ÉKÉ ÉVÉ ÉEÉ ÉKÉ Subtour Restarts (%) ÉVÉ ÉEÉ ÉKÉ Time Subtour Nodes Time Nodes Arcs Relaxation

E-1 2500 3125 5 678 1280 5 1978:453:956 6 — — — — 1131 — — — 35 90 1990

2 10 705 1305 9 3575:1618:1522 5 — — — — 1555 — — — 67 316 2452

3 417 492 781 145 1900:1173:3853 2 — — — — 2147 — — — 310 716 1565

4 625 160 225 64 385:244:150 2 — — — — 61 — — — 119 224 463

5 1250 30 30 18 28:20:9 0 — — — — 55 — — — 28 68 84

6 2500 5000 5 1844 4331 5 5490:1402:2594 6 — — — — 13,050 — — — 47 162 5707

7 10 1887 4344 10 17,730:4930:7778 14 — — — — 10,243 — — — 106 234 8133

8 417 1691 4022 265 (21,600)

9 625 1514 3723 301 (21,600)

10 1250 584 1387 188 2698:2174:4906 4 — — — — 4483 — — — 357 814 1736

11 2500 12,500 5 2498 11,631 5 4863:2190:1436 11 — — — — 17,103 — — — 154 902 3529

12 10 2498 11,500 10 (21,600)

13 417 2274 8249 282 (21,600)

14 625 2004 6973 302 (21,600)

15 1250 802 2073 166 3159:1981:8570 5 — — — — 10,294 — — — 327 904 3746

16 2500 62,500 5 2500 23,553 5 684:485:322 4 — — — — 13,717 — — — 28 76 2878

17 10 2500 23,064 10 (21,600)

18 417 2321 17,634 247 (21,600)

19 625 2042 9663 190 (21,600)

20 1250 1088 3084 84 (21,600)

A time in parentheses signifies that the algorithm did not finish in the time shown.
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(a) the Duin reductions lead to smaller graphs which problem solved to identify violated subtour elimination
constraints, can be gauged from the figures for the maxi-make the branch and cut approach computationally

more feasible; mum network size in Tables I–VI. More specifically, the
effect of the shrinking heuristic over the 98 problems in(b) the Duin reductions do not always lead to smaller
Tables I–VI for which maximum network size figurescomputation times—of the 51 problems solved to
are available has been to reduce network size (in termsoptimality in Tables IV–VI, 16 problems took more
of number of vertices) by 57% on average. For 60 largercomputation time with the Duin reductions; and
problems (original reduced graph ¢ 250 vertices) , this(c) the gap between the final LP solution (ZLP) at the
reduction increases to an average of 74%.initial tree node and the optimal solution is relatively

unaffected by the Duin reductions. Of the 51 prob-
lems solved to optimality in Tables IV–VI, 45 prob- 6.6. Restarting
lems have a zero gap and the average gap for the

To illustrate the advantage of the restarting strategy, weremaining six problems is 2.2181%. The correspond-
plot for problem C-11 in Figure 2 (taken from Table IV,ing figures for Tables I–III are that of the 56 prob-
i.e. without Duin reductions) the value of the LP relax-lems solved to optimality 52 problems have zero gap
ation at each iteration (at the initial tree node) as givenand the average gap for the remaining four problems
by the original algorithm BC-BL and as given by thatis 2.3486%.
algorithm with no restarts. It can be seen from that figure
that BC-BL reaches the optimal solution of 32 after 10We would conclude here that the overall effect of the
restarts (and after approximately 650 iterations) . How-Duin reductions is on computation time, with relatively
ever, with no restarts, the maximum lower boundlittle effect on the gap between the final LP solution value
achieved is only 30 (after approximately 450 iterations) ,and the integer optimal solution. Note also here that the
necessitating branching. In other words, without restarts,Duin reductions that we implemented in BC-BL were a
we are left with a sizable gap ( 2

32 Å 6.25%) at the initialsubset of the full set of reductions presented by Duin in
tree node and require branching.[15] and that we may not have implemented them in the

To clarify what has happened here—the combinedcomputationally most effective manner.
effect of problem reduction (fixing variables) over suc-
cessive restarts has been to increase (from 30 to 32) the

6.4. Upper and Lower Bounds maximum solution value obtainable from the LP relax-
ation [Eqs. (9) – (16)] of the complete strengthened for-Examining Tables I–VI, it is clear that a large number
mulation of SPG.of problems are solved without any branching being nec-

We would emphasize here that this illustrates that ouressary (irrespective of whether the Duin reductions are
strategy of using LP dual variable values in a partialapplied or not) . This occurs because
Lagrangean relaxation for problem reduction can yield
significant benefits. In particular, note from Tables I–VI(a) the heuristics that we apply are very successful at
the size of the final (reduced) problem at the initial treefinding the optimal integer solution; and
node for those (few) problems that required branching.(b) the lower bound (as given by the LP solution value)

We also show in Figure 2 BC-BL with no restarts andfrequently coincides with the optimal integer solution
value.

(a) no degree 2 constraints [Eq. (10)] , a maximum
lower bound of 30 (after approximately 200 itera-We believe that the quality of the upper bounds that we
tions);achieve are due to the approach that we adopted, namely,

(b) no connectivity constraints [Eq. (12)] , a maximumusing the structure of the LP solution in a systematic
lower bound of 30 (after approximately 400 itera-fashion to seek improved feasible solutions. As an illus-
tions); andtration of this, we have that for 55 of the 56 problems

(c) no subtour elimination constraints [Eq. (14)] , asolved in Tables I–III the upper bound is optimal at the
maximum lower bound of 29.764 (after approxi-initial tree node. In other words, for only one problem
mately 300 iterations) .did we fail to discover the optimal solution at the initial

tree node.
It appears from Figure 2 that there are a number of hori-
zontal portions to the lines plotted. These are not plotting6.5. Shrinking Heuristic
artifacts but are genuine; in other words, we often encoun-
ter situations in which the LP value remains unchangedThe success of the shrinking heuristic of Padberg and

Grötschel [42], in terms of the size of the network flow for a considerable number of iterations.
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Fig. 2. Problem C-11.

6.7. Comparison rior, not only in computation time terms but also in
gap terms, to the Lagrangean relaxation algorithm of

In Table VII, we compare BC-BL (with Duin reductions, Beasley [4]; and
Tables I–III) with the results of other workers. In that

(c) although the performance of Duin [15] on problemtable, we present the gap at the initial tree node (if known)
set E is unknown, it is clear that its computationand the total computation time in seconds. However, all
performance on problems sets C and D is superiorthe computers used were different, which makes a precise
to all other algorithms.comparison of these results difficult. Chopra et al. [9] in

their branch and cut algorithm (henceforth, denoted by
BC-CGR) used a Vax 8700; Beasley [4] , a Cray X-MP/ 6.8. Duin [15] Results
48; Lucena [37], a Sun Sparcstation 10; and Duin [15],

The performance of Duin [15] deserves further comment.a 486 66 MHz pc.
We believe that the key to his success is twofold:From Dongarra [13], we can make an approximate

comparison of the results shown in Table VII by using
scaling values for the achievable speeds of these comput- 1. His reduction tests are very effective.
ers as 15 for the Silicon Graphics Indigo, 0.99 for the 2. His computational implementation is outstandingly ef-
Vax 8700, 121 for the Cray X-MP/48, 7 for the Sun fective.
Sparcstation 10, and 0.56 for the 486 66 MHz pc. Using
these values, we would make the following observations: In support of this, we would note that BC-BL includes a

subset of the full set of Duin reductions [15], yet it is
(a) Among BC-BL, BC-CGR, and Lucena, no clear clear from the comparable problems solved by BC-BL

computational winner emerges: BC-BL is faster than purely by reduction (problems C-5/15/20, D-3/14/20)
BC-CGR in solving 26 problems, BC-BL is faster that our computation times are far inferior to those of
than Lucena in solving 23 problems, and Lucena is Duin. Indeed, for these particular problems, our total com-
faster than BC-CGR in solving 28 problems; putation time is 1040 Silicon Graphics Indigo seconds

while the computation time for Duin for these problems(b) BC-BL, BC-CGR, and Lucena are all generally supe-
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TABLE VII. Comparison of algorithms

This Paper Chopra et al. [9]
BC-BL BC-CGR Beasley [4] Lucena [37] Duin [15]

Problem Gap Time Gap Time Gap Time Gap Time Gap Time
No. (%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

C-1 — 13 — 27.3 10.9837 113.57 — 8.2 — 0.7

2 — 16 — 811.7 2.5526 5.84 — 28.4 — 0.4

3 — 2 — 543.4 0.5906 152.78 — 9.9 — 0.4

4 — 1 — 509.6 — 3.61 — 7.5 — 0.4

5 — 1 — 473.9 — 2.73 — 3.0 — 0.7

6 — 346 — 48.9 10.4664 48.55 — 131.0 — 1.9

7 — 230 — 83.2 — 4.44 — 65.1 — 2.1

8 — 11 — 674.4 — 8.63 — 85.5 — 0.7

9 — 23 — 1866.3 0.2966 198.97 — 122.2 — 0.8

10 — 9 — 245.6 — 4.53 — 18.4 — 0.8

11 — 2058 — 333.3 12.1398 188.02 — 160.0 — 4.2

12 — 868 — 119.8 4.0712 25.04 — 129.0 — 3.3

13 — 65 Not known 9170.3 0.6968 166.53 — 156.7 1.6 1.5

14 — 13 — 211.7 — 8.67 — 117.5 — 0.9

15 — 17 — 210.6 — 7.30 — 56.6 — 1.0

16 — 3655 — 10.1 16.4790 32.37 — 154.1 — 7.2

17 — 8095 — 98.0 5.7762 24.17 — 127.1 — 6.4

18 0.8850 43,265 Not known 45,847.7 1.0473 104.34 — 524.2 9.6 247.7

19 — 126 — 116.9 — 86.48 — 114.1 5.2 34.8

20 — 116 — 14.9 — 157.80 — 125.0 — 2.9

D-1 — 106 — 475.6 9.0015 226.27 — 81.9 — 1.8

2 — 77 — 283.5 3.5551 252.47 — 36.6 — 1.7

3 — 5 — 2290.1 0.0130 21.85 — 36.0 — 0.9

4 — 5 — 3529.0 — 11.71 — 16.9 — 1.1

5 — 8 — 810.6 0.0076 11.76 — 18.4 — 2.4

6 5.7836 2191 — 2339.5 12.5762 4056.69 12.6866 678.9 — 7.4

7 — 744 — 99.7 1.9575 18.71 — 248.6 — 7.1

8 — 90 — 6984.5 0.0417 475.14 — 389.7 — 2.2

9 — 71 — 4629.7 0.0162 243.48 — 282.3 — 1.8

10 — 52 — 1312.1 — 20.21 — 167.5 — 2.6

11 — 8076 — 1374.4 18.0027 3290.48 — 806.8 — 13.5

12 2.3810 3447 — 305.0 4.0179 48.04 — 888.5 — 10.5

13 — 111 — 1864.0 0.0118 36.06 — 487.6 — 2.7

14 — 110 — 3538.4 0.1376 443.36 — 598.1 — 2.3

15 — 114 — 1409.7 0.0170 32.25 — 406.0 — 3.2

16 — 1200 — 871.3 12.0950 161.43 — 437.6 — 17.8

17 — 17,856 — 6965.2 8.5057 277.20 — 604.8 — 20.7

18 — 14,968 Not known 245,192.1 0.2538 222.15 — 730.5 4.8 1988.4

19 — 20,893 — 878.3 — 256.15 — 647.4 4.5 1420.0

20 — 791 — 47.1 — 1023.60 — 498.9 — 7.4

E-1 — 1028 — 1149.6 9.8495 1116.80 — 203.2

2 — 1765 — 6251.2 4.8827 7124.10 — 437.8

3 — 113 — 26,468.4 0.0218 1364.05 — 202.2

Table VII continues
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TABLE VII. Continued

This Paper Chopra et al. [9]
BC-BL BC-CGR Beasley [4] Lucena [37] Duin [15]

Problem Gap Time Gap Time Gap Time Gap Time Gap Time
No. (%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

4 — 75 — 46,007.6 0.0339 378.66 — 206.7

5 — 99 — 12,564.1 — 98.22 — 215.1

6 — 8547 — 678.0 10.5719 1760.49 — 2860.0

7 0.3448 11,853 — 27,124.0 14.0949 (21,600) — 2852.2

8 — 1204 — 118,617.5 0.0246 4459.30 — 3198.4

9 — 1083 — 24,527.8 0.0434 18,818.53 — 2235.5

10 — 814 — 39,260.7 0.0161 311.87 — 1797.1

11 — 10,426 — 1900.6 9.9758 3061.45 — 5319.0

12 (21,600) — 7199.7 9.4853 (21,600) — 6159.8

13 — 7484 — 207,058.6 0.9272 (21,600) — 9311.9

14 — 1806 — 29,262.6 0.2527 (21,600) — 6729.6

15 — 1599 — 7666.0 0.0161 457.98 — 4611.8

16 — 13,517 — 179.0 16.0455 7880.44 — 3570.4

17 (21,600) — 36,039.9 4.6859 445.69 — 4729.7

18 (21,600) Not known Not known 16.3308 (21,600) 0.8979 (50,000)

19 (21,600) — 6371.8 0.5759 (21,600) — 18,345.0

20 — 10,277 — 272.2 — 14,037.13 — 15,832.5

is 15.2 486 66 MHz pc seconds. Given the Dongarra [13] • using LP dual variable values in a partial Lagrangean
relaxation,scaling factors of 15 and 0.56, respectively, these times

equate to a ratio of 1040(15):15.2(0.56) Å 1833:1, i.e., • using the structure of the LP solution to look for feasi-
our best estimate is that our implementation is at least ble solutions, and
three orders of magnitude slower than the implementation • restarting
of Duin.

We would also comment that our experimental evi-
relating to branch and cut algorithms in general weredence (presented above) has been that the effect of the
highlighted.subset of the full set of Duin reductions [15] incorporated

into BC-BL is principally upon the computation time and
not on the gap between the final LP solution value and
the integer optimal solution. In particular, note that the REFERENCES
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reported by Duin using a lower bound due to Wong [57],
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