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Recall the standard form:

max

n∑

j=1

cjxj

n∑

j=1

aijxj ≤ bi, i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n

x1, x2, . . . , xn are decision variables. xn+1, xn+2, . . . , xn+m are slack variables.
Assuming bi > 0 for all i in (1) the origin is feasible.
In the dictionary,

xn+i = bi −
n∑

j=1

aijxj , i = 1, 2, . . . , m

z =
n∑

j=1

cjxj

The LHS variables are basic variables with index set B = {n + 1, n + 2, . . . , n + m}. The
RHS variables are non-basic variables with index set N = {1, 2, . . . , n}. A pivot switches
a LHS variable with a RHS variable and updates the index sets B and N .

General dictionary (|B| = m, |N | = n)

xi = bi −
∑

j∈N

aijxj , i ∈ B

z = z +
∑

j∈N

cjxj

Basic solution: set xj = 0, j ∈ N,xi = bi, i ∈ B, z = z.
Basic feasible solution: All xi ≥ 0, ie. bi ≥ 0 for i ∈ B.

1 Simplex Method

(Assuming that all bi > 0)

1. Find cj > 0, j ∈ N . If none, terminate with optimum solution.

2. Choose i to minimize ratio bi/aij for aij > 0. If none, terminate with unbounded
solution.
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3. Solve for basic variables B = B\{i} ∪ {j} and get a new dictionary.

Outcomes for a general LP:

1. Optimum solution.

2. Unbounded.

3. No feasible solution. (Can happen only if some starting bi < 0.)

1.1 Problem transformation to solve a problem with infeasible origin

The basic idea is to create a new LP’ with feasible origin and compute an optimal solu-
tion. Depending on the solution the original problem is either feasible, so we contine and
optimize it, or it is infeasible, so we terminate.

Steps:

1. Given a general LP with unfeasible origin, bi < 0 for some i, transform it to LP’
with feasible origin which is bounded.

2. Solve LP’ to optimality.

3. Depending on the solution, either LP is infeasible or we get a feasible dictionary for
LP with basis B.

4. Solve LP to get either an optimum or unbounded solution.

Steps 1 and 2 are often called Phase 1 and steps 3 and 4 Phase 2.
Example:

maxz = 5x1 + 6x2 + 9x3

x1 − 2x2 − 3x3 ≤ −5
−x1 + x2 + 2x3 ≤ −3
x1, x2, x3 ≥ 0

To get LP’, add a new artificial variable x0 ≥ 0.

min w = x0 ⇔ max − w = −x0

x1 − 2x2 − 3x3 − x0 ≤ −5
−x1 + x2 + 2x3 − x0 ≤ −3

(1)

x1 = x2 = x3 = 0, x0 = 5 is a feasible solution for LP’.
LP’ is bounded since w = x0 ≥ 0.
We now get the optimum solution w∗. There are two cases:

1. w∗ = 0: In this case the x1, x2, . . . , xn basic solution to LP’ is feasible for LP. Add
back original objective z and continoue.
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2. w∗ > 0: In this case the original problem is infeasible. (Proof: Suppose LP is
feasible. Take the feasible solution and set x0 = 0. This solves LP’ with w = 0,
contradiction.)

The initial Dictionary for LP’ is

x4 = −5− x1 + 2x2 + 3x3 + x0

x5 = −3 + x1 − x2 − 2x3 + x0

−w = −x0

We now begin Phase 1. Pivot x0 into B and pivot out most negative x4.

x0 = 5 + x1 − 2x2 − 3x3 + x4

x5 = 2 + 2x1 − 3x2 − 5x3 + x4

−w = −5− x1 + 2x2 + 3x3 − x4

Now we use the standard simplex method to obtain the optimum dictionary:

x1 = 11 + x3 + x4 + 2x5 − 3x0

x2 = 8− x3 + x4 + x5 − 2x0

−w = 0− x0

Exercise. Do these pivots yourself and check the above.
This is the end of Phase 1. Since w = 0 we have a feasible solution to the original

problem: x1 = 11, x2 = 8, x3 = 0. This is the end of Phase 1. We now delete the artificial
variable x0 and reintroduce the original objective function z. We need to change variables
in order to express z in terms of the non-basic variables x3, x4, x5 by substituting for x1

and x2 from the previous dictionary.

z = 5x1 + 6x2 + 9x3 = 103 + 8x3 + 11x4 + 16x5

We can now begin Phase 2 with the dictionary

x1 = 11 + x3 + x4 + 2x5

x2 = 8− x3 + x4 + x5

z = 103 + 8x3 + 11x4 + 16x5 (2)

Now if we choose x5 as the entering variable we see that the problem is unbounded:
for any t ≥ 0 the solution x1 = 11 + 2t, x2 = 8 + t, x3 = 0 is feasible with z = 103 + 16t.
This is the certificate of unboundedness.

In conclusion we found a feasible solution to LP , which had infeasible origin, by finding
an optimum solution to LP ′ which had a feasible origin. In fact, finding a feasible solution
to an LP is, in general, as hard computationally as finding an optimum solution. For NP-
hard problems such as the travelling salesman problem on a complete graph, the problems
are quite different: any permutation gives a feasible solution, but it is NP-hard to get an
optimum solution.
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1.2 Cycling and Degneracy

Does the simplex method really terminate? Actually it can loop indefinitely, called cycling.
Recall the basic idea of local improvement algorithms:

1. Given a starting feasible solution, improve it by increasing z but keep it staying
feasible.

2. Each iteration gives us a dictionary with basis B.

|B| = m, |N | = n,B ∪N = {1, 2, . . . , n + m}

The number of different bases or dictionaries is
(
m+n

n

)
, which is finite. But can a

dictionary be repeated later? The answer is yes if z does not increase. This happens
if the ratio test for entering variable has minimum ratio zero, and such problems
are called degenerate. The following example shows the problems that a degenerate
problem may cause.

Komei Fukuda’s example
Starting dictionary D0 has basis B = {4, 5, 6}, N = {1, 2, 3}.

x4 = −2x1 + x2 − x3

x5 = −3x1 − x2 − x3

x6 = 5x1 − 3x2 + 2x3

z = x1 − 2x2 + x3

We select x1 as entering and x5 as leaving variable, and obtain D1 with B = {4, 1, 6}, N =
{5, 2, 3}.

x4 =
2x5

3
+

5x2

3
− x3

3
x1 = −x5

3
− x2

3
− x3

3

x6 = −5x5

3
− 14x2

3
+

x3

3

z = −x5

3
− 7x2

3
+

2x3

3

We select x3 as entering and x4 as leaving variable, and obtain D2 with B = {3, 1, 6}, N =
{5, 2, 4}.

x3 = −2x5 + x2 − x4

x1 = −3x5 − x2 − x4

x6 = 5x5 − 3x2 + 2x4

z = x5 − 2x2 + x4

Now D2 has exactly the same coefficients as D0 so we can pivot in the same location:
column 1 and row 2. We will then get the identical dictionary coefficients as D1, so we
can pivot in the same place as for D1. Since the number of dictionaries is finite, we have
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proved that a basis must repeat, and we have an infinite cycle. In fact it does not take
long for this to happen. We select column 1 and row 2, ie. x5 to enter and x1 to leave.
We know the new dictionary D3 will have exactly D1’s coefficients:

x3 =
2x1

3
+

5x2

3
− x4

3
x5 = −x1

3
− x2

3
− x4

3

x6 = −5x1

3
− 14x2

3
+

x4

3

z = −x1

3
− 7x2

3
+

2x4

3

Now pivoting on column 3 and row 1 brings us back to B = {4, 5, 6}.

Bi

Bj

Bi = Bj/

Figure 1: Stalling

The problem this example uncovers is the following:

1. We did a ratio test and get a minimum value of zero, so z did not increase (stalling,
see Figure 1).

2. This means that many different dictionaries correspond to the same basic feasible
solution.

Geometry is useful to understand what is happening. Consider the polytope (bounded
polyhedron) which is a pyramid P with six faces. See Figure 2.

Each vertex in P can be represented by giving three faces that contain it. If each
vertex is contained on exactly three faces the polytope is called simple, otherwise it is
called non-simple. If a vertex lies on a face, it means that in the LP the corresponding
slack variable for the constraint defining the face is zero. In other words, the non-basic
variables identify three faces containing the given vertex. Simple polytopes correspond to
non-degenerate LPs, and non-simple polytopes to degenerate LPs. So in the example, the
origin is the intersection F1 ∩ F6 ∩ F5. Note however that vertex v is on the insection of
F1∩F2∩F3∩F4∩F5. Therefore it does not have a unique representaion as the intersection
of three faces: it can be represented by any three of the five, say {F1, F2, F5}.

Now consider an objective function maximizing z = x2. A pivot of the simplex method
involves removing one face containing the current vertex (ie. current basic feasible solution)
and replacing it with another face, to improve z if possible. A possible pivot from the
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v

F2

F3

F4

bottom: F6

F1

back: F5

{F1,F5,F4}

(0,0,0)

{F4,F5,F6}

(0,0,0)

x1

x2

x3

Figure 2: A non-simple polytope

origin replaces F6 with F2, increasing z. We get {F1, F2, F5}. Now we may stall, ie. remain
on vertex v, making pivots to {F1, F3, F5} and then to {F1, F4, F5}. Now if we pivot to
{F1, F2, F5} we are in a cycle. But if we pivot to {F6, F4, F5} we break the cycle and move
to the optimum vertex at the right of the figure (which should be labelled something like
(0,2,0)).

1.3 Handling Degenerate LPs

There are several ways to great versions of the simplex method that do not cycle. A
simple, ”engineering” method is to make all LPs non-degenerate. This can be done for
the example in Figure 2 by perturbing a little bit each face so that no four faces intersect
at a vertex. See Figure 3. In general a perturbation can be applied to a problem with n
variables so that no n + 1 facets intersect.

A second method involves choosing a pivot selection rule that does not cycle. The
simplest is the smallest subscript rule due to R. Bland:

1. For the entering variable, choose the smallest index j for which cj is positive.
2. If the ratio test gives a tie for leaving variable, again choose the one with smallest

subscript.
Exercise: Apply this rule to Fukuda’s example and see that it does not cycle.
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Figure 3: Perturbed pyramid is simple
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