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The complexity of cover inequality separation1
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Abstract

Crowder et al. (Oper. Res. 31 (1983) 803–834) conjectured that the separation problem for cover inequalities for binary
integer programs is polynomially solvable. We show that the general problem is NP-hard but a special case is solvable in
linear time. c© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Separation problems for linear programs with an
exponential number of constraints arise in polyhedral
approaches to combinatorial optimization problems.
These separation problems frequently are special cases
of NP-hard problems such as knapsack or max-cut.
The special cases arise because of the restricted in-
puts, which come from the solutions of relaxed linear
programs. An example is the separation problem for
cover inequalities for binary integer programs intro-
duced by Crowder et al. [2] more than 10 years ago.
The following is a quote from their paper that enlight-
ens the separation problem:

“We start by solving the linear program max{cx:
Ax6d; 06x61} and obtain an optimal solution
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x∗. If x∗ is a zero-one solution, we stop: x∗ solves
the binary integer program. Otherwise we solve the
following problem.
Given x∗ �nd a minimal cover inequality that

chops o� x∗, if such an inequality exists. : : : We
conjecture that violated minimal cover inequalities
can be identi�ed by a polynomially bounded algo-
rithm”.

We resolve the conjecture by showing that the cover
inequality separation problem is NP-hard, even if the
binary integer program is a knapsack problem. How-
ever, there is some validity to the conjecture, since
if the optimal linear programming solution is an ex-
treme point and the number of rows is a constant or
grows polylogarithmically, then the separation prob-
lem is polynomially solvable.
It has been pointed out to us, after this note �rst

appeared as a technical report, that Ferreira resolved
this conjecture in his thesis [3] which is also cited
in [4]. However, Ferreira’s input for the separation
problem is decoupled from the solution of the linear
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program that provides the point to be separated and
his argument does not work if the LP solution does
not satisfy the original knapsack constraint.
Binary integer programming (BIP) is the problem

max{cx: Ax6d; x∈Bn};
where A∈Zm×n+ is an integer matrix, d∈Zm+ is an
integer vector, c∈Rn and B stands for the set {0; 1}.
BIP is NP-hard. Branch-and-cut is one of the most
successful approaches to BIP (for details see e.g.
[5–8]). An important subroutine is to generate cuts
from a single knapsack constraint.
Suppose a is a row of the matrix A and let b be the

corresponding coordinate of the right-hand side d. To
generate valid inequalities for BIP, we can generate
valid inequalities for the polytope

P=conv{ax6b; x∈Bn};
where ‘conv’ is the abbreviation for convex hull.
Let C be a minimal subset of N = {1; : : : ; n} such

that
∑

i∈C ai¿b. Then∑
i∈C

xi6|C| − 1

is a valid inequality for P. Inequalities of this type are
called cover inequalities. Let x∗ be a solution to the
LP relaxation of BIP, i.e. x∗ is a solution to

max{cx: Ax6d; 06x61}: (1)

We can assume that Eq. (1) is feasible since otherwise
BIP is infeasible. If x∗ ∈Bn, then we are done. So
suppose that x∗ =∈Bn. In this case we would like to, if
possible, cut o� x∗ from P using cover inequalities. It
is reasonable to �nd the most violated cover inequality,
i.e. one that minimizes |C|−1−∑

i∈C x
∗
i , since if this

minimum is nonnegative, we know that there are no
violated cover inequalities.
We introduce new variables zi for each i∈N such

that zi=1 if i∈C and zi=0 otherwise. Then we can
rewrite

∑
i∈C ai¿b+1 as

∑
i∈N aizi¿b+1 and |C|−

1 −∑
i∈C x

∗ as
∑

i∈N (1 − x∗i )zi − 1. So our goal is
to solve

min

{∑
i∈N

(1− x∗i )zi:
∑
i∈N

aizi¿b+ 1; z ∈Bn
}
; (2)

which is known as the cover inequality separation
problem for BIP.

Although the knapsack problem is NP-hard, (2)
is not a general knapsack problem since the vec-
tor x∗ is not arbitrary. x∗ is the output of an LP
relaxation and hence it must be in the polyhedron
{x∈Rn: Ax6d; 06x61}. In particular, it has to
satisfy the condition

∑
i∈N aix

∗
i6b.

Instead of Eq. (2) we can pose a weaker question:
Does there exist a violated cover inequality?

Problem DSP

Input: (A; d; c) and an optimal solution x∗ to
Eq. (1).

Output: Is there a row (a; b) of (A; d) such that
min{∑i∈N (1−x∗i )zi:

∑
i∈N aizi¿b+1; z ∈Bn}¡1,

i.e. is there a violated cover inequality for the given
LP solution x∗?

Note that DSP cannot be harder then the problem
where a row index is speci�ed as part of the input
since solving the latter problem m times solves DSP.
Thus if DSP is NP-complete, then the version of DSP
with a speci�ed row is NP-hard. It is reasonable to as-
sume that the size of the input is the size of (A; d; c)
since we can always �nd an x∗ whose size is polyno-
mially bounded by the size of (A; d; c) (see e.g. [6]).
By standard methods we can show that DSP is in
NP. Also, the NP-completeness of DSP implies that
Eq. (2) is NP-hard. We show in Section 2 that DSP is
NP-complete even for a single constraint. We do this
by �rst showing that a restricted version of the subset
sum problem is NP-complete and then we reduce this
restricted version to DSP.
However, if we have an extreme point optimal

solution to Eq. (1) and the number of constraints is
constant, we show in Section 3 that the separation
problem is polynomially solvable. We also show that
if the number of constraints is not a constant, then
the problem remains NP-complete. Hence we see that
imposing structure on x∗ changes the behavior of the
problem.

2. The separation problem DSP is NP-hard

We will �rst show that problems RPP and RSSP
given below are NP-complete.
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Problem RPP

Input: r ∈Zn+; m∈Z+ such that
∑

i∈N ri=(2
m+1

− 1).

Output: Is there a subset T ⊂N such that∑i∈T ri=
2m+1 − 1 or∑i∈T ri=2

m+1 − 2?

Proposition 1. Problem RPP is NP-complete.

Proof. We do a reduction from the subset sum prob-
lem, which is known to be NP-complete, see e.g. [9].

Subset sum problem SSP

Input: a∈Zn+ such that
∑

i∈N ai is even.

Output: Is there a subset S ⊂N such that∑i∈S ai=∑
i =∈S ai?

Let a∈Zn+ be the data for SSP. De�ne the following
data for RPP. Let m be the smallest integer such that∑

i∈N ai¡2
m. Note that m can be easily computed and

its size is polynomial in the size of the input of SSP.
Let

ri=2ai; i∈N;
rn+1 = rn+2 =2m+1 −

∑
i∈N

ai − 1;

which is a valid input for RPP.
Suppose that S is such that

∑
i∈S ai=

∑
i =∈S ai.

Then it is easy to check that T = S ∪{n+ 1} yields a
yes answer to RPP.
Now let T ⊂{1; : : : ; n+ 2} be such that∑i∈T ri=

2m+1−1 or∑i∈T ri=2
m+1−2. Suppose that n+1∈T

and n+ 2∈T . Then

2m+1 − 1¿
∑
i∈T

ri¿2m+2 − 2− 2
∑
i∈N

ai

contradicts the choice of m.
Hence, without loss of generality, we can assume

that n+1∈T and n+2 =∈T . Let S =T−{n+1}. Then

2m+1 − 1¿
∑
i∈S
ri + 2m+1 −

∑
i∈N

ai − 1¿2m+1 − 2:

It easily follows that∑
i∈N ai
2

¿
∑
i∈S
ai¿

∑
i∈N ai
2

− 1
2

and hence S is the desired set for SSP.

We say that a rational number is encoded in binary
if it is represented in base 2 as a single string, e.g.
‘101.1011’.

Problem RSSP

Input: Rational f∈ [0; 1]n encoded in binary.
Output: Is there a subset T ⊂N such that∑i∈N fi−∑
i∈N f

2
i ¡

∑
i∈T fi¡1?

Proposition 2. The problem RSSP is NP-complete.

Proof. We do a reduction from RPP.
Let r ∈Zn+ and m∈Z+ be a valid input for RPP.

De�ne the input for RSSP by

fi=2−m
2
ri; i∈N;

fn+1 = 1
2 ;

fn+2 = 1
2 − 2−m

2+m+1;

fn+3 = 1
2 ;

fn+4 = 1
2 − 2−(m+1)(m−2)=2:

A straightforward calculation shows that

A=
∑
i∈N

fi −
∑
i∈N

f2i =1− 2−m
2+1 − 2−2m2+2m+2

−2−2m2
∑
i∈N

r2i :

Since
∑

i∈N r
2
i6(

∑
i∈N ri)

2622m+4 we can �nd the
asymptotic behavior of

A=1 + o(1); A=1− O(2−m
2
):

Suppose that S is a set with the desired property for
RPP. De�ne T = S ∪{n+ 1; n+ 2}. We show that T
is a set with the desired property for RSSP. We have∑
i∈T

fi6 2−m
2
(2m+1 − 1) + 1− 2−m2+m+1

= 1− 2−m2¡1:
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On the other hand,

∑
i∈T

fi¿ 2−m
2
(2m+1 − 2) + 1− 2−m2+m+1

= 1− 2−m2+1¿A

and hence T has the desired property for RSSP.
Now let T ⊂{1; : : : ; n+ 4} be such that A¡∑

i∈T
fi¡1. Let S =T ∩N . Then since ∑

i: i¿n; i∈T fi¡1
and since

∑
i: i¿n; i∈T

fi + o(1) =
∑

i: i¿n; i∈T
fi + 2−m

2
2(2m+1 − 1)

¿
∑
i∈T

fi¿A=1 + o(1);

it follows that
∑

i: i¿n; i∈T fi=1 + o(1).
Suppose that fn+4 ∈T . Then

∑
i∈T

fi6 1− 2−[(m+1)(m−2)]=2 + 2−m2
∑
i∈S
ri

6 1− 2−[(m+1)(m−2)]=2 + 2−m22(2m+1 − 1)
= 1− 
(2−m2=2) + 2−m2+m+2:

On the other hand,
∑

i∈T fi¿A=1 − O(2−m
2
). So

we get that 1− 
(2−m2=2)¿1− O(2−m
2
), which is a

contradiction for big enough m.
Hence fn+4 =∈T . But then either fn+1 ∈T or

fn+3 ∈T . Without loss of generality, we can assume
that fn+1 ∈T . Therefore fn+2 ∈T; fn+3 =∈T .
From

∑
i∈T fi¡1, it follows by the de�nition of fi

that
∑

i∈S ri62
m+1 − 1. Also from

∑
i∈T

fi=1− 2−m2+m+1 + 2−m2
∑
i∈S
ri¿A

and by the de�nition of A it follows that
∑

i∈S ri¿
2m+1 − 2 − O(2−2m

2
) and hence

∑
i∈S ri¿2

m+1 − 2
for big enough m.

Now we will show that DSP for BIP is NP-complete
even when the number of constraints m equals 1.

Let a; c∈Zn+ and b∈Z+ be given. Suppose we
are given also a solution x∗ =∈Bn to the problem
max{cx: ax6b; 06x61}.

Theorem 1. DSP is NP-complete when the number
of constraints equals 1.

Proof. The reduction is from RSSP. Let f; n be the
input for RSSP. De�ne e∈Zn+ to be the vector of all
1’s and let M ∈Z+ be the smallest power of 2 such
that Mfi ∈Z+ for all i=1; : : : ; n. Also de�ne

a=M 2f; c=M 2f; b=M 2f(e − f);
x∗= e − f:

It is clear that x∗ is an optimal solution and therefore
this is a valid input for DSP.
Now, it is easy to see that an answer to RSSP is yes

if and only if there exists a violated cover inequality
for DSP.

3. Polynomially solvable case of the separation
problem

Suppose we have an optimal extreme point solution
to Eq. (1). Then it is natural to formulate the separation
problem

Problem DSP1

Input: (A; d; c) and an optimal extreme point x∗ to
Eq. (1).

Output: Is there a row (a; b) of (A; d) such that
min{∑i∈N (1−x∗i )zi:

∑
i∈N aizi¿b+1; z ∈Bn}¡1,

i.e. is there a violated cover inequality for the given
extreme point LP solution x∗?

Theorem 2. If the number of constraints in Eq. (1)
is a constant (resp. polylogarithmic), then DSP1 can
be solved in linear (resp. polynomial) time.

Proof. Let the number of constraints be a constant �.
Since x∗ is an extreme point, we know that at most �
components of x∗ are fractional and all others are 0 or
1. Without loss of generality, x∗1 = x

∗
2 = · · · = x∗u =0
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and x∗u+1; x
∗
u+2; : : : ; x

∗
u+� are fractional and all other

components of x∗ equal one. The separation problem is

min

{
u∑
i=1

zi +
�∑
i=1

(1− x∗u+i)zu+i:
u+�∑
i=1

aizi

¿b+ 1−
n∑

i=u+�+1

ai; ∈Bu+�
}
: (3)

We present a linear time algorithm to solve Eq. (3).
Fix a subset S ⊆{u + 1; u + 2; : : : ; u + �} and assign
zj =1 if j∈ S and 0 otherwise. Now solve
∑
j∈S

(1− x∗j ) + min
{

u∑
i=1

zi:
∑
i∈N

aizi¿b+ 1

−
n∑

i=u+�+1

ai −
∑
j∈S

aj; z ∈Bu
}
: (4)

Next we present a subroutine that solves problem
(4) in linear time.
Find the median of a1; : : : ; au+�. Suppose ak is the

median. De�ne Lk = {i: ai¡ak} and Uk = {i: ai¿
ak}. Compute l=

∑
i∈Uk ai. If l¡b+1−

∑n
i=u+�+1 ai

−∑
j∈S aj, then set zi=1 for all i∈Uk and recursively

solve the problem

∑
j∈S

(1− x∗j ) + min
{∑
i∈Lk

zi:
∑
i∈Lk

aizi¿b+ 1

−
n∑

i=u+�+1

ai −
∑
j∈S

aj −
∑
i∈Uk

ai; zi ∈B|Lk |
}
:

If l¿b+1−∑n
i=u+�+1 ai−

∑
j∈S aj, then set zi=0

for all i∈Lk and recursively solve the problem
∑
j∈S

(1− x∗j ) + min
{∑
i∈Uk

zi:
∑
i∈Uk

aizi¿b+ 1

−
n∑

i=u+�+1

ai −
∑
j∈S

aj; zi ∈B|Uk |
}
:

The complexity of this algorithm is O(n) since we
can �nd the median with a linear time algorithm,
see e.g. [1], and we precompute the sums

∑
j∈S (1−

x∗j );
∑n

i=u+�+1 ai, and
∑

j∈S aj.
Now iterate the above step for all the subsets S of

{u + 1; u + 2; : : : ; u + �} and for all rows and take a

solution with the smallest value. The overall complex-
ity of the algorithm is �2�O(n). Since � is a constant,
this yields a linear time algorithm.
The same procedure yields a polynomial time sep-

aration algorithm if the number of constraints is poly-
logarithmic in the input size.

Since the linear time separation algorithm has
a large constant in its bound, we present an al-
ternative way to solve Eq. (4) with complex-
ity O(n log n). First observe that the problem can
be solved by a greedy algorithm assuming that
a1; a2; : : : ; an are in nonincreasing order. So �rst,
we sort the ai in nonincreasing order. Assume that
a1¿a2¿ · · ·¿an. For each j, compute Sj =

∑j
i=1 ai.

Now with binary search �nd a 16k6u+ � such that
Sk¡b + 1 −

∑n
i=u+�+1 ai −

∑
j∈S aj and Sk+1¿b +

1 −∑n
u+�+1 ai

∑
j∈S aj. Then the solution to Eq. (4)

is z1 = z2 = · · · = zk =1; zk+2 = · · · = zu=0, and
zk+1 = Sk+1 − (b+ 1−

∑n
i=u+�+1 ai −

∑
j∈S aj).

The preprocessing step has complexity O(n log n),
while the binary search has complexity O(log n). So
this procedure yields an algorithm with time complex-
ity O(n log n) + 2�O(log n).
Next we prove that the problem becomes di�cult

if the number of constraints grows linearly.

Theorem 3. DSP1 is NP-complete.

Proof. We do a reduction from RSSP, which is
NP-complete by Proposition 2. Let f; n be the data
for RSSP.
We construct an instance of BIP with 2n columns

and 2n + 1 rows. Let K be a node–node adjacency
matrix of a cycle on n nodes. De�ne the system of
inequalities as

fx6f(e − f);
xi + 2y1 + 2y2 + 2y364− fi; i∈N;
Ky6e:

Let fx + ey be the objective function. Also let
x∗=(e − f; 12e). We can multiply all the rows and
the objective function coe�cients by a power of 2 to
get an instance of BIP with integral data.
First we have to prove that this is a valid input for

DSP1. It is easy to see that x∗ is feasible. By summing
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Ky6e over all rows it follows that x∗ is an optimal
solution to the LP relaxation.
Next we show that x∗ is an extreme point. If n is

odd, then K is nonsingular. Hence setting the last 2n
inequalities of the LP as equalities yields a nonsin-
gular system of 2n equations and 2n unknowns with
the unique solution x∗. If n is even, then the �rst 2n
rows of the LP give a nonsingular system of equations
having 2n unknowns and the unique solution x∗. The
nonsingularity can be seen by sequentially subtracting
the rows 2; 3; 4 : : : 2n from the �rst row.
If we have a yes answer to RSSP, then it yields a

violated cover inequality for the top row of the system.
Suppose now that we have a yes answer to DSP1.

The violated cover inequality cannot come from
Ky6e since these rows are already covers. All the
cover inequalities for xi+2y1+2y2+2y364−fi are

yu + yv61; u; v∈{1; 2; 3}; u 6= v;
xi + yu + yv62; u; v∈{1; 2; 3}; u 6= v;
y1 + y2 + y362;

xi + y1 + y2 + y363:

However, none of the above inequalities is violated
by x∗.
Hence, a violated cover inequality has to come from

the row fx6e(f − e). But then this inequality pro-
duces a yes answer for RSSP.
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