C\&O 370: Deterministic OR Models Strong IP Formulations

Jochen Könemann
http://www.math.uwaterloo.ca/~jochen

University of
Waterloo

Guidelines for Strong Formulations

LP vs IP

- Good linear programming formulations have as few variables and constraints as possible.
Remember: Running time of LP solvers depends heavily on number of variables and on number of constraints.

LP vs IP

- Good linear programming formulations have as few variables and constraints as possible.
Remember: Running time of LP solvers depends heavily on number of variables and on number of constraints.
- Different for IP!
- Computational experiments suggest that the choice in formulation crucially influences solution time and sometimes solvability
- Feasible region of LP relaxation resembles convex hull of feasible integer points closely

LP Relaxation

- The important novelty over linear programs is that the solution space is not any more convex.

LP Relaxation

$$
\begin{aligned}
\max & 3 x_{1}+10 x_{2} \\
\mathrm{s.t.} & x_{1}+4 x_{2} \leq 8 \\
& x_{1}+x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \text { integer }
\end{aligned}
$$

LP Relaxation

- Geometric view:

LP Relaxation

- We obtain the linear programming relaxation of an integer program by dropping the integrality constraints

Convex Hull

- We have seen: optimal solution to LP relaxation is fractional. Can we write a different LP with the same set of feasible integer solutions for which has an integral optimal solution?

Convex Hull

- We have seen: optimal solution to LP relaxation is fractional. Can we write a different LP with the same set of feasible integer solutions for which has an integral optimal solution?
- Yes! Let X be the set of all solutions to original IP. Then define the convex hull of X as

$$
\begin{array}{r}
x= \\
\sum_{\bar{x} \in X} \lambda_{\bar{x}} \cdot \bar{x}, \\
\sum_{\bar{x} \in X} \lambda_{\bar{x}}=1 \\
\left.\lambda_{\bar{x}} \geq 0 \quad \forall x \in \mathbb{R}^{n}: \quad \forall \bar{x} \in X\right\}
\end{array}
$$

Convex Hull

- The convex hull $C H(X)$ of feasible integer solutions X is the smallest polyhedron containing X :

Convex Hull

- The convex hull $C H(X)$ of feasible integer solutions X is the smallest polyhedron containing X :

- If P is the feasible region of an LP relaxation then $C H \subseteq P$

Convex Hull

- The convex hull $C H(X)$ of feasible integer solutions X is the smallest polyhedron containing X :

- If P is the feasible region of an LP relaxation then $C H \subseteq P$
- Each vertex of the convex hull corresponds to an integer solution!
- Valid Inequalities
- Finding Valid Inequalities

Valid Inequalities

Introduction

- In this class, we are interested in integer programs of the following general form:

$$
\begin{align*}
& \max \left\{c^{T} x: x \in X\right\} \tag{IP}\\
& \text { and } X=\left\{x: A x \leq b, X \in \mathbb{Z}_{+}^{n}\right\}
\end{align*}
$$

Introduction

- In this class, we are interested in integer programs of the following general form:

$$
\begin{aligned}
& \max \left\{c^{T} x: x \in X\right\} \\
& \text { and } X=\left\{x: A x \leq b, X \in \mathbb{Z}_{+}^{n}\right\} .
\end{aligned}
$$

- We have seen: To be able to solve (IP) efficiently, we want $\{x: A x \leq b\}$ to be close to the convex hull $\operatorname{CH}(X)$ of the feasible integer solutions.

Introduction

- In this class, we are interested in integer programs of the following general form:

$$
\begin{align*}
& \max \left\{c^{T} x: x \in X\right\} \tag{IP}\\
& \text { and } X=\left\{x: A x \leq b, X \in \mathbb{Z}_{+}^{n}\right\} .
\end{align*}
$$

- We have seen: To be able to solve (IP) efficiently, we want $\{x: A x \leq b\}$ to be close to the convex hull $\mathrm{CH}(X)$ of the feasible integer solutions.
- Fact: There is \widetilde{A} and \widetilde{b} such that

$$
\mathrm{CH}(X)=\{x: \widetilde{A} x \leq \widetilde{b}\}
$$

Introduction

- In this class, we are interested in integer programs of the following general form:

$$
\begin{align*}
& \max \left\{c^{T} x: x \in X\right\} \tag{IP}\\
& \text { and } X=\left\{x: A x \leq b, X \in \mathbb{Z}_{+}^{n}\right\} .
\end{align*}
$$

- We have seen: To be able to solve (IP) efficiently, we want $\{x: A x \leq b\}$ to be close to the convex hull $\operatorname{CH}(X)$ of the feasible integer solutions.
- Fact: There is \widetilde{A} and \widetilde{b} such that

$$
\operatorname{CH}(X)=\{x: \widetilde{A} x \leq \widetilde{b}\}
$$

- \widetilde{A} may be be huge! We will not be able to generate a description of the convex hull in polynomial time for all problems.

Valid Inequalities

- A more tractable task: Find valid inequalities for $X:=\{x: A x \leq b, x$ integer $\}$.
An inequality

$$
\pi x \leq \pi_{0}
$$

is valid for X if is satisfied for all $x \in X$.

Valid Inequalities

- A more tractable task: Find valid inequalities for $X:=\{x: A x \leq b, x$ integer $\}$.
An inequality

$$
\pi x \leq \pi_{0}
$$

is valid for X if is satisfied for all $x \in X$.

- Recall the IP from last class:

$$
\begin{aligned}
\max & 3 x_{1}+10 x_{2} \\
\mathrm{s.t.} & x_{1}+4 x_{2} \leq 8 \\
& x_{1}+x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \text { integer }
\end{aligned}
$$

Introduction

Geometric view of LP relaxation:

Valid Inequalities

- Introduction

Introduction

Geometric view of LP relaxation:

Optimum solution: $x_{1}=8 / 3, x_{2}=4 / 3$.
Can you find a good valid inequality for this example?

Introduction

Geometric view:

Valid Inequalities

- Introduction

Inequality $x_{1} / 3+x_{2} \leq 2$ is valid for (IP)!

Introduction

Geometric view:

Valid Inequalities

- Introduction

Inequality $x_{1} / 3+x_{2} \leq 2$ is valid for (IP)!
Its addition to existing inequalities yields the convex hull of all feasible integer solutions.

Introduction

- In example, inequality $x_{1} / 3+x_{2} \leq 2$ was useful as its addition to original constraints yielded $\mathrm{CH}(X)$.
Remember last class: Adding this inequality gives us the optimum integer solution at once! No branch and bound search necessary!

Introduction

- In example, inequality $x_{1} / 3+x_{2} \leq 2$ was useful as its addition to original constraints yielded $\mathrm{CH}(X)$.
Remember last class: Adding this inequality gives us the optimum integer solution at once! No branch and bound search necessary!
- What are the useful valid inequalities in general?

Introduction

- In example, inequality $x_{1} / 3+x_{2} \leq 2$ was useful as its addition to original constraints yielded $\mathrm{CH}(X)$.
Remember last class: Adding this inequality gives us the optimum integer solution at once! No branch and bound search necessary!
- What are the useful valid inequalities in general?
- How do we find these inequalities? Are there systematic ways?

Finding Valid Inequalities

- Another set of integer solutions:

$$
X:=\left\{x \in\{0,1\}^{5}: 3 x_{1}-4 x_{2}+2 x_{3}-3 x_{4}+x_{5} \leq-2\right\}
$$

Finding Valid Inequalities

- Another set of integer solutions:

$$
X:=\left\{x \in\{0,1\}^{5}: 3 x_{1}-4 x_{2}+2 x_{3}-3 x_{4}+x_{5} \leq-2\right\}
$$

- Can there be a solution with $x_{2}=x_{4}=0$?

Finding Valid Inequalities

- Another set of integer solutions:

$$
X:=\left\{x \in\{0,1\}^{5}: 3 x_{1}-4 x_{2}+2 x_{3}-3 x_{4}+x_{5} \leq-2\right\}
$$

- Can there be a solution with $x_{2}=x_{4}=0$?
- No! This implies that $3 x_{1}+2 x_{3}+x_{5} \leq-2$. That is impossible since all variables are in $\{0,1\}$.

Finding Valid Inequalities

- Another set of integer solutions:

$$
X:=\left\{x \in\{0,1\}^{5}: 3 x_{1}-4 x_{2}+2 x_{3}-3 x_{4}+x_{5} \leq-2\right\}
$$

- Can there be a solution with $x_{2}=x_{4}=0$?
$■$ No! This implies that $3 x_{1}+2 x_{3}+x_{5} \leq-2$. That is impossible since all variables are in $\{0,1\}$.
- So all feasible solutions must satisfy

$$
x_{2}+x_{4} \geq 1
$$

Finding Valid Inequalities

- Another set of integer solutions:

$$
X:=\left\{x \in\{0,1\}^{5}: 3 x_{1}-4 x_{2}+2 x_{3}-3 x_{4}+x_{5} \leq-2\right\}
$$

- Can there be a solution with $x_{2}=x_{4}=0$?
- No! This implies that $3 x_{1}+2 x_{3}+x_{5} \leq-2$. That is impossible since all variables are in $\{0,1\}$.
- So all feasible solutions must satisfy

$$
x_{2}+x_{4} \geq 1
$$

- How about $x_{1}=1$ and $x_{2}=0$?

Finding Valid Inequalities

- Another set of integer solutions:

$$
X:=\left\{x \in\{0,1\}^{5}: 3 x_{1}-4 x_{2}+2 x_{3}-3 x_{4}+x_{5} \leq-2\right\}
$$

- Can there be a solution with $x_{2}=x_{4}=0$?
- No! This implies that $3 x_{1}+2 x_{3}+x_{5} \leq-2$. That is impossible since all variables are in $\{0,1\}$.
- So all feasible solutions must satisfy

$$
x_{2}+x_{4} \geq 1
$$

- How about $x_{1}=1$ and $x_{2}=0$?
- This implies $3+2 x_{3}-3 x_{4}+x_{5} \geq 3-3=0$.

Finding Valid Inequalities

- Another set of integer solutions:

$$
X:=\left\{x \in\{0,1\}^{5}: 3 x_{1}-4 x_{2}+2 x_{3}-3 x_{4}+x_{5} \leq-2\right\}
$$

- Can there be a solution with $x_{2}=x_{4}=0$?
- No! This implies that $3 x_{1}+2 x_{3}+x_{5} \leq-2$. That is impossible since all variables are in $\{0,1\}$.
- So all feasible solutions must satisfy

$$
x_{2}+x_{4} \geq 1
$$

■ How about $x_{1}=1$ and $x_{2}=0$?

- This implies $3+2 x_{3}-3 x_{4}+x_{5} \geq 3-3=0$.
- Implies: Whenever $x_{1}=1$ then x_{2} must have value 1 as well. Valid inequality:

$$
x_{1} \leq x_{2}
$$

Finding Valid Inequalities

- Introduction

- Valid Inequalities
- Finding Valid Inequalities

Chvátal-Gomory Procedure

- Another IP:

$$
\begin{gathered}
\max (x-5 y) \quad \text { s.t. }(x, y) \in X \\
\text { with } X:=\{(x, y): x \leq 100 \cdot y, 0 \leq x \leq 5, y \in\{0,1\}\}
\end{gathered}
$$

Finding Valid Inequalities

- Introduction

- Valid Inequalities
- Another IP:

$$
\begin{gathered}
\max (x-5 y) \quad \text { s.t. }(x, y) \in X \\
\text { with } X:=\{(x, y): x \leq 100 \cdot y, 0 \leq x \leq 5, y \in\{0,1\}\}
\end{gathered}
$$

■ What is the LP relaxation of this IP?

Finding Valid Inequalities

- Introduction

- Valid Inequalities - Finding Valid Inequalities
- Another IP:

$$
\begin{gathered}
\max (x-5 y) \quad \text { s.t. }(x, y) \in X \\
\text { with } X:=\{(x, y): x \leq 100 \cdot y, 0 \leq x \leq 5, y \in\{0,1\}\}
\end{gathered}
$$

- What is the LP relaxation of this IP?
- LP relaxation of above IP:

$$
\begin{gathered}
\max (x-5 y) \quad \text { s.t. }(x, y) \in X \\
\text { with } X:=\{(x, y): x \leq 100 \cdot y, 0 \leq x \leq 5,0 \leq y \leq 1\}
\end{gathered}
$$

Finding Valid Inequalities

- Another IP:

$$
\begin{gathered}
\max (x-5 y) \quad \text { s.t. }(x, y) \in X \\
\text { with } X:=\{(x, y): x \leq 100 \cdot y, 0 \leq x \leq 5, y \in\{0,1\}\}
\end{gathered}
$$

■ What is the LP relaxation of this IP?
■ LP relaxation of above IP:

$$
\begin{gathered}
\max (x-5 y) \quad \text { s.t. }(x, y) \in X \\
\text { with } X:=\{(x, y): x \leq 100 \cdot y, 0 \leq x \leq 5,0 \leq y \leq 1\}
\end{gathered}
$$

■ This relaxation is bad! The LP optimum is $x=5, y=.05$ with value $5-.25=4.75$.

IP optimum has value 0 !

Finding Valid Inequalities

- Another IP:

$$
\begin{gathered}
\max (x-5 y) \quad \text { s.t. }(x, y) \in X \\
\text { with } X:=\{(x, y): x \leq 100 \cdot y, 0 \leq x \leq 5, y \in\{0,1\}\}
\end{gathered}
$$

- What is the LP relaxation of this IP?
- LP relaxation of above IP:

$$
\begin{gathered}
\max (x-5 y) \quad \text { s.t. }(x, y) \in X \\
\text { with } X:=\{(x, y): x \leq 100 \cdot y, 0 \leq x \leq 5,0 \leq y \leq 1\}
\end{gathered}
$$

- This relaxation is bad! The LP optimum is $x=5, y=.05$ with value $5-.25=4.75$.
IP optimum has value 0 !
- $x \leq 100 \cdot y$ is a big-M constraint where the M is chosen poorly.
Is there a good valid inequality? Can you find a better M?

Finding Valid Inequalities

- Introduction

- Valid Inequalities
- Finding Valid Inequalities

Chvátal-Gomory Procedure

- Another IP:

$$
\begin{gathered}
\max (x-5 y) \quad \text { s.t. }(x, y) \in X \\
\text { with } X:=\{(x, y): x \leq 100 \cdot y, 0 \leq x \leq 5, y \in\{0,1\}\}
\end{gathered}
$$

Finding Valid Inequalities

- Introduction

- Valid Inequalities
- Another IP:

$$
\begin{gathered}
\max (x-5 y) \quad \text { s.t. }(x, y) \in X \\
\text { with } X:=\{(x, y): x \leq 100 \cdot y, 0 \leq x \leq 5, y \in\{0,1\}\}
\end{gathered}
$$

- The inequality

$$
x \leq 5 y
$$

is valid! Variable x can only be positive if $y=1$. Whenever $y=1, x$ must have value at most 5 .

Finding Valid Inequalities

- Another IP:

$$
\begin{gathered}
\max (x-5 y) \quad \text { s.t. }(x, y) \in X \\
\text { with } X:=\{(x, y): x \leq 100 \cdot y, 0 \leq x \leq 5, y \in\{0,1\}\}
\end{gathered}
$$

- The inequality

$$
x \leq 5 y
$$

is valid! Variable x can only be positive if $y=1$. Whenever $y=1, x$ must have value at most 5 .

- $\operatorname{CH}(X)=\{(x, y): x \leq 5 y, 0 \leq y \leq 1\}$.

Finding Valid Inequalities

- One more example:

- Introduction

- Valid Inequalities
- Finding Valid Inequalities

$$
X:=\left\{x \in \mathbb{Z}_{+}^{4}: 13 x_{1}+20 x_{2}+11 x_{3}+6 x_{4} \geq 72\right\}
$$

Finding Valid Inequalities

- One more example:

$$
X:=\left\{x \in \mathbb{Z}_{+}^{4}: 13 x_{1}+20 x_{2}+11 x_{3}+6 x_{4} \geq 72\right\}
$$

- The inequality

$$
\alpha \cdot\left(13 x_{1}+20 x_{2}+11 x_{3}+6 x_{4}\right) \geq \alpha \cdot 72
$$

is valid for X for all $\alpha \geq 0$.

Finding Valid Inequalities

- One more example:

$$
X:=\left\{x \in \mathbb{Z}_{+}^{4}: 13 x_{1}+20 x_{2}+11 x_{3}+6 x_{4} \geq 72\right\}
$$

- The inequality

$$
\alpha \cdot\left(13 x_{1}+20 x_{2}+11 x_{3}+6 x_{4}\right) \geq \alpha \cdot 72
$$

is valid for X for all $\alpha \geq 0$.

- Valid inequality for $\alpha=\frac{1}{11}$:

$$
\frac{13}{11} x_{1}+\frac{20}{11} x_{2}+\frac{11}{11} x_{3}+\frac{6}{11} x_{4} \geq \frac{72}{11}
$$

Finding Valid Inequalities

- Valid inequality for $\alpha=\frac{1}{11}$:

$$
\frac{13}{11} x_{1}+\frac{20}{11} x_{2}+\frac{11}{11} x_{3}+\frac{6}{11} x_{4} \geq \frac{72}{11}
$$

■ Rounding up all coefficients on left-hand side does not affect validity:

$$
2 x_{1}+2 x_{2}+x_{3}+x_{4} \geq \frac{72}{11}
$$

Finding Valid Inequalities

- Valid inequality for $\alpha=\frac{1}{11}$:

$$
\frac{13}{11} x_{1}+\frac{20}{11} x_{2}+\frac{11}{11} x_{3}+\frac{6}{11} x_{4} \geq \frac{72}{11}
$$

- Rounding up all coefficients on left-hand side does not affect validity:

$$
2 x_{1}+2 x_{2}+x_{3}+x_{4} \geq \frac{72}{11}
$$

- Left-hand side is integer! Can round up right-hand side:

$$
2 x_{1}+2 x_{2}+x_{3}+x_{4} \geq 7
$$

This inequality is valid for original set X.

Chvátal-Gomory Procedure

Cutting-Plane Algorithms

Gomory Cuts

Valid Inequalities for LP

Chvátal-Gomory Procedure

 - Valid Inequalities for LP - Strengthening Inequalities- CG Procedure
- Discussion

Cutting-Plane Algorithms
Gomory Cuts

- Back to IP example from last class:

$$
\begin{align*}
\max & 3 x_{1}+10 x_{2} \tag{IP}\\
\text { s.t. } & x \in P
\end{align*}
$$

$$
\begin{equation*}
P=\left\{\left(x_{1}, x_{2}\right) \quad: \quad x_{1}+4 x_{2} \leq 8\right. \tag{1}
\end{equation*}
$$

$$
\left.x_{1}+x_{2} \leq 4, x \geq 0\right\}
$$

$$
x_{1}, x_{2} \text { integer }
$$

Valid Inequalities for LP

- Back to IP example from last class:

$$
\begin{align*}
\max & 3 x_{1}+10 x_{2} \tag{IP}\\
\text { s.t. } & x \in P \\
& P=\left\{\left(x_{1}, x_{2}\right) \quad: \quad x_{1}+4 x_{2} \leq 8\right. \tag{1}\\
& \\
& \left.x_{1}+x_{2} \leq 4, x \geq 0\right\}
\end{align*}
$$

$$
x_{1}, x_{2} \text { integer }
$$

- Notice that the inequality

$$
u_{1}\left(x_{1}+4 x_{2}\right)+u_{2}\left(x_{1}+x_{2}\right) \leq 8 u_{1}+4 u_{2}
$$

is valid for P for any $u_{1}, u_{2} \geq 0$

Valid Inequalities for LP

- Back to IP example from last class:

$$
\begin{align*}
\max & 3 x_{1}+10 x_{2} \tag{IP}\\
\text { s.t. } & x \in P \\
& P=\left\{\left(x_{1}, x_{2}\right) \quad:\right. \tag{1}\\
& \\
& x_{1}+4 x_{2} \leq 8 \\
& \left.x_{1}+x_{2} \leq 4, x \geq 0\right\}
\end{align*}
$$

$$
x_{1}, x_{2} \text { integer }
$$

- Notice that the inequality

$$
u_{1}\left(x_{1}+4 x_{2}\right)+u_{2}\left(x_{1}+x_{2}\right) \leq 8 u_{1}+4 u_{2}
$$

is valid for P for any $u_{1}, u_{2} \geq 0$

- In fact: Any valid inequality for P can be obtained in this way.

Valid Inequalities for LP

Chvátal-Gomory Procedure

 - Valid Inequalities for LP- Strengthening Inequalities
- CG Procedure
- Discussion

■ Notice that the inequality

$$
u_{1}\left(x_{1}+4 x_{2}\right)+u_{2}\left(x_{1}+x_{2}\right) \leq 8 u_{1}+4 u_{2}
$$

is valid for P for any $u_{1}, u_{2} \geq 0$

- Let's try this with $u_{1}=2 / 3, u_{2}=1 / 3$:

$$
\frac{2}{3}\left(x_{1}+4 x_{2}\right)+\frac{1}{3}\left(x_{1}+x_{2}\right) \leq \frac{16}{3}+\frac{4}{3}
$$

Valid Inequalities for LP

- Notice that the inequality

$$
u_{1}\left(x_{1}+4 x_{2}\right)+u_{2}\left(x_{1}+x_{2}\right) \leq 8 u_{1}+4 u_{2}
$$

is valid for P for any $u_{1}, u_{2} \geq 0$

- Let's try this with $u_{1}=2 / 3, u_{2}=1 / 3$:

$$
\frac{2}{3}\left(x_{1}+4 x_{2}\right)+\frac{1}{3}\left(x_{1}+x_{2}\right) \leq \frac{16}{3}+\frac{4}{3}
$$

- ... and this is equivalent to

$$
x_{1}+3 x_{2} \leq \frac{20}{3}
$$

Valid Inequalities for LP

Geometric view:

Red line is the inequality $x_{1}+3 x_{2} \leq \frac{20}{3}$. It is clearly satisfied by all points in P.

Strengthening Inequalities

- Have seen that inequality

- Valid Inequalities for LP

 - Strengthening Inequalities- CG Procedure
- Discussion

Cutting-Plane Algorithms
Gomory Cuts

$$
\begin{equation*}
x_{1}+3 x_{2} \leq \frac{20}{3} \tag{1}
\end{equation*}
$$

is valid for P.

Strengthening Inequalities

- Have seen that inequality

$$
\begin{equation*}
x_{1}+3 x_{2} \leq \frac{20}{3} \tag{1}
\end{equation*}
$$

is valid for P.

- Every feasible solution for the LP relaxation satisfies this inequality.
We haven't gained anything, have we?

Strengthening Inequalities

- Have seen that inequality

$$
\begin{equation*}
x_{1}+3 x_{2} \leq \frac{20}{3} \tag{1}
\end{equation*}
$$

is valid for P.
■ Every feasible solution for the LP relaxation satisfies this inequality.

We haven't gained anything, have we?
\square Well, if x_{1}, x_{2} are integer, then the left-hand side of (1) is integer.

Strengthening Inequalities

- Have seen that inequality

$$
\begin{equation*}
x_{1}+3 x_{2} \leq \frac{20}{3} \tag{1}
\end{equation*}
$$

is valid for P.
■ Every feasible solution for the LP relaxation satisfies this inequality.

We haven't gained anything, have we?
\square Well, if x_{1}, x_{2} are integer, then the left-hand side of (1) is integer.

- For every feasible integer solution in X, the left-hand side of (1) has value at most $\lfloor 20 / 3\rfloor=6$.

Strengthening Inequalities

- Have seen that inequality

$$
\begin{equation*}
x_{1}+3 x_{2} \leq \frac{20}{3} \tag{1}
\end{equation*}
$$

is valid for P.
■ Every feasible solution for the LP relaxation satisfies this inequality.
We haven't gained anything, have we?
\square Well, if x_{1}, x_{2} are integer, then the left-hand side of (1) is integer.

- For every feasible integer solution in X, the left-hand side of (1) has value at most $\lfloor 20 / 3\rfloor=6$.
- Inequality $x_{1}+3 x_{2} \leq 6$ is valid for $\operatorname{CH}(X)$ but not valid for P.

Strengthening Inequalities

- Have seen that inequality

$$
\begin{equation*}
x_{1}+3 x_{2} \leq \frac{20}{3} \tag{1}
\end{equation*}
$$

is valid for P.
■ Every feasible solution for the LP relaxation satisfies this inequality.
We haven't gained anything, have we?

- Well, if x_{1}, x_{2} are integer, then the left-hand side of (1) is integer.
■ For every feasible integer solution in X, the left-hand side of (1) has value at most $\lfloor 20 / 3\rfloor=6$.

■ Inequality $x_{1}+3 x_{2} \leq 6$ is valid for $\operatorname{CH}(X)$ but not valid for P.
■ We gained strength over the LP relaxation of (IP).

Valid Inequalities for LP

Geometric view:

Red line is the inequality $x_{1}+3 x_{2} \leq 6$.
Adding this inequality gives the convex hull $\mathrm{CH}(X)$ of all integer solutions in X.

CG Procedure

- Suppose you have a valid inequality for the polyhedron P given by the relaxation of your integer program:

$$
\sum_{j=1}^{n} a_{j} x_{j} \leq b
$$

How can we strengthen this inequality to lead to a valid inequality for X ?

CG Procedure

- The Chvátal-Gomory procedure:

1. x_{i} is non-negative for all $i \in\{1, \ldots, n\}$. So the inequality

$$
\begin{equation*}
\sum_{j=1}^{n}\left\lfloor a_{j}\right\rfloor x_{j} \leq b \tag{1}
\end{equation*}
$$

is valid for P as well.

CG Procedure

- The Chvátal-Gomory procedure:

1. x_{i} is non-negative for all $i \in\{1, \ldots, n\}$. So the inequality

$$
\begin{equation*}
\sum_{j=1}^{n}\left\lfloor a_{j}\right\rfloor x_{j} \leq b \tag{1}
\end{equation*}
$$

is valid for P as well.
2. The left-hand side of (1) is integer for $\left(x_{1}, \ldots, x_{n}\right) \in X$. Therefore,

$$
\sum_{j=1}^{n}\left\lfloor a_{j}\right\rfloor x_{j} \leq\lfloor b\rfloor
$$

is a valid inequality for X.

Discussion

$$
\begin{aligned}
\max & 3 x_{1}+10 x_{2} \\
\text { s.t. } & x_{1}+4 x_{2} \leq 8 \\
& x_{1}+x_{2} \leq 4 \\
& x_{1}+3 x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

describes the convex hull $\mathrm{CH}(X)$ of all feasible integer solutions for the original LP.

Discussion

- Notice that the linear program

$$
\begin{aligned}
\max & 3 x_{1}+10 x_{2} \\
\mathrm{s.t.} & x_{1}+4 x_{2} \leq 8 \\
& x_{1}+x_{2} \leq 4 \\
& x_{1}+3 x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

describes the convex hull $\mathrm{CH}(X)$ of all feasible integer solutions for the original LP.
■ Solving this LP gives us an integer solution right away. No need for branch and bound!

Discussion

- Notice that the linear program

$$
\begin{aligned}
\max & 3 x_{1}+10 x_{2} \\
\text { s.t. } & x_{1}+4 x_{2} \leq 8 \\
& x_{1}+x_{2} \leq 4 \\
& x_{1}+3 x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

describes the convex hull $\mathrm{CH}(X)$ of all feasible integer solutions for the original LP.

- Solving this LP gives us an integer solution right away. No need for branch and bound!
- CG Procedure is a tool to strengthen valid inequalities for the LP relaxation.

Discussion

- Is adding more valid inequalities useful?

Discussion

- Is adding more valid inequalities useful?
- Advantages: More strong inequalities lead to a better approximation of $\mathrm{CH}(X)$, the convex hull of integer solutions. Hopefully this reduces the size of our branch \& bound tree.

Discussion

- Is adding more valid inequalities useful?
- Advantages: More strong inequalities lead to a better approximation of $\mathrm{CH}(X)$, the convex hull of integer solutions. Hopefully this reduces the size of our branch \& bound tree.
- Disadvantages: The size of the LP formulation may grow quite dramatically. We need to solve an LP at each node in the branch \& bound tree.

Discussion

■ Is adding more valid inequalities useful?

- Advantages: More strong inequalities lead to a better approximation of $\mathrm{CH}(X)$, the convex hull of integer solutions. Hopefully this reduces the size of our branch \& bound tree.
- Disadvantages: The size of the LP formulation may grow quite dramatically. We need to solve an LP at each node in the branch \& bound tree.
- There is no good answer here. Need to experiment!

Cutting-Plane Algorithms

General Framework

- Have seen how to find strong valid inequalities for a given IP.

General Framework

- Have seen how to find strong valid inequalities for a given IP.
- Also know that there maybe too many such inequalities to write them all out. What can we do?

General Framework

- Have seen how to find strong valid inequalities for a given IP.
- Also know that there maybe too many such inequalities to write them all out. What can we do?
- Cutting-Plane algorithms solve the LP relaxation of the given integer program and add strong valid inequalities one by one.

General Framework

- Suppose you want to solve integer program

$$
\begin{align*}
\max & c^{T} x \tag{IP}\\
\text { s.t. } & x \in P_{0} \\
& x \text { integer }
\end{align*}
$$

for some polyhedron P_{0}.

General Framework

- Suppose you want to solve integer program

$$
\begin{align*}
\max & c^{T} x \tag{IP}\\
\text { s.t. } & x \in P_{0} \\
& x \text { integer }
\end{align*}
$$

for some polyhedron P_{0}.

- Solve the LP relaxation

$$
\begin{aligned}
\max & c^{T} x \\
\text { s.t. } & x \in P_{0}
\end{aligned}
$$

of (IP). Let x_{0} be the solution.

General Framework

- We're done if x_{0} is integral. Otherwise find a valid inequality

$$
a_{0} x \leq b_{0}
$$

for X such that

$$
a_{0} x_{0}>b_{0}
$$

General Framework

- We're done if x_{0} is integral. Otherwise find a valid inequality

$$
a_{0} x \leq b_{0}
$$

for X such that

$$
a_{0} x_{0}>b_{0}
$$

- Add this inequality to P_{0} :

$$
P_{1}=P_{0} \cap\left\{x: a_{0} x \leq b_{0}\right\}
$$

General Framework

- We're done if x_{0} is integral. Otherwise find a valid inequality

$$
a_{0} x \leq b_{0}
$$

for X such that

$$
a_{0} x_{0}>b_{0}
$$

■ Add this inequality to P_{0} :

$$
P_{1}=P_{0} \cap\left\{x: a_{0} x \leq b_{0}\right\}
$$

■ Resolve LP relaxation with P_{0} replaced by P_{1}.

General Framework

- We're done if x_{0} is integral. Otherwise find a valid inequality

$$
a_{0} x \leq b_{0}
$$

for X such that

$$
a_{0} x_{0}>b_{0}
$$

■ Add this inequality to P_{0} :

$$
P_{1}=P_{0} \cap\left\{x: a_{0} x \leq b_{0}\right\}
$$

■ Resolve LP relaxation with P_{0} replaced by P_{1}.
■ Continue this way until integral solution is found.

Gomory Cuts

The Idea

- Consider general IP of the form

$$
\max \{c x: A x \leq b, x \geq 0 \text { and integer }\}
$$

The Idea

- Consider general IP of the form

$$
\max \{c x: A x \leq b, x \geq 0 \text { and integer }\}
$$

$$
\max \{c x: A x+I s=b, x \geq 0 \text { and integer, } s \geq 0\}
$$

Observe that slack variables must take on integral values if A, b are integer!

The Idea

- Consider general IP of the form

$$
\max \{c x: A x \leq b, x \geq 0 \text { and integer }\}
$$

- Bring to canonical form by adding slack variables:

$$
\max \{c x: A x+I s=b, x \geq 0 \text { and integer, } s \geq 0\}
$$

Observe that slack variables must take on integral values if A, b are integer!

- We can therefore assume that the slack variables were part of the original set of variables:

$$
\begin{equation*}
\max \{c x: A x=b, x \geq 0 \text { and integer }\} \tag{IP}
\end{equation*}
$$

The Idea

- We can therefore assume that the slack variables were part of the original set of variables:

$$
\begin{equation*}
\max \{c x: A x=b, x \geq 0 \text { and integer }\} \tag{IP}
\end{equation*}
$$

- Solve the linear programming relaxation of (IP) via Simplex.

The Idea

Strong Formulations

Valid Inequalities

Gomory Cuts

- We can therefore assume that the slack variables were part of the original set of variables:

$$
\begin{equation*}
\max \{c x: A x=b, x \geq 0 \text { and integer }\} \tag{IP}
\end{equation*}
$$

- Solve the linear programming relaxation of (IP) via Simplex.
- Gives a final tableau of the form

BV	x_{1}	\cdots	x_{j}	\cdots	x_{i}	\cdots	x_{n}	Value
z	\bar{c}_{1}		\bar{c}_{j}		\bar{c}_{i}		\bar{c}_{n}	\bar{z}
\vdots	\vdots		\vdots		0		\vdots	\vdots
x_{i}	$\bar{a}_{i 1}$		$\bar{a}_{i j}$		1		$\bar{a}_{i n}$	\bar{b}_{i}
\vdots	\vdots		\vdots		0		\vdots	\vdots

The Idea

Strong Formulations

Valid Inequalities

Chvátal-Gomory Procedure

Cutting-Plane Algorithms

Gomory Cuts O The Idea

- Gomory Cuts
- An Example
- Discussion
- Final tableau of the form

BV	x_{1}	\cdots	x_{j}	\cdots	x_{i}	\cdots	x_{n}	Value
z	\bar{c}_{1}		\bar{c}_{j}		\bar{c}_{i}		\bar{c}_{n}	\bar{z}
\vdots	\vdots		\vdots		0		\vdots	\vdots
x_{i}	$\bar{a}_{i 1}$		$\bar{a}_{i j}$		1		$\bar{a}_{i n}$	\bar{b}_{i}
\vdots	\vdots		\vdots		0		\vdots	\vdots

- The optimal basis is $\mathcal{B}=\{1, \ldots, m\}$ and the non-basis is $\mathcal{N}=\{1, \ldots, n\} \backslash \mathcal{B}$.

The Idea

Strong Formulations

Valid Inequalities

Gomory Cuts

- Final tableau of the form

BV	x_{1}	\cdots	x_{j}	\cdots	x_{i}	\cdots	x_{n}	Value
z	\bar{c}_{1}		\bar{c}_{j}		\bar{c}_{i}		\bar{c}_{n}	\bar{z}
\vdots	\vdots		\vdots		0		\vdots	\vdots
x_{i}	$\bar{a}_{i 1}$		$\bar{a}_{i j}$		1		$\bar{a}_{i n}$	\bar{b}_{i}
\vdots	\vdots		\vdots		0		\vdots	\vdots

- The optimal basis is $\mathcal{B}=\{1, \ldots, m\}$ and the non-basis is $\mathcal{N}=\{1, \ldots, n\} \backslash \mathcal{B}$.
- Row of x_{i} corresponds to:

$$
x_{i}+\sum_{j \in \mathcal{N}} \bar{a}_{i j} x_{j}=\bar{b}_{i}
$$

Any feasible solution to (IP) must satisfy this equation!

Gomory Cuts

- Row of x_{i} corresponds to:

$$
\begin{equation*}
x_{i}+\sum_{j \in \mathcal{N}} \bar{a}_{i j} x_{j}=\bar{b}_{i} \tag{1}
\end{equation*}
$$

Any feasible solution to (IP) must satisfy this equation!

Gomory Cuts

- Row of x_{i} corresponds to:

$$
\begin{equation*}
x_{i}+\sum_{j \in \mathcal{N}} \bar{a}_{i j} x_{j}=\bar{b}_{i} \tag{1}
\end{equation*}
$$

Any feasible solution to (IP) must satisfy this equation!

- Assume that value \bar{b}_{i} of x_{i} is not integer

Gomory Cuts

- Row of x_{i} corresponds to:

$$
\begin{equation*}
x_{i}+\sum_{j \in \mathcal{N}} \bar{a}_{i j} x_{j}=\bar{b}_{i} \tag{1}
\end{equation*}
$$

Any feasible solution to (IP) must satisfy this equation!

- Assume that value \bar{b}_{i} of x_{i} is not integer
- Use Chvátal-Gomory procedure and conclude that any feasible solution to (IP) must also satisfy

$$
x_{i}+\sum_{j \in \mathcal{N}}\left\lfloor\bar{a}_{i j}\right\rfloor x_{j} \leq\left\lfloor\bar{b}_{i}\right\rfloor
$$

Gomory Cuts

- Row of x_{i} corresponds to:

$$
\begin{equation*}
x_{i}+\sum_{j \in \mathcal{N}} \bar{a}_{i j} x_{j}=\bar{b}_{i} \tag{1}
\end{equation*}
$$

Any feasible solution to (IP) must satisfy this equation!

- Assume that value \bar{b}_{i} of x_{i} is not integer
- Use Chvátal-Gomory procedure and conclude that any feasible solution to (IP) must also satisfy

$$
x_{i}+\sum_{j \in \mathcal{N}}\left\lfloor\bar{a}_{i j}\right\rfloor x_{j} \leq\left\lfloor\bar{b}_{i}\right\rfloor
$$

- From (1):

$$
x_{i}=\bar{b}_{i}-\sum_{j \in \mathcal{N}} \bar{a}_{i j} x_{j}
$$

Gomory Cuts

- Any feasible solution to (IP) must also satisfy

$$
\begin{equation*}
x_{i}+\sum_{j \in \mathcal{N}}\left\lfloor\bar{a}_{i j}\right\rfloor x_{j} \leq\left\lfloor\bar{b}_{i}\right\rfloor \tag{1}
\end{equation*}
$$

■... and

$$
\begin{equation*}
x_{i}=\bar{b}_{i}-\sum_{j \in \mathcal{N}} \bar{a}_{i j} x_{j} \tag{2}
\end{equation*}
$$

■ Combining (1) and (2) leads to a new valid inequality for (IP):

$$
\begin{equation*}
\sum_{j \in \mathcal{N}}\left(\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor\right) x_{j} \geq \bar{b}_{i}-\left\lfloor\bar{b}_{i}\right\rfloor \tag{3}
\end{equation*}
$$

Gomory Cuts

- Any feasible solution to (IP) must also satisfy

$$
\begin{equation*}
x_{i}+\sum_{j \in \mathcal{N}}\left\lfloor\bar{a}_{i j}\right\rfloor x_{j} \leq\left\lfloor\bar{b}_{i}\right\rfloor \tag{1}
\end{equation*}
$$

- ... and

$$
\begin{equation*}
x_{i}=\bar{b}_{i}-\sum_{j \in \mathcal{N}} \bar{a}_{i j} x_{j} \tag{2}
\end{equation*}
$$

- Combining (1) and (2) leads to a new valid inequality for (IP):

$$
\begin{equation*}
\sum_{j \in \mathcal{N}}\left(\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor\right) x_{j} \geq \bar{b}_{i}-\left\lfloor\bar{b}_{i}\right\rfloor \tag{3}
\end{equation*}
$$

- Notice that current optimum solution x does not satisfy (1) as $x_{j}=0$ for all $j \in \mathcal{N}$.
x therefore does not satisfy (3) either!

Gomory Cuts

- The new valid inequality is called a Gomory Cut:

$$
\sum_{j \in \mathcal{N}}\left(\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor\right) x_{j} \geq \bar{b}_{i}-\left\lfloor\bar{b}_{i}\right\rfloor
$$

Gomory Cuts

- The new valid inequality is called a Gomory Cut:

$$
\sum_{j \in \mathcal{N}}\left(\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor\right) x_{j} \geq \bar{b}_{i}-\left\lfloor\bar{b}_{i}\right\rfloor
$$

- Add this to optimum tableau and use dual simplex to re-optimize!

Gomory Cuts

- The new valid inequality is called a Gomory Cut:

$$
\sum_{j \in \mathcal{N}}\left(\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor\right) x_{j} \geq \bar{b}_{i}-\left\lfloor\bar{b}_{i}\right\rfloor
$$

- Add this to optimum tableau and use dual simplex to re-optimize!
- Repeat until optimum solution is integral.

An Example

$$
\begin{equation*}
\max 3 x_{1}+10 x_{2} \tag{IP}
\end{equation*}
$$

s.t. $\quad x \in P$

$$
\begin{equation*}
P=\left\{\left(x_{1}, x_{2}\right) \quad: \quad x_{1}+4 x_{2} \leq 8\right. \tag{2}
\end{equation*}
$$

$$
\left.x_{1}+x_{2} \leq 4, x \geq 0\right\}
$$

An Example

$$
\begin{align*}
\max & 3 x_{1}+10 x_{2} \tag{IP}\\
\text { s.t. } & x \in P
\end{align*}
$$

$$
\begin{equation*}
P=\left\{\left(x_{1}, x_{2}\right) \quad: \quad x_{1}+4 x_{2} \leq 8\right. \tag{2}
\end{equation*}
$$

- Back to IP example from last class:

$$
\left.x_{1}+x_{2} \leq 4, x \geq 0\right\}
$$

$$
x_{1}, x_{2} \text { integer }
$$

- Final tableau:

BV	x_{1}	x_{2}	s_{1}	s_{2}	Value
z	0	0	$7 / 3$	$2 / 3$	$64 / 3$
x_{2}	0	1	$1 / 3$	$-1 / 3$	$4 / 3$
x_{1}	1	0	$-1 / 3$	$4 / 3$	$8 / 3$

An Example

BV	x_{1}	x_{2}	s_{1}	s_{2}	Value
z	0	0	$7 / 3$	$2 / 3$	$64 / 3$
x_{2}	0	1	$1 / 3$	$-1 / 3$	$4 / 3$
x_{1}	1	0	$-1 / 3$	$4 / 3$	$8 / 3$

- Both variables x_{1} and x_{2} are fractional. What is the Gomory cut for x_{1} row?

An Example

BV	x_{1}	x_{2}	s_{1}	s_{2}	Value
z	0	0	$7 / 3$	$2 / 3$	$64 / 3$
x_{2}	0	1	$1 / 3$	$-1 / 3$	$4 / 3$
x_{1}	1	0	$-1 / 3$	$4 / 3$	$8 / 3$

- Both variables x_{1} and x_{2} are fractional. What is the Gomory cut for x_{1} row?
- Gomory cut formula is

$$
\sum_{j \in \mathcal{N}}\left(\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor\right) x_{j} \geq \bar{b}_{i}-\left\lfloor\bar{b}_{i}\right\rfloor
$$

and therefore cut is

$$
\frac{2}{3} s_{1}+\frac{1}{3} s_{2} \geq \frac{2}{3}
$$

An Example

- Add new slack-variable s_{3} and row

$$
-\frac{2}{3} s_{1}-\frac{1}{3} s_{2}+s_{3}=-\frac{2}{3}
$$

to final tableau.

An Example

Strong Formulations

Valid Inequalities

- Add new slack-variable s_{3} and row

$$
-\frac{2}{3} s_{1}-\frac{1}{3} s_{2}+s_{3}=-\frac{2}{3}
$$

to final tableau.

- Tableau becomes:

BV	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	Value
z	0	0	$7 / 3$	$2 / 3$	0	$64 / 3$
x_{2}	0	1	$1 / 3$	$-1 / 3$	0	$4 / 3$
x_{1}	1	0	$-1 / 3$	$4 / 3$	0	$8 / 3$
s_{3}	0	0	$-2 / 3$	$-1 / 3$	1	$-2 / 3$

An Example

- Add new slack-variable s_{3} and row

$$
-\frac{2}{3} s_{1}-\frac{1}{3} s_{2}+s_{3}=-\frac{2}{3}
$$

to final tableau.

- Tableau becomes:

BV	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	Value
z	0	0	$7 / 3$	$2 / 3$	0	$64 / 3$
x_{2}	0	1	$1 / 3$	$-1 / 3$	0	$4 / 3$
x_{1}	1	0	$-1 / 3$	$4 / 3$	0	$8 / 3$
s_{3}	0	0	$-2 / 3$	$-1 / 3$	1	$-2 / 3$

- Use dual simplex to remove infeasibility.

An Example

BV	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	Value
z	0	0	1	0	2	20
x_{2}	0	1	1	0	-1	2
x_{1}	1	0	-3	0	4	0
s_{2}	0	0	2	1	-3	2

■ All variables have integer values. Done!

Discussion

Discussion

Discussion

■ We were really lucky with the Gomory cut we chose but ...

- ... in practice we're often not that lucky and have to go through many iterations.
- ... fractional coefficients cause numerical instability.
- There are often better cuts to add than Gomory cuts - Chvàtal-Gomory cuts, specially tailored cuts, ...
- Cuts are often used in Branch \& Bound
- Add cuts while you go and reduce B\&B tree size.

