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LP vs IP

■ Good linear programming formulations have as few variables
and constraints as possible.

Remember: Running time of LP solvers depends heavily on
number of variables and on number of constraints.
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LP vs IP

■ Good linear programming formulations have as few variables
and constraints as possible.

Remember: Running time of LP solvers depends heavily on
number of variables and on number of constraints.

■ Different for IP!
◆ Computational experiments suggest that the choice in

formulation crucially influences solution time and
sometimes solvability

◆ Feasible region of LP relaxation resembles convex hull of
feasible integer points closely
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LP Relaxation

■ The important novelty over linear programs is that the
solution space is not any more convex.
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LP Relaxation

■ The important novelty over linear programs is that the
solution space is not any more convex.

■ Example

max 3x1 + 10x2 (IP)

s.t. x1 + 4x2 ≤ 8

x1 + x2 ≤ 4

x1, x2 ≥ 0

x1, x2 integer
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LP Relaxation

■ Geometric view:
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LP Relaxation

■ We obtain the linear programming relaxation of an integer
program by dropping the integrality constraints
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Convex Hull

■ We have seen: optimal solution to LP relaxation is fractional.
Can we write a different LP with the same set of feasible
integer solutions for which has an integral optimal solution?
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Convex Hull

■ We have seen: optimal solution to LP relaxation is fractional.
Can we write a different LP with the same set of feasible
integer solutions for which has an integral optimal solution?

■ Yes! Let X be the set of all solutions to original IP. Then
define the convex hull of X as

CH(X) :={x ∈ R
n : x =

∑

x̄∈X

λx̄ · x̄,

∑

x̄∈X

λx̄ = 1

λx̄ ≥ 0 ∀x̄ ∈ X}
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Convex Hull

■ The convex hull CH(X) of feasible integer solutions X is the
smallest polyhedron containing X:
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Convex Hull

■ The convex hull CH(X) of feasible integer solutions X is the
smallest polyhedron containing X:
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■ If P is the feasible region of an LP relaxation then CH ⊆ P
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Convex Hull

■ The convex hull CH(X) of feasible integer solutions X is the
smallest polyhedron containing X:
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■ If P is the feasible region of an LP relaxation then CH ⊆ P

■ Each vertex of the convex hull corresponds to an integer
solution!
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Valid Inequalities
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Introduction

■ In this class, we are interested in integer programs of the
following general form:

max{cT x : x ∈ X} (IP)

and X = {x : Ax ≤ b, X ∈ Z
n
+}.
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Introduction

■ In this class, we are interested in integer programs of the
following general form:

max{cT x : x ∈ X} (IP)

and X = {x : Ax ≤ b, X ∈ Z
n
+}.

■ We have seen: To be able to solve (IP) efficiently, we want
{x : Ax ≤ b} to be close to the convex hull CH(X) of the
feasible integer solutions.
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Introduction

■ In this class, we are interested in integer programs of the
following general form:

max{cT x : x ∈ X} (IP)

and X = {x : Ax ≤ b, X ∈ Z
n
+}.

■ We have seen: To be able to solve (IP) efficiently, we want
{x : Ax ≤ b} to be close to the convex hull CH(X) of the
feasible integer solutions.

■ Fact: There is Ã and b̃ such that

CH(X) = {x : Ãx ≤ b̃}
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Introduction

■ In this class, we are interested in integer programs of the
following general form:

max{cT x : x ∈ X} (IP)

and X = {x : Ax ≤ b, X ∈ Z
n
+}.

■ We have seen: To be able to solve (IP) efficiently, we want
{x : Ax ≤ b} to be close to the convex hull CH(X) of the
feasible integer solutions.

■ Fact: There is Ã and b̃ such that

CH(X) = {x : Ãx ≤ b̃}

■ Ã may be be huge! We will not be able to generate a
description of the convex hull in polynomial time for all
problems.
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Valid Inequalities

■ A more tractable task: Find valid inequalities for
X := {x : Ax ≤ b, x integer}.

An inequality
πx ≤ π0

is valid for X if is satisfied for all x ∈ X.
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Valid Inequalities

■ A more tractable task: Find valid inequalities for
X := {x : Ax ≤ b, x integer}.

An inequality
πx ≤ π0

is valid for X if is satisfied for all x ∈ X.
■ Recall the IP from last class:

max 3x1 + 10x2 (IP)

s.t. x1 + 4x2 ≤ 8

x1 + x2 ≤ 4

x1, x2 ≥ 0

x1, x2 integer
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Introduction

Geometric view of LP relaxation:
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Introduction

Geometric view of LP relaxation:
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Optimum solution: x1 = 8/3, x2 = 4/3.

Can you find a good valid inequality for this example?
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Introduction

Geometric view:
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Inequality x1/3 + x2 ≤ 2 is valid for (IP)!
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Introduction

Geometric view:
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Inequality x1/3 + x2 ≤ 2 is valid for (IP)!
Its addition to existing inequalities yields the convex hull of all
feasible integer solutions.
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Introduction

■ In example, inequality x1/3 + x2 ≤ 2 was useful as its
addition to original constraints yielded CH(X).

Remember last class: Adding this inequality gives us the
optimum integer solution at once! No branch and bound
search necessary!
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Introduction

■ In example, inequality x1/3 + x2 ≤ 2 was useful as its
addition to original constraints yielded CH(X).

Remember last class: Adding this inequality gives us the
optimum integer solution at once! No branch and bound
search necessary!

■ What are the useful valid inequalities in general?
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Introduction

■ In example, inequality x1/3 + x2 ≤ 2 was useful as its
addition to original constraints yielded CH(X).

Remember last class: Adding this inequality gives us the
optimum integer solution at once! No branch and bound
search necessary!

■ What are the useful valid inequalities in general?
■ How do we find these inequalities? Are there systematic

ways?
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Finding Valid Inequalities

■ Another set of integer solutions:

X := {x ∈ {0, 1}5 : 3x1 − 4x2 + 2x3 − 3x4 + x5 ≤ −2}
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Finding Valid Inequalities

■ Another set of integer solutions:

X := {x ∈ {0, 1}5 : 3x1 − 4x2 + 2x3 − 3x4 + x5 ≤ −2}

■ Can there be a solution with x2 = x4 = 0?
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Finding Valid Inequalities

■ Another set of integer solutions:

X := {x ∈ {0, 1}5 : 3x1 − 4x2 + 2x3 − 3x4 + x5 ≤ −2}

■ Can there be a solution with x2 = x4 = 0?
■ No! This implies that 3x1 + 2x3 + x5 ≤ −2. That is

impossible since all variables are in {0, 1}.
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Finding Valid Inequalities

■ Another set of integer solutions:

X := {x ∈ {0, 1}5 : 3x1 − 4x2 + 2x3 − 3x4 + x5 ≤ −2}

■ Can there be a solution with x2 = x4 = 0?
■ No! This implies that 3x1 + 2x3 + x5 ≤ −2. That is

impossible since all variables are in {0, 1}.
■ So all feasible solutions must satisfy

x2 + x4 ≥ 1
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Finding Valid Inequalities

■ Another set of integer solutions:

X := {x ∈ {0, 1}5 : 3x1 − 4x2 + 2x3 − 3x4 + x5 ≤ −2}

■ Can there be a solution with x2 = x4 = 0?
■ No! This implies that 3x1 + 2x3 + x5 ≤ −2. That is

impossible since all variables are in {0, 1}.
■ So all feasible solutions must satisfy

x2 + x4 ≥ 1

■ How about x1 = 1 and x2 = 0?
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Finding Valid Inequalities

■ Another set of integer solutions:

X := {x ∈ {0, 1}5 : 3x1 − 4x2 + 2x3 − 3x4 + x5 ≤ −2}

■ Can there be a solution with x2 = x4 = 0?
■ No! This implies that 3x1 + 2x3 + x5 ≤ −2. That is

impossible since all variables are in {0, 1}.
■ So all feasible solutions must satisfy

x2 + x4 ≥ 1

■ How about x1 = 1 and x2 = 0?
■ This implies 3 + 2x3 − 3x4 + x5 ≥ 3 − 3 = 0.
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Finding Valid Inequalities

■ Another set of integer solutions:

X := {x ∈ {0, 1}5 : 3x1 − 4x2 + 2x3 − 3x4 + x5 ≤ −2}

■ Can there be a solution with x2 = x4 = 0?
■ No! This implies that 3x1 + 2x3 + x5 ≤ −2. That is

impossible since all variables are in {0, 1}.
■ So all feasible solutions must satisfy

x2 + x4 ≥ 1

■ How about x1 = 1 and x2 = 0?
■ This implies 3 + 2x3 − 3x4 + x5 ≥ 3 − 3 = 0.
■ Implies: Whenever x1 = 1 then x2 must have value 1 as well.

Valid inequality:
x1 ≤ x2
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Finding Valid Inequalities

■ Another IP:
max(x − 5y) s.t. (x, y) ∈ X

with X := {(x, y) : x ≤ 100 · y, 0 ≤ x ≤ 5, y ∈ {0, 1}}
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Finding Valid Inequalities

■ Another IP:
max(x − 5y) s.t. (x, y) ∈ X

with X := {(x, y) : x ≤ 100 · y, 0 ≤ x ≤ 5, y ∈ {0, 1}}

■ What is the LP relaxation of this IP?
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Finding Valid Inequalities

■ Another IP:
max(x − 5y) s.t. (x, y) ∈ X

with X := {(x, y) : x ≤ 100 · y, 0 ≤ x ≤ 5, y ∈ {0, 1}}

■ What is the LP relaxation of this IP?
■ LP relaxation of above IP:

max(x − 5y) s.t. (x, y) ∈ X

with X := {(x, y) : x ≤ 100 · y, 0 ≤ x ≤ 5, 0 ≤ y ≤ 1}
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Finding Valid Inequalities

■ Another IP:
max(x − 5y) s.t. (x, y) ∈ X

with X := {(x, y) : x ≤ 100 · y, 0 ≤ x ≤ 5, y ∈ {0, 1}}

■ What is the LP relaxation of this IP?
■ LP relaxation of above IP:

max(x − 5y) s.t. (x, y) ∈ X

with X := {(x, y) : x ≤ 100 · y, 0 ≤ x ≤ 5, 0 ≤ y ≤ 1}

■ This relaxation is bad! The LP optimum is x = 5, y = .05 with
value 5 − .25 = 4.75.

IP optimum has value 0!
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Finding Valid Inequalities

■ Another IP:
max(x − 5y) s.t. (x, y) ∈ X

with X := {(x, y) : x ≤ 100 · y, 0 ≤ x ≤ 5, y ∈ {0, 1}}

■ What is the LP relaxation of this IP?
■ LP relaxation of above IP:

max(x − 5y) s.t. (x, y) ∈ X

with X := {(x, y) : x ≤ 100 · y, 0 ≤ x ≤ 5, 0 ≤ y ≤ 1}

■ This relaxation is bad! The LP optimum is x = 5, y = .05 with
value 5 − .25 = 4.75.

IP optimum has value 0!
■ x ≤ 100 · y is a big-M constraint where the M is chosen

poorly.

Is there a good valid inequality? Can you find a better M?
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Finding Valid Inequalities

■ Another IP:
max(x − 5y) s.t. (x, y) ∈ X

with X := {(x, y) : x ≤ 100 · y, 0 ≤ x ≤ 5, y ∈ {0, 1}}
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Finding Valid Inequalities

■ Another IP:
max(x − 5y) s.t. (x, y) ∈ X

with X := {(x, y) : x ≤ 100 · y, 0 ≤ x ≤ 5, y ∈ {0, 1}}

■ The inequality
x ≤ 5y

is valid! Variable x can only be positive if y = 1. Whenever
y = 1, x must have value at most 5.
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Finding Valid Inequalities

■ Another IP:
max(x − 5y) s.t. (x, y) ∈ X

with X := {(x, y) : x ≤ 100 · y, 0 ≤ x ≤ 5, y ∈ {0, 1}}

■ The inequality
x ≤ 5y

is valid! Variable x can only be positive if y = 1. Whenever
y = 1, x must have value at most 5.

■ CH(X) = {(x, y) : x ≤ 5y, 0 ≤ y ≤ 1}.
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Finding Valid Inequalities

■ One more example:

X := {x ∈ Z
4
+ : 13x1 + 20x2 + 11x3 + 6x4 ≥ 72}
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Finding Valid Inequalities

■ One more example:

X := {x ∈ Z
4
+ : 13x1 + 20x2 + 11x3 + 6x4 ≥ 72}

■ The inequality

α · (13x1 + 20x2 + 11x3 + 6x4) ≥ α · 72

is valid for X for all α ≥ 0.
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Finding Valid Inequalities

■ One more example:

X := {x ∈ Z
4
+ : 13x1 + 20x2 + 11x3 + 6x4 ≥ 72}

■ The inequality

α · (13x1 + 20x2 + 11x3 + 6x4) ≥ α · 72

is valid for X for all α ≥ 0.
■ Valid inequality for α = 1

11
:

13

11
x1 +

20

11
x2 +

11

11
x3 +

6

11
x4 ≥

72

11
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Finding Valid Inequalities

■ Valid inequality for α = 1

11
:

13

11
x1 +

20

11
x2 +

11

11
x3 +

6

11
x4 ≥

72

11

■ Rounding up all coefficients on left-hand side does not affect
validity:

2x1 + 2x2 + x3 + x4 ≥
72

11
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Finding Valid Inequalities

■ Valid inequality for α = 1

11
:

13

11
x1 +

20

11
x2 +

11

11
x3 +

6

11
x4 ≥

72

11

■ Rounding up all coefficients on left-hand side does not affect
validity:

2x1 + 2x2 + x3 + x4 ≥
72

11

■ Left-hand side is integer! Can round up right-hand side:

2x1 + 2x2 + x3 + x4 ≥ 7

This inequality is valid for original set X.
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Chvátal-Gomory Procedure
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Valid Inequalities for LP

■ Back to IP example from last class:

max 3x1 + 10x2 (IP)

s.t. x ∈ P

P = {(x1, x2) : x1 + 4x2 ≤ 8, (1)

x1 + x2 ≤ 4, x ≥ 0}

x1, x2 integer
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Valid Inequalities for LP

■ Back to IP example from last class:

max 3x1 + 10x2 (IP)

s.t. x ∈ P

P = {(x1, x2) : x1 + 4x2 ≤ 8, (1)

x1 + x2 ≤ 4, x ≥ 0}

x1, x2 integer

■ Notice that the inequality

u1(x1 + 4x2) + u2(x1 + x2) ≤ 8u1 + 4u2

is valid for P for any u1, u2 ≥ 0
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Valid Inequalities for LP

■ Back to IP example from last class:

max 3x1 + 10x2 (IP)

s.t. x ∈ P

P = {(x1, x2) : x1 + 4x2 ≤ 8, (1)

x1 + x2 ≤ 4, x ≥ 0}

x1, x2 integer

■ Notice that the inequality

u1(x1 + 4x2) + u2(x1 + x2) ≤ 8u1 + 4u2

is valid for P for any u1, u2 ≥ 0

■ In fact: Any valid inequality for P can be obtained in this way.
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Valid Inequalities for LP

■ Notice that the inequality

u1(x1 + 4x2) + u2(x1 + x2) ≤ 8u1 + 4u2

is valid for P for any u1, u2 ≥ 0

■ Let’s try this with u1 = 2/3, u2 = 1/3:

2

3
(x1 + 4x2) +

1

3
(x1 + x2) ≤

16

3
+

4

3
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Valid Inequalities for LP

■ Notice that the inequality

u1(x1 + 4x2) + u2(x1 + x2) ≤ 8u1 + 4u2

is valid for P for any u1, u2 ≥ 0

■ Let’s try this with u1 = 2/3, u2 = 1/3:

2

3
(x1 + 4x2) +

1

3
(x1 + x2) ≤

16

3
+

4

3

■ . . . and this is equivalent to

x1 + 3x2 ≤
20

3
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Valid Inequalities for LP

Geometric view:

0 1 2 3 4 5
0

1

2

3

4

5

Red line is the inequality x1 + 3x2 ≤ 20

3
.

It is clearly satisfied by all points in P .
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Strengthening Inequalities

■ Have seen that inequality

x1 + 3x2 ≤
20

3
(1)

is valid for P .
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Strengthening Inequalities

■ Have seen that inequality

x1 + 3x2 ≤
20

3
(1)

is valid for P .
■ Every feasible solution for the LP relaxation satisfies this

inequality.

We haven’t gained anything, have we?
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Strengthening Inequalities

■ Have seen that inequality

x1 + 3x2 ≤
20

3
(1)

is valid for P .
■ Every feasible solution for the LP relaxation satisfies this

inequality.

We haven’t gained anything, have we?
■ Well, if x1, x2 are integer, then the left-hand side of (1) is

integer.
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Strengthening Inequalities

■ Have seen that inequality

x1 + 3x2 ≤
20

3
(1)

is valid for P .
■ Every feasible solution for the LP relaxation satisfies this

inequality.

We haven’t gained anything, have we?
■ Well, if x1, x2 are integer, then the left-hand side of (1) is

integer.
■ For every feasible integer solution in X, the left-hand side of

(1) has value at most ⌊20/3⌋ = 6.
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Strengthening Inequalities

■ Have seen that inequality

x1 + 3x2 ≤
20

3
(1)

is valid for P .
■ Every feasible solution for the LP relaxation satisfies this

inequality.

We haven’t gained anything, have we?
■ Well, if x1, x2 are integer, then the left-hand side of (1) is

integer.
■ For every feasible integer solution in X, the left-hand side of

(1) has value at most ⌊20/3⌋ = 6.
■ Inequality x1 + 3x2 ≤ 6 is valid for CH(X) but not valid for P .
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Strengthening Inequalities

■ Have seen that inequality

x1 + 3x2 ≤
20

3
(1)

is valid for P .
■ Every feasible solution for the LP relaxation satisfies this

inequality.

We haven’t gained anything, have we?
■ Well, if x1, x2 are integer, then the left-hand side of (1) is

integer.
■ For every feasible integer solution in X, the left-hand side of

(1) has value at most ⌊20/3⌋ = 6.
■ Inequality x1 + 3x2 ≤ 6 is valid for CH(X) but not valid for P .
■ We gained strength over the LP relaxation of (IP).
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Valid Inequalities for LP

Geometric view:

0 1 2 3 4 5
0

1

2

3

4

5

Red line is the inequality x1 + 3x2 ≤ 6.
Adding this inequality gives the convex hull CH(X) of all integer
solutions in X.
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CG Procedure

■ Suppose you have a valid inequality for the polyhedron P
given by the relaxation of your integer program:

n∑

j=1

ajxj ≤ b

How can we strengthen this inequality to lead to a valid
inequality for X?
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CG Procedure

■ The Chvátal-Gomory procedure:
1. xi is non-negative for all i ∈ {1, . . . , n}. So the inequality

n∑

j=1

⌊aj⌋xj ≤ b (1)

is valid for P as well.
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CG Procedure

■ The Chvátal-Gomory procedure:
1. xi is non-negative for all i ∈ {1, . . . , n}. So the inequality

n∑

j=1

⌊aj⌋xj ≤ b (1)

is valid for P as well.
2. The left-hand side of (1) is integer for (x1, . . . , xn) ∈ X.

Therefore,
n∑

j=1

⌊aj⌋xj ≤ ⌊b⌋

is a valid inequality for X.
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Strong Formulations

Valid Inequalities

Chvátal-Gomory Procedure

● Valid Inequalities for LP

● Strengthening Inequalities

● CG Procedure

● Discussion

Cutting-Plane Algorithms

Gomory Cuts

Jochen Könemann, March 19, 2007 CO 370 – Deterministic Operations Research Models - p. 28/45

Discussion

■ Notice that the linear program

max 3x1 + 10x2

s.t. x1 + 4x2 ≤ 8

x1 + x2 ≤ 4

x1 + 3x2 ≤ 6

x1, x2 ≥ 0

describes the convex hull CH(X) of all feasible integer
solutions for the original LP.
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Discussion

■ Notice that the linear program

max 3x1 + 10x2

s.t. x1 + 4x2 ≤ 8

x1 + x2 ≤ 4

x1 + 3x2 ≤ 6

x1, x2 ≥ 0

describes the convex hull CH(X) of all feasible integer
solutions for the original LP.

■ Solving this LP gives us an integer solution right away. No
need for branch and bound!
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Discussion

■ Notice that the linear program

max 3x1 + 10x2

s.t. x1 + 4x2 ≤ 8

x1 + x2 ≤ 4

x1 + 3x2 ≤ 6

x1, x2 ≥ 0

describes the convex hull CH(X) of all feasible integer
solutions for the original LP.

■ Solving this LP gives us an integer solution right away. No
need for branch and bound!

■ CG Procedure is a tool to strengthen valid inequalities for the
LP relaxation.
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Discussion

■ Is adding more valid inequalities useful?
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Discussion

■ Is adding more valid inequalities useful?
■ Advantages: More strong inequalities lead to a better

approximation of CH(X), the convex hull of integer solutions.

Hopefully this reduces the size of our branch & bound tree.
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Discussion

■ Is adding more valid inequalities useful?
■ Advantages: More strong inequalities lead to a better

approximation of CH(X), the convex hull of integer solutions.

Hopefully this reduces the size of our branch & bound tree.
■ Disadvantages: The size of the LP formulation may grow

quite dramatically. We need to solve an LP at each node in
the branch & bound tree.
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Discussion

■ Is adding more valid inequalities useful?
■ Advantages: More strong inequalities lead to a better

approximation of CH(X), the convex hull of integer solutions.

Hopefully this reduces the size of our branch & bound tree.
■ Disadvantages: The size of the LP formulation may grow

quite dramatically. We need to solve an LP at each node in
the branch & bound tree.

■ There is no good answer here. Need to experiment!
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Cutting-Plane Algorithms
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General Framework

■ Have seen how to find strong valid inequalities for a given IP.
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General Framework

■ Have seen how to find strong valid inequalities for a given IP.
■ Also know that there maybe too many such inequalities to

write them all out. What can we do?
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General Framework

■ Have seen how to find strong valid inequalities for a given IP.
■ Also know that there maybe too many such inequalities to

write them all out. What can we do?
■ Cutting-Plane algorithms solve the LP relaxation of the given

integer program and add strong valid inequalities one by one.
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General Framework

■ Suppose you want to solve integer program

max cT x (IP)

s.t. x ∈ P0

x integer

for some polyhedron P0.
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General Framework

■ Suppose you want to solve integer program

max cT x (IP)

s.t. x ∈ P0

x integer

for some polyhedron P0.
■ Solve the LP relaxation

max cT x (LP)

s.t. x ∈ P0

of (IP). Let x0 be the solution.
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General Framework

■ We’re done if x0 is integral. Otherwise find a valid inequality

a0x ≤ b0

for X such that
a0x0 > b0
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General Framework

■ We’re done if x0 is integral. Otherwise find a valid inequality

a0x ≤ b0

for X such that
a0x0 > b0

■ Add this inequality to P0:

P1 = P0 ∩ {x : a0x ≤ b0}
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General Framework

■ We’re done if x0 is integral. Otherwise find a valid inequality

a0x ≤ b0

for X such that
a0x0 > b0

■ Add this inequality to P0:

P1 = P0 ∩ {x : a0x ≤ b0}

■ Resolve LP relaxation with P0 replaced by P1.
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General Framework

■ We’re done if x0 is integral. Otherwise find a valid inequality

a0x ≤ b0

for X such that
a0x0 > b0

■ Add this inequality to P0:

P1 = P0 ∩ {x : a0x ≤ b0}

■ Resolve LP relaxation with P0 replaced by P1.
■ Continue this way until integral solution is found.
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Gomory Cuts
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The Idea

■ Consider general IP of the form

max{cx : Ax ≤ b, x ≥ 0 and integer}
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The Idea

■ Consider general IP of the form

max{cx : Ax ≤ b, x ≥ 0 and integer}

■ Bring to canonical form by adding slack variables:

max{cx : Ax + Is = b, x ≥ 0 and integer, s ≥ 0}

Observe that slack variables must take on integral values if
A, b are integer!
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The Idea

■ Consider general IP of the form

max{cx : Ax ≤ b, x ≥ 0 and integer}

■ Bring to canonical form by adding slack variables:

max{cx : Ax + Is = b, x ≥ 0 and integer, s ≥ 0}

Observe that slack variables must take on integral values if
A, b are integer!

■ We can therefore assume that the slack variables were part
of the original set of variables:

max{cx : Ax = b, x ≥ 0 and integer} (IP)
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The Idea

■ We can therefore assume that the slack variables were part
of the original set of variables:

max{cx : Ax = b, x ≥ 0 and integer} (IP)

■ Solve the linear programming relaxation of (IP) via Simplex.
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The Idea

■ We can therefore assume that the slack variables were part
of the original set of variables:

max{cx : Ax = b, x ≥ 0 and integer} (IP)

■ Solve the linear programming relaxation of (IP) via Simplex.
■ Gives a final tableau of the form

BV x1 · · · xj · · · xi · · · xn Value

z c1 cj ci cn z

...
...

... 0
...

...
xi ai1 aij 1 ain bi

...
...

... 0
...

...
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The Idea

■ Final tableau of the form

BV x1 · · · xj · · · xi · · · xn Value

z c1 cj ci cn z

...
...

... 0
...

...
xi ai1 aij 1 ain bi

...
...

... 0
...

...

■ The optimal basis is B = {1, . . . , m} and the non-basis is
N = {1, . . . , n} \ B.
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The Idea

■ Final tableau of the form

BV x1 · · · xj · · · xi · · · xn Value

z c1 cj ci cn z

...
...

... 0
...

...
xi ai1 aij 1 ain bi

...
...

... 0
...

...

■ The optimal basis is B = {1, . . . , m} and the non-basis is
N = {1, . . . , n} \ B.

■ Row of xi corresponds to:

xi +
∑

j∈N

aijxj = bi

Any feasible solution to (IP) must satisfy this equation!
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Gomory Cuts

■ Row of xi corresponds to:

xi +
∑

j∈N

aijxj = bi (1)

Any feasible solution to (IP) must satisfy this equation!
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Gomory Cuts

■ Row of xi corresponds to:

xi +
∑

j∈N

aijxj = bi (1)

Any feasible solution to (IP) must satisfy this equation!
■ Assume that value bi of xi is not integer
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Gomory Cuts

■ Row of xi corresponds to:

xi +
∑

j∈N

aijxj = bi (1)

Any feasible solution to (IP) must satisfy this equation!
■ Assume that value bi of xi is not integer
■ Use Chvátal-Gomory procedure and conclude that any

feasible solution to (IP) must also satisfy

xi +
∑

j∈N

⌊aij⌋xj ≤ ⌊bi⌋
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Gomory Cuts

■ Row of xi corresponds to:

xi +
∑

j∈N

aijxj = bi (1)

Any feasible solution to (IP) must satisfy this equation!
■ Assume that value bi of xi is not integer
■ Use Chvátal-Gomory procedure and conclude that any

feasible solution to (IP) must also satisfy

xi +
∑

j∈N

⌊aij⌋xj ≤ ⌊bi⌋

■ From (1):

xi = bi −
∑

j∈N

aijxj
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Gomory Cuts

■ Any feasible solution to (IP) must also satisfy

xi +
∑

j∈N

⌊aij⌋xj ≤ ⌊bi⌋ (1)

■ . . . and
xi = bi −

∑

j∈N

aijxj (2)

■ Combining (1) and (2) leads to a new valid inequality for (IP):
∑

j∈N

(aij − ⌊aij⌋)xj ≥ bi − ⌊bi⌋ (3)
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Gomory Cuts

■ Any feasible solution to (IP) must also satisfy

xi +
∑

j∈N

⌊aij⌋xj ≤ ⌊bi⌋ (1)

■ . . . and
xi = bi −

∑

j∈N

aijxj (2)

■ Combining (1) and (2) leads to a new valid inequality for (IP):
∑

j∈N

(aij − ⌊aij⌋)xj ≥ bi − ⌊bi⌋ (3)

■ Notice that current optimum solution x does not satisfy (1) as
xj = 0 for all j ∈ N .
x therefore does not satisfy (3) either!

http://www.math.uwaterloo.ca/~jochen


Strong Formulations

Valid Inequalities

Chvátal-Gomory Procedure

Cutting-Plane Algorithms

Gomory Cuts

● The Idea

● Gomory Cuts

● An Example

● Discussion

Jochen Könemann, March 19, 2007 CO 370 – Deterministic Operations Research Models - p. 40/45

Gomory Cuts

■ The new valid inequality is called a Gomory Cut:
∑

j∈N

(aij − ⌊aij⌋)xj ≥ bi − ⌊bi⌋
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Gomory Cuts

■ The new valid inequality is called a Gomory Cut:
∑

j∈N

(aij − ⌊aij⌋)xj ≥ bi − ⌊bi⌋

■ Add this to optimum tableau and use dual simplex to
re-optimize!
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Gomory Cuts

■ The new valid inequality is called a Gomory Cut:
∑

j∈N

(aij − ⌊aij⌋)xj ≥ bi − ⌊bi⌋

■ Add this to optimum tableau and use dual simplex to
re-optimize!

■ Repeat until optimum solution is integral.
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An Example

■ Back to IP example from last class:

max 3x1 + 10x2 (IP)

s.t. x ∈ P

P = {(x1, x2) : x1 + 4x2 ≤ 8, (2)

x1 + x2 ≤ 4, x ≥ 0}

x1, x2 integer
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An Example

■ Back to IP example from last class:

max 3x1 + 10x2 (IP)

s.t. x ∈ P

P = {(x1, x2) : x1 + 4x2 ≤ 8, (2)

x1 + x2 ≤ 4, x ≥ 0}

x1, x2 integer

■ Final tableau:
BV x1 x2 s1 s2 Value

z 0 0 7/3 2/3 64/3

x2 0 1 1/3 -1/3 4/3
x1 1 0 -1/3 4/3 8/3
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An Example

BV x1 x2 s1 s2 Value

z 0 0 7/3 2/3 64/3

x2 0 1 1/3 -1/3 4/3
x1 1 0 -1/3 4/3 8/3

■ Both variables x1 and x2 are fractional. What is the Gomory
cut for x1 row?
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An Example

BV x1 x2 s1 s2 Value

z 0 0 7/3 2/3 64/3

x2 0 1 1/3 -1/3 4/3
x1 1 0 -1/3 4/3 8/3

■ Both variables x1 and x2 are fractional. What is the Gomory
cut for x1 row?

■ Gomory cut formula is
∑

j∈N

(aij − ⌊aij⌋)xj ≥ bi − ⌊bi⌋

and therefore cut is

2

3
s1 +

1

3
s2 ≥

2

3
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An Example

■ Add new slack-variable s3 and row

−
2

3
s1 −

1

3
s2 + s3 = −

2

3

to final tableau.
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An Example

■ Add new slack-variable s3 and row

−
2

3
s1 −

1

3
s2 + s3 = −

2

3

to final tableau.
■ Tableau becomes:

BV x1 x2 s1 s2 s3 Value

z 0 0 7/3 2/3 0 64/3

x2 0 1 1/3 -1/3 0 4/3
x1 1 0 -1/3 4/3 0 8/3
s3 0 0 -2/3 -1/3 1 -2/3
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An Example

■ Add new slack-variable s3 and row

−
2

3
s1 −

1

3
s2 + s3 = −

2

3

to final tableau.
■ Tableau becomes:

BV x1 x2 s1 s2 s3 Value

z 0 0 7/3 2/3 0 64/3

x2 0 1 1/3 -1/3 0 4/3
x1 1 0 -1/3 4/3 0 8/3
s3 0 0 -2/3 -1/3 1 -2/3

■ Use dual simplex to remove infeasibility.
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An Example

BV x1 x2 s1 s2 s3 Value

z 0 0 1 0 2 20

x2 0 1 1 0 -1 2
x1 1 0 -3 0 4 0
s2 0 0 2 1 -3 2

■ All variables have integer values. Done!
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Discussion

■ We were really lucky with the Gomory cut we chose but . . .
◆ . . . in practice we’re often not that lucky and have to go

through many iterations.
◆ . . . fractional coefficients cause numerical instability.
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Discussion

■ We were really lucky with the Gomory cut we chose but . . .
◆ . . . in practice we’re often not that lucky and have to go

through many iterations.
◆ . . . fractional coefficients cause numerical instability.

■ There are often better cuts to add than Gomory cuts
◆ Chvàtal-Gomory cuts, specially tailored cuts, . . .
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Discussion

■ We were really lucky with the Gomory cut we chose but . . .
◆ . . . in practice we’re often not that lucky and have to go

through many iterations.
◆ . . . fractional coefficients cause numerical instability.

■ There are often better cuts to add than Gomory cuts
◆ Chvàtal-Gomory cuts, specially tailored cuts, . . .

■ Cuts are often used in Branch & Bound
◆ Add cuts while you go and reduce B&B tree size.
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