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EASILY COMPUTABLE FACETS OF THE 

KNAPSACK POLYTOPE* 


EITAN ZEMEL 

It is knohn that facets and valid inequalities for the knapsack polytope P can be obtained 
bq lifting a simple inequality derived from each minimal cover. We study the computational 
complexity of such lifting. In particular, we show that the task of computing a lifted facet can 
be accomplished in O(r1s) where s < is the cardinality of the minimal cover. Also, for a 
lifted inequality with integer coefficients, we show that the dual tasks of recognizing whether 
the inequality is valid for P or is a facet of P can be done within the same time bound. 

1. The convex hull of solutions of combinatorial problems has been studied 
extensively over the past few decades. Numerous results are now available on the facial 
structure of problems such as the traveling salesman problem, the knapsack and 
multi-knapsack problems, the set covering, packing and partitioning problems, plant 
location problems, scheduling problems, etc. For a recent survey on these results and 
their applications, the reader is referred to [GI, [GP] and [Pu]. 

In spite of the wealth of studies on facets, there are few results concerning the 
computational complexity issues involved. A notable exception is the work of [PY], 
[PW] on the complexity of recognizing the facets of the traveling salesman polytope. 

In this note we study the computational complexity of computing and recognizing 
facets and valid inequalities of the binary knapsack polytope. This polytope is verj 
useful, since for any 0-1 integer programming problem, each constraint individually. 
or each individual aggregation of several constraints, can be regarded as a knapsack 
problem. Thus, facets and valid inequalities for the knapsack polytope can be used for 
the general integer problem. This approach is utilized effectively. for example, in [CJP]. 

We are interested in a family of facets obtained from minimal covers. The existence 
of such facets has been known for over 15 years [B], [PI], [W], and their properties have 
been investigated in great detail, e.g., [B], [BZl], [HJP], [Pel. We show that, for this 
family, the tasks of computing a facet, or of recognizing whether a given inequality 
with integer coefficients is a facet or valid inequality, can be done simply and efficiently 
using an algorithm whose running time is bounded by 0 ( n 2 ) .  

2. Preliminaries. Consider the inequality 
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where 0 < a, < a, are positive integers and x, = 0 or 1, j E N = (1, . . . ,n ). The 
knapsack polytope P is the convex hull of 0- points satisfying (1). 

A set S c N is called a minimal cover for P if C,, ,aj  > a,, and S is minimal with 
respect to this property. We denote by s the cardinality of S. For any subset V c N, let 
P, = conv{x E {O,l}VIX,, ,ajx, < a,}. It is known [B], [PI], [W] that if S is a 
minimal cover, then the inequal~ty 

is a facet of P,. It is also known [NT], [PI], [P2] that facets and valid inequalities of 
lower dimensional polytopes can be "lifted" into n-space so as to yield facets or valid 
inequalities of P .  A procedure for computing such lifted facets was given by Padberg 
[PI], [P2] (see also [Po]). When lifting is applied to (2), one gets inequalities of the form 

We call any inequality of the form (3) (not necessarily valid or a facet) a lifting from 
the minimal cover S. 

Padberg's lifting procedure is sequential, in that the lifting coefficients /?,are 
computed one by one in a given sequence. The computation of each coefficient requires 
that a certain binary knapsack problem of size between s and n be solved to 
optimality. The coefficients obtained in this way depend on the sequence in which they 
are calculated and, in general, there may be an exponential number of sequences 
yielding distinct facets of P. Moreover, there may exist facets of P which are liftings 
from S, but which cannot be obtained by Padberg's algorithm for any sequence of 
N - S [BZl], [Z]. A general characterization of all the liftings of a lower dimensional 
facet or valid inequality is gen in [Z] and specialized to liftings from S in [BZl]. We 
note that not all the facets of P are liftings from some minimal cover S. A generaliza-
tion of this form, which accounts for all the facets of P ,  is given in [BZ2]. 

In this note we study the computational complexity of the following three tasks: 
P I .  Given a sequence a of N - S, compute the lifted facet associated with this 

sequence. 
P2.  Given a lifting (3) from S, is it a facet for P?  
P3. Given a lifting (3) from S, is it valid for P?  
As noted earlier, P I  requires a solution of a sequence of n - s binary knapsack 

problems. P 2  and P 3  seem more difficult, since they potentially require enumerating 
all sequences of N - S. Nevertheless, we have: 

Al. The complexity of P1 is O(ns). 
A2. If the coefficients p,: j E N - S are integers, the complexity of P 2  and P 3  is 

O(ns). 
We devote the remainder of this note to the proof of A1 and A2 . 

3. Properties of sequentially lifted facets. In this section we sumarize some known 
results concerning sequential liftings from S. We begin by describing Padberg's 
sequential procedure, specialized to such liftings. Let a be a sequence of N - S, i.e., a 
one-to-one mapping from (1,.  . . , n - s )  to N - S and let T ( i )= (a,,. . . ,T,) ,  i = 

1, . . . , n - s. 
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PROPOSITION1[PI], [P2]. For each i = 1,.. . , n - s. consider the knapsack problem 
KT, dejined recursiuelv as follows 

subject to : 

C a,x, + C a,x, < a ,  - a,, 
l E S  J E T ( , - 1 )  

and let 

Then for i = 1 , . . . , n - s ,  each inequality, 

is a facet of P, ,,(, ,. In particular ( 3 )  is a facet of P.  

The following properties of the lifting coefficients P,, J E N - S, are useful. 
Propositions 2-6 are adopted from [BZl]. See also [HJP], [Pel. 

Let I , ,  t = 0,. . . , s be the sum of the t smallest a,, j E S ,  and let b, be the sum of 
the t largest. For any number 0 < a < a ,  let y ( a )  be the smallest integer t such that 
1,- ,-, < a ,  - a and let a ( a )  be the largest integer t such that 6,< a. We let 
y, = y ( a , )  and similarly for a,. The coefficients a,, y,, J E N - S play a crucial role 
with respect to liftings of S :  

PROPOSITION2. If (3 )  is valid, P, ,< y,, i E N - S.  

3. 
condition on ( 3 )  I S  suflcient.) 

PROPOSITION If ( 3 )  I S  a facet, P, >, a,,  I E N - S .  ( I n  facr, a much ,r,eaker 

PROPOSITION4. For euery 0 < a < a,. a ( a )  ,< y ( a )  < a( a )  + 1 

In view of Propositions 2-4, let I = { i  E N - S :  a ,  = y , )  and let J = ( i  E A' - S :  
y, = a ,  + I}. The variables i E I can be very easily handled with respect to the tasks 
P1- P 3. Specifically, consider the inequality ( 4 )  

PROPOSITION (a) ( 3 )  is valld for P 18P, < a,, J E I and ( 4 )  IS valid for P, , ,.5 .  
(b) ( 3 )  is a facer of P 18P, = a,. J E I and (4 )  1s a facer of P,, ,. 
We conclude this section by a characterization of those lifted facets (3 )which can be 

obtained by sequential lifting. 

PROPOSITION6. A lifted inequality (3 )  which is a facer of P can be obtained by 
sequential lifting for sonze sequence T of N - S iff all the coeflcients P,, j E IV - S ore 
integer. 

4. The algorithms. In this section we give the algorithms which support A1 and 
A2. In view of Proposition 5, we restrict our attention to the set J. We will thus 
consider liftings from S of the form (4).  We assume below that the partial sums h,. I,. 
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t = 1,.. . , s - 1 are available, and that the set J is identified. This preprocessing phase 
can be easily done in O ( n  log s)  effort. The computational requirements reported in the 
remainder of this section are in addition to this amount. 

4.1. The task P I :  Computing a facet. We first consider the task of computing a 
sequentially lifted facet (4). Using a standard dynamic programming technique, con- 
sider, for each i = 1 , .  . . , ( J ( ,  the set of dual knapsack problems D n r ( z )for z = 0..  . . , 
s - 1: 

subject to: 

Clearly, the problem KT, of Padberg's procedure is related to the set of problems 
DT, ( z ) ,  z = O , . .  . .  s - 1 via the relation: Z ,  = max{z: A,(z)  < a ,  - a , ) .  This 
suggests the following algorithm: 

Algorithm Liff. 
Input: a sequence m of the set J .  The partial sums I,, t = 1, .  . . , s - 1. 
Output: The lifted facet ( 4 ) which corresponds to n .  
Begin Lift 

( 1 )  	 Let ATl(O)= 0 ,  A T 1 ( z )  = I,, z = 1 , .  . . , s - 1 .  
For j = 1,. . . , I  Jl: 

( 2 )  z4= max{z: A,!(z) < a ,  - a,J). 
(3) p , , = s - 1 - z  
( 4 )  	 For z = 0 to s -

n, ' 
1. 

If z < P , ,  A,+l(z)  = A,(z) .  

Else A,+l(z> = min{A,,(z), A , ( z  - P,,) + a,,) 
End Lift 

Lift is a typical dynamic programming algorithm of complexity O ( n  . s ) .  The only 
nonstandard feature here is that the coefficients fin/, used for the update of A,( . )  into 
AT,+l(.) ,are not given in advance but are computed as one goes along. However. P_ is 
computed in step (3), before it is used in step (4) .  This makes for an interesting 
property of Lift, namely, the effort to lift all the way from (2) to (4) is the same as the 
work needed to compute just the last coefficient of (4),given that the other coefficients 
are known. 

4.2. The tasks P2 and P3: Recognizing liftedfacers and lal lid inequalities. We now 
examine how algorithm Lift can be used to perform the tasks P 2  and P3. Consider a 
lifting ( 4 )  with integer coefficients. By Proposition 6, ( 4 )  is a facet of P,,, iff there 
exists a sequence m of J which yields (4 )via Algorithm Lift. The difficulty is to identify 
the sequence m or to prove that none exists. To that end, let J, = { j E J :  P, = a, + I ) ,  
J, = J \ Jl and let a reversal in n be any index 1 .s i < n - s such that n,,, E J1. 
m, E J*. 

LEMMA2. Let n be any sequence of N - S which contains no reversals. Then ( 4 )  is a 
facet of Ps lff it can be obtained from (2 )  by sequential lifting according to n. 
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PROOF. Assume that (4) is a facet of P,", and let IT be an arbitrary sequence of J 
which yields it by sequential lifting. Then by Propositions 2-4, fl, = a,, jE j2. 
Consider any reversal i in T and flip .ir, and T,,, to obtain a new sequence IT'. Note 
that by calculating IT,,, earlier in the sequence (in the ith rather than the i + I th 
position) we cannot decrease its coefficient ,B,,_I(since the feasible region of is 
smaller, z ,  cannot increase). Similarly, by delaying the calculation of T, to the 
i + 1st position, we cannot increase the value f l , .However, ,8, is already at its upper 
bound. yn,+, and f l ,  is at its lowest bound, a,,. Thus, nr  yieldithe same facet (4) but 
has fewer reversals than IT. Thus, there exists a sequence n of J which yields (41, and 
has no reversals. We have to show that ever): sequence with the latter property yields 
(4) as a facet. But this is easy since otherwise one call produce two facets for P.,,,, or 
two facets for P,, one of which dominates the other. which is impossible. 

In light of Lemma 2 the complexity of P 2  and P3 is O(ns) .  

5. Summary. We have shown that computing or recognizing a facet or valid 
inequality (3) can be done in O(n2)  provided: (a) the minimal cover S is specified. and 
(b) the inequality involves integer coefficients. The complexity of these tasks, when 
these conditions are relaxed, is resolved in a subsequent paper [HZ]. 
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