Easily Computable Facets of the Knapsack Polytope

Eitan Zemel

Mathematics of Operations Research, Vol. 14, No. 4. (Nov., 1989), pp. 760-764.

Stable URL:
http://links.jstor.org/sici?sici=0364-765X\(198911\)14\%3A4\<760\%3AECFOTK\>2.0.CO\%3B2-5

Mathematics of Operations Research is currently published by INFORMS.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/informs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

EASILY COMPUTABLE FACETS OF THE KNAPSACK POLYTOPE*

EITAN ZEMEL
Northwestern University

Abstract

It is known that facets and valid inequalities for the knapsack polytope P can be obtained by lifting a simple inequality derived from each minimal cover. We study the computational complexity of such lifting. In particular, we show that the task of computing a lifted facet can be accomplished in $O(n s)$ where $s \leqslant n$ is the cardinality of the minimal cover. Also, for a lifted inequality with integer coefficients, we show that the dual tasks of recognizing whether the inequality is valid for P or is a facet of P can be done within the same time bound.

1. The convex hull of solutions of combinatorial problems has been studied extensively over the past few decades. Numerous results are now available on the facial structure of problems such as the traveling salesman problem, the knapsack and multi-knapsack problems, the set covering, packing and partitioning problems, plant location problems, scheduling problems, etc. For a recent survey on these results and their applications, the reader is referred to [G], [GP] and [Pu].

In spite of the wealth of studies on facets, there are few results concerning the computational complexity issues involved. A notable exception is the work of [PY], [PW] on the complexity of recognizing the facets of the traveling salesman polytope.

In this note we study the computational complexity of computing and recognizing facets and valid inequalities of the binary knapsack polytope. This polytope is very useful, since for any $0-1$ integer programming problem, each constraint individually, or each individual aggregation of several constraints, can be regarded as a knapsack problem. Thus, facets and valid inequalities for the knapsack polytope can be used for the general integer problem. This approach is utilized effectively, for example, in [CJP].

We are interested in a family of facets obtained from minimal covers. The existence of such facets has been known for over 15 years [B], [P1], [W], and their properties have been investigated in great detail, e.g., [B], [BZ1], [HJP], [Pe]. We show that, for this family, the tasks of computing a facet, or of recognizing whether a given inequality with integer coefficients is a facet or valid inequality, can be done simply and efficiently using an algorithm whose running time is bounded by $O\left(n^{2}\right)$.
2. Preliminaries. Consider the inequality

$$
\begin{equation*}
\sum_{j \in N} a_{j} x_{j} \leqslant a_{0} \tag{1}
\end{equation*}
$$

[^0]where $0<a_{j} \leqslant a_{0}$ are positive integers and $x_{j}=0$ or $1, j \in N=\{1, \ldots, n\}$. The knapsack polytope P is the convex hull of 0 - points satisfying (1).

A set $S \subseteq N$ is called a minimal cover for P if $\sum_{j \in S} a_{j}>a_{0}$, and S is minimal with respect to this property. We denote by s the cardinality of S. For any subset $V \subset N$, let $P_{V}=\operatorname{conv}\left\{x \in\{0,1\}^{V} \mid \sum_{j \in V} a_{j} x_{j} \leqslant a_{0}\right\}$. It is known [B], [P1], [W] that if S is a minimal cover, then the inequality

$$
\begin{equation*}
\sum_{j \in S} x_{j} \leqslant s-1 \tag{2}
\end{equation*}
$$

is a facet of P_{S}. It is also known [NT], [P1], [P2] that facets and valid inequalities of lower dimensional polytopes can be "lifted" into n-space so as to yield facets or valid inequalities of P. A procedure for computing such lifted facets was given by Padberg [P1], [P2] (see also [Po]). When lifting is applied to (2), one gets inequalities of the form

$$
\begin{equation*}
\sum_{j \in S} x_{j}+\sum_{j \in N-S} \beta_{j} x_{j} \leqslant s-1 \tag{3}
\end{equation*}
$$

We call any inequality of the form (3) (not necessarily valid or a facet) a lifting from the minimal cover S.

Padberg's lifting procedure is sequential, in that the lifting coefficients β_{j} are computed one by one in a given sequence. The computation of each coefficient requires that a certain binary knapsack problem of size between s and n be solved to optimality. The coefficients obtained in this way depend on the sequence in which they are calculated and, in general, there may be an exponential number of sequences yielding distinct facets of P. Moreover, there may exist facets of P which are liftings from S, but which cannot be obtained by Padberg's algorithm for any sequence of $N-S[\mathrm{BZ1}],[\mathrm{Z}]$. A general characterization of all the liftings of a lower dimensional facet or valid inequality is gen in [Z] and specialized to liftings from S in [BZ1]. We note that not all the facets of P are liftings from some minimal cover S. A generalization of this form, which accounts for all the facets of P, is given in [BZ2].

In this note we study the computational complexity of the following three tasks:
$P 1$. Given a sequence π of $N-S$, compute the lifted facet associated with this sequence.
P 2. Given a lifting (3) from S, is it a facet for P ?
P 3. Given a lifting (3) from S, is it valid for P ?
As noted earlier, $P 1$ requires a solution of a sequence of $n-s$ binary knapsack problems. $P 2$ and $P 3$ seem more difficult, since they potentially require enumerating all sequences of $N-S$. Nevertheless, we have:
$A 1$. The complexity of $P 1$ is $O(n s)$.
$A 2$. If the coefficients $\beta_{j}: j \in N-S$ are integers, the complexity of $P 2$ and $P 3$ is $O(n s)$.

We devote the remainder of this note to the proof of $A 1$ and $A 2$.
3. Properties of sequentially lifted facets. In this section we sumarize some known results concerning sequential liftings from S. We begin by describing Padberg's sequential procedure, specialized to such liftings. Let π be a sequence of $N-S$, i.e., a one-to-one mapping from $\{1, \ldots, n-s\}$ to $N-S$ and let $T(i)=\left(\pi_{1}, \ldots, \pi_{i}\right\}, i=$ $1, \ldots, n-s$.

Proposition 1 [P1], [P2]. For each $i=1, \ldots, n-s$, consider the knapsack problem $K_{\pi_{i}}$ defined recursively as follows

$$
z_{\pi_{i}}=\max \sum_{j \in S} x_{j}+\sum_{j \in T(i-1)} \beta_{j} x_{j}
$$

subject to:

$$
\begin{aligned}
& \sum_{j \in S} a_{j} x_{j}+\sum_{j \in T(i-1)} a_{j} x_{j} \leqslant a_{0}-a_{\pi_{i}}, \\
& x_{j}=0,1, \quad j \in S^{\prime} \cup T(i-1),
\end{aligned}
$$

and let

$$
\beta_{\pi_{i}}=s-1-z_{\pi_{i}} .
$$

Then for $i=1, \ldots, n-s$, each inequality,

$$
\sum_{j \in S} x_{j}+\sum_{j \in T(i)} \beta_{j} x_{j} \leqslant s-1
$$

is a facet of $P_{S \cup T(i)}$. In particular (3) is a facet of P.
The following properties of the lifting coefficients $\beta_{j}, j \in N-S$, are useful. Propositions 2-6 are adopted from [BZ1]. See also [HJP], [Pe].

Let $l_{t}, t=0, \ldots, s$ be the sum of the t smallest $a_{j}, j \in S$, and let b_{t} be the sum of the t largest. For any number $0 \leqslant a \leqslant a_{0}$ let $\gamma(a)$ be the smallest integer t such that $l_{s-1-t} \leqslant a_{0}-a$ and let $\alpha(a)$ be the largest integer t such that $b_{t} \leqslant a$. We let $\gamma_{i}=\gamma\left(a_{i}\right)$ and similarly for α_{i}. The coefficients $\alpha_{j}, \gamma_{j}, j \in N-S$ play a crucial role with respect to liftings of S :

Proposition 2. If (3) is valid, $\beta_{i} \leqslant \gamma_{i}, i \in N-S$.
Proposition 3. If (3) is a facet, $\beta_{i} \geqslant \alpha_{i}, i \in N-S$. (In fact, a much weaker condition on (3) is sufficient.)

Proposition 4. For every $0 \leqslant a \leqslant a_{0}, \alpha(a) \leqslant \gamma(a) \leqslant \alpha(a)+1$.
In view of Propositions 2-4, let $I=\left\{i \in N-S: \alpha_{i}=\gamma_{i}\right\}$ and let $J=\{i \in N-S$: $\left.\gamma_{i}=\alpha_{i}+1\right\}$. The variables $i \in I$ can be very easily handled with respect to the tasks $P 1-P 3$. Specifically, consider the inequality (4)

$$
\begin{equation*}
\sum_{j \in S} x_{j}+\sum_{j \in J} \beta_{j} x_{j} \leqslant s-1 \tag{4}
\end{equation*}
$$

Proposition 5. (a) (3) is valid for P iff $\beta_{j} \leqslant \alpha_{j}, j \in I$ and (4) is valid for $P_{J \cup S}$. (b) (3) is a facet of P iff $\beta_{j}=\alpha_{j}, j \in I$ and (4) is a facet of $P_{J \cup S}$.

We conclude this section by a characterization of those lifted facets (3) which can be obtained by sequential lifting.

Proposition 6. A lifted inequality (3) which is a facet of P can be obtained by sequential lifting for some sequence π of $N-S$ iff all the coefficients $\beta_{j}, j \in N-S$ are integer.
4. The algorithms. In this section we give the algorithms which support A1 and A2. In view of Proposition 5, we restrict our attention to the set J. We will thus consider liftings from S of the form (4). We assume below that the partial sums b_{t}, l_{t},
$t=1, \ldots, s-1$ are available, and that the set J is identified. This preprocessing phase can be easily done in $O(n \log s)$ effort. The computational requirements reported in the remainder of this section are in addition to this amount.
4.1. The task P1: Computing a facet. We first consider the task of computing a sequentially lifted facet (4). Using a standard dynamic programming technique, consider, for each $i=1, \ldots,|J|$, the set of dual knapsack problems $D_{\pi_{i}}(z)$ for $z=0, \ldots$, $s-1$:

$$
A_{\pi_{i}}(z)=\min \sum_{j \in S} a_{j}+\sum_{j \in T(i-1)} a_{j} x_{j}
$$

subject to:

$$
\begin{aligned}
& \sum_{j \in S} x_{j}+\sum_{j \in T(i-1)} \beta_{j} x_{j} \geqslant z, \\
& x_{j}=0 \quad \text { or } \quad 1, \quad j \in S \cup T(i-1) .
\end{aligned}
$$

Clearly, the problem $K_{\pi_{i}}$ of Padberg's procedure is related to the set of problems $D_{\pi_{i}}(z), z=0, \ldots, s-1$ via the relation: $Z_{\pi_{i}}=\max \left\{z: A_{\pi_{i}}(z) \leqslant a_{0}-a_{\pi_{i}}\right\}$. This suggests the following algorithm:

Algorithm Lift.

Input: a sequence π of the set J. The partial sums $l_{t}, t=1, \ldots, s-1$.
Output: The lifted facet (4) which corresponds to π.
Begin Lift

$$
\begin{align*}
& \text { Let } A_{\pi_{1}}(0)=0, A_{\pi_{1}}(z)=l_{z}, z=1, \ldots, s-1 . \tag{1}\\
& \text { For } j=1, \ldots,|J|: \tag{2}\\
& z_{\pi_{j}}=\max \left\{z: A_{\pi_{j}}(z) \leqslant a_{0}-a_{\pi_{j}}\right\} . \tag{3}\\
& \beta_{\pi_{j}}=s-1-z_{\pi_{j}} \tag{4}\\
& \text { For } z=0 \text { to } s-1 . \\
& \quad \text { If } z<\beta_{\pi_{j}}, A_{\pi_{j+1}}(z)=A_{\pi_{j}}(z) . \\
& \quad \text { Else } A_{\pi_{j+1}}(z)=\min \left\{A_{\pi_{j}}(z), A_{\pi_{j}}\left(z-\beta_{\pi_{j}}\right)+a_{\pi_{j}}\right\} .
\end{align*}
$$

End Lift

Lift is a typical dynamic programming algorithm of complexity $O(n \cdot s)$. The only nonstandard feature here is that the coefficients $\beta_{\pi_{j}}$, used for the update of $A_{\pi_{j}}(\cdot)$ into $A_{\pi_{j+1}}(\cdot)$, are not given in advance but are computed as one goes along. However, $\beta_{\pi_{j}}$ is computed in step (3), before it is used in step (4). This makes for an interesting property of Lift, namely, the effort to lift all the way from (2) to (4) is the same as the work needed to compute just the last coefficient of (4), given that the other coefficients are known.
4.2. The tasks $P 2$ and $P 3$: Recognizing lifted facets and valid inequalities. We now examine how algorithm Lift can be used to perform the tasks $P 2$ and $P 3$. Consider a lifting (4) with integer coefficients. By Proposition 6, (4) is a facet of $P_{S \cup J}$ iff there exists a sequence π of J which yields (4) via Algorithm Lift. The difficulty is to identify the sequence π or to prove that none exists. To that end, let $J_{1}=\left\{j \in J: \beta_{j}=\alpha_{j}+1\right\}$, $J_{2}=J \backslash J_{1}$ and let a reversal in π be any index $1 \leqslant i<n-s$ such that $\pi_{i+1} \in J_{1}$, $\pi_{i} \in J_{2}$.

Lemma 2. Let π be any sequence of $N-S$ which contains no reversals. Then (4) is a facet of $P_{S \cup J}$ iff it can be obtained from (2) by sequential lifting according to π.

Proof. Assume that (4) is a facet of $P_{S \cup J}$ and let π be an arbitrary sequence of J which yields it by sequential lifting. Then by Propositions $2-4, \beta_{j}=\alpha_{j}, j \in J_{2}$. Consider any reversal i in π and flip π_{i} and π_{i+1} to obtain a new sequence π^{\prime}. Note that by calculating π_{i+1} earlier in the sequence (in the i th rather than the $i+1$ th position) we cannot decrease its coefficient $\beta_{\pi_{i+1}}$ (since the feasible region of $K_{\pi_{i+1}}$ is smaller, $z_{\pi_{i+1}}$ cannot increase). Similarly, by delaying the calculation of π_{i} to the $i+1$ st position, we cannot increase the value $\beta_{\pi_{i}}$. However, $\beta_{\pi_{i+1}}$ is already at its upper bound, $\gamma_{\pi_{i+1}}$ and $\beta_{\pi_{i}}$ is at its lowest bound, $\alpha_{\pi_{i}}$. Thus, π^{\prime} yields the same facet (4) but has fewer reversals than π. Thus, there exists a sequence π of J which yields (4), and has no reversals. We have to show that every sequence with the latter property yields (4) as a facet. But this is easy since otherwise one can produce two facets for $P_{S \cup J}$ or two facets for $P_{S \cup J_{1}}$, one of which dominates the other, which is impossible.

In light of Lemma 2 the complexity of $P 2$ and $P 3$ is $O(n s)$.
5. Summary. We have shown that computing or recognizing a facet or valid inequality (3) can be done in $O\left(n^{2}\right)$ provided: (a) the minimal cover S is specified, and (b) the inequality involves integer coefficients. The complexity of these tasks, when these conditions are relaxed, is resolved in a subsequent paper [HZ].

Acknowledgement. I wish to thank the referees for their helpful comments.

References

[B] Balas, E. (1975). Facets of the Knapsack Polytope. Math. Programming 8 146-164.
[BZ1] \qquad and Zemel, E. (1978). Facets of the Knapsack Polytope from Minimal Covers. SIAM J. Appl. Math. 34, 1 119-148.
[BZ2] \qquad and \qquad (1984). Lifting and Complementing Yields all the Facets of Positive Zero-One Programming Polytopes. R. W. Cottle, H. L. Kelmanson, and B. Korte (Eds.), Mathematical Programming. Elsevier Science Publishers, North Holland, Amsterdam.
[CJP] Crowder, H., Johnson, E. L. and Padberg, M. (1983). Solving Large Scale Zero-One Linear Programming Problems. Oper. Res. 5 803-834.
[G] Grotschel, M. (1985). Polyhedral Combinatorics. M. O'hEigeartaigh, J. K. Lenstra, and A. H. G. Rinnooy Kan (Eds.), Combinatorial Optimization-Annotated Bibliographies. Wiley (Interscience Publication), New York.
[GP] and Padberg, M. W. (1985). Polyhedral Algorithms. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys (Eds.), The Travelling Salesman Problem. Wiley, Chichester.
[HJP] Hammer, P. L., Johnson, E. L. and Peled, U. N. (1975). Facets of Regular 0-1 Polytopes. Math. Programming 8 179-206.
[HZ] Hartvigsen, D. and Zemel, E. (1987). On the Computational Complexity of Lifted Inequalities for the Knapsack Problem. Northwestern University working paper.
[NT] Nemhauser, G. L., and Trotter, Jr., L. E. (1974). Properties of Vertex Packing and Independence System Polyhedra. Math. Programming 648-61.
[P1] Padberg, M. W. (1973). On the Facial Structure of Set Packing Polyhedra. Math Programming 5 198-216.
\qquad (1975). A Note on Zero-One Programming. Oper. Res. 3 833-837.
[PW] Papadimitriou, C. H. and Wolfe, D. (1985). The Complexity of Facets Resolved. 26th Annual Sympos. Foundations Computer Sci., Portland, OR, October, 74-78.
[PY] and Yananakis, M. (1982). The Complexity of Facets (and Some Facets of Complexity). J. Comput. System Sci. 2 244-259.
[PE] Peled, U. N. (1977). Properties of Facets of Binary Polytopes. Ann. Discrete Math. 1435-456.
[Po] Pollatschek, M. A., (1970). Algorithms for Weighted Graphs. PH.D thesis, Technion-Israel Institute of Technology.
[Pu] Pulleyblank, W. R. (1982). Polyhedral Combinatorics. A. Bachem, M. Grotschel, B. Korte (Eds.), Mathematical Programming: The State of the Art. Bonn, Springer, Berlin.
[W] Wolsey, L. A. (1975). Faces of Linear Inequalities in 0-1 Variables. Math. Programming 8165-178.
[Z] Zemel, E. (1978). Lifting the Facets of 0-1 Polytopes. Math. Programming 15 268-277.

[^1]http://www.jstor.org

LINKED CITATIONS
 - Page 1 of 1 -

You have printed the following article:
Easily Computable Facets of the Knapsack Polytope
Eitan Zemel
Mathematics of Operations Research, Vol. 14, No. 4. (Nov., 1989), pp. 760-764.
Stable URL:
http://links.jstor.org/sici?sici=0364-765X\(198911\)14\%3A4\<760\%3AECFOTK\>2.0.CO\%3B2-5

This article references the following linked citations. If you are trying to access articles from an off-campus location, you may be required to first logon via your library web site to access JSTOR. Please visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

References

${ }^{\text {BZ1 }}$ Facets of the Knapsack Polytope from Minimal Covers
Egon Balas; Eitan Zemel
SIAM Journal on Applied Mathematics, Vol. 34, No. 1. (Jan., 1978), pp. 119-148.
Stable URL:
http://links.jstor.org/sici?sici=0036-1399\(197801\)34\%3A1\<119\%3AFOTKPF\>2.0.CO\%3B2-1

NOTE: The reference numbering from the original has been maintained in this citation list.

[^0]: *Received January 19, 1987; revised August 10, 1988. AMS 1980 subject classifcation. Primary: 90C08.
 IAOR 1973 subject classification. Main: Programming: integer.
 OR/MS Index 1978 subject classification. Primary: 627 Programming/integer.
 Key words. Facets, valid Inequalities, Knapsack, Lifting.

[^1]: DEPARTMENT OF MANAGERIAL ECONOMICS \& DECISION SCIENCE, J. L. KELLOGG GRADUATE SCHOOL OF MANAGEMENT, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60208

