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Abstract

An O(n log n) procedure is presented for obtaining facets of the knapsack polytope by lifting the inequalities induced by
the extensions of strong minimal covers. The procedure does not require any sequential lifting of the inequalities. In contrast,
it utilizes the information from the maximal cliques implied by the knapsack constraint for determining the combination of
the lifting coe4cients to generate each facet.
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1. Introduction and preliminaries

Consider the 0–1 knapsack inequality∑
j∈N

ajxj6 a0; (1)

where aj6 a0, such that a0; aj;∈Z+ and xj ∈{0; 1},
j∈N ={1; : : : ; n}. The knapsack polytope P given by
(1) is the convex hull of the 0–1 points satisfying (1):

P = conv


xj ∈{0; 1};

∑
j∈N

ajxj6 a0


 :
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An inequality is said to be a facet of P if it is
satis:ed by every x∈P, and it is satis:ed with strict
equality by exactly n a4nely independent points x∈P
(see e.g. [11]).
A set S ⊆ N is called a cover implied by the knap-

sack constraint (1), or equivalently by P, provided that∑
j∈S

aj ¿a0:

The cover S is called a minimal cover provided that∑
j∈S−{i}

aj6 a0 ∀i∈ S:

It is well known that the inequality∑
j∈S

xj6 k (2)

is induced by the minimal cover S, where k = |S| − 1
and, then, it is a valid inequality for any solution that
satis:es (1).
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The set E(S) = S ∪ S ′ from the minimal cover S,
where S ′ = {j∈N − S : aj¿ ai; ∀i∈ S}, is called the
extension of S to N . Note that

∑
j∈E(S) xj6 k is a

valid inequality for the feasible set of (1) (see [11],
among others).
It is also well known that a clique-induced inequal-

ity is a cover with k =1. A trivial clique C is a clique
with |C| = 1. A clique from a given set is called a
maximal clique if it is not dominated by any other
member of the set.
A minimal cover S is called a strong minimal cover,

if either E(S) = N or∑
j∈S−{j1}

aj + ai16 a0; (3)

where j1 = argmax{aj : j∈ S} and i1 = argmax{aj :
j∈N − E(S)}.
Consider the following proposition for a useful

characterization of strong minimal covers.

Proposition 1.1. A minimal cover S is a strong mini-
mal cover if there exists no other minimal cover with
the same size as S, whose extension strictly contains
the extension E(S).

Proof. Trivial.

In this note we are interested in the family of facets
obtained from strong minimal covers. The existence,
properties and characterizations of such valid inequal-
ities have been studied in great detail during the last
30 years (see [1–3,6–10,12–16], among others).
Throughout the note, we will assume that the set N

to be considered is ordered such that i¡ j ⇒ ai¿ aj.
Let Sh denote the set of the :rst h elements of S.
It is well known that facets and other valid in-

equalities of lower-dimensional polytopes can be
lifted to generate facet-de:ning inequalities of
greater-dimensional polytopes. When the lifting is
applied to the minimal cover (2), the following type
of tighter inequality can be generated (the so-called
Lifted Cover Inequality (LCI)):∑
j∈S

xj +
∑

j∈N−S

�jxj6 |S| − 1; (4)

where �j ¿ 0 are the so-called lifting coe9cients.

The coe4cients of a facet-de:ning inequality that
are obtained one by one depend upon the sequence
in which they are computed. In general, there can
be an exponential number of sequences yielding dis-
tinct facets of P. The facets obtained by such type of
procedures are called sequentially lifted facets (see
[12,13]).
Balas [1] and Balas and Zemel [3] characterize the

lifting coe4cients �j ∀j∈N − S for the sequentially
lifted facets (4) by using explicit expressions. How-
ever, these are still a subset of indices in N −S whose
coe4cients are not determined in a precise way, but
two potential values are considered.
In this note we present an O(n log n) procedure for

identifying the set of facets derived from strong mini-
mal covers, such that the lifting coe4cients have inte-
ger values and do not depend upon the ordering of the
indices in N − S. Our approach takes bene:t from the
B–Z results. However, the information from the max-
imal cliques implied by the given knapsack constraint
is used for structuring the LCIs.
The rest of the note is organized as follows. Section

2 presents the computational procedure for obtaining
tight inequalities. Section 3 analyzes the relation be-
tween the new inequalities and the sequentially lifted
facets. Finally, Section 4 draws some conclusions from
the work.

2. Obtaining tight inequalities

See [5] for two procedures with complexity
O(n log n) for lifting cover inequalities in 0–1 pro-
grams, called e4cient cover inequality tightening
(ECIT) and probing-based cover inequality tightening
(PCIT).
In [1] it was proved that the maximal clique in-

equalities are facet de:ning of P. See [4] for an O(n)
procedure for identifying all such inequalities implied
by a given knapsack constraint. Furthermore, all the
covers to be obtained as the non-dominated extensions
of alternate sets of minimal covers with consecutive
coe4cients can be identi:ed with O(n) complexity as
well (see also [4]). Given the characterization of a
strong minimal cover in Proposition 1.1, and the con-
struction of the procedure introduced in [4] for iden-
tifying the above class of minimal covers, it is easy to
see that they are strong minimal covers.
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Let the induced inequality of a minimal cover be S,∑
j∈E(S)

xj6 |S| − 1; |S|¿ 3: (5)

The basic scheme of the procedures ECIT and PCIT
for lifting cover inequalities, consists of increasing the
coe4cients of the variables in the inequalities while
keeping the right-hand side (rhs) :xed. The problem
to solve for increasing the coe4cient ci; i∈N , in (5)
can be written as

zi =max
∑
j∈N

cjxj;

s:t:∑
j∈N

ajxj6 a0;

xi = 1; xj ∈{0; 1}; ∀j∈N − {i};
cj = 1; j∈E(S); cj = 0; j∈N − E(S): (6)

If zi ¡ |S| − 1, the lifting coe4cient, say Mci, can be
expressed as

Mci = ci + |S| − 1− zi: (7)

The new inequality∑
j∈N

Mcjxj6 |S| − 1 (8)

is obtained, where Mcj = cj if j 
= i and Mci takes the
value given in (7). In this way, n new inequalities with
lifting coe4cients can be obtained from (5). The new
system of inequalities is 0–1 equivalent and tighter
than the original one, provided that there exists i∈N
such that Mci ¿ ci.
However, it is well known, see [1,2], among others,

that if S is a minimal cover implied by (1), then for
each inequality (8) Mci = 1, if i∈ S. Additionally, see
[5], if there exists some clique C ⊆ N implied by the
original 0–1 program, such that H ⊆ C for |H |¿ 2,
where H = {i∈N : Mci ¿ ci}, the system of the |H | in-
equalities (8) corresponding to each individual coef-
:cient increment is 0–1 equivalent and dominated by
the inequality∑
i∈H

Mcixi +
∑

i∈N−H

cixi6 |S| − 1:

Next consider the following result.

Proposition 2.1. If S is a strong minimal cover
implied by (1), then for each inequality (8),
Mci = 0; i∈N − E(S).

Proof. Let i1 be the :rst index in N −E(S) (i.e., i1=
argmax{aj : j∈N −E(S)}). Similar to the above, for
increasing the coe4cient ci1, consider the following
problem to solve:

zi1 = max
∑
j∈E(S)

xj;

s:t:∑
j∈N

ajxj6 a0;

xi1 = 1; xj ∈{0; 1}; ∀j∈N − {i1}: (9)

It is easy to see that the optimal solution of (9) is
as follows:

xi1 = 1; xj =

{
1; j = |S|; |S| − 1; : : : ; |S| − �+ 1;

0; j = 1; : : : ; |S| − �; j 
= i1;

where � is the :rst integer from 1 to |S| such
that A�−16 a0 − ai1¡A� or equivalently A�−1 +
ai16 a0¡A� + ai1, where A� is the sum of the �th
smallest knapsack coe4cients with indices in S. The
optimal objective function value in (9) is zi1=�−1. Let
j1∈ S as above. So, if �¡ |S|, then there exists a min-
imal cover of the same size as S, say S ′=S−{j1}∪{i1}
(note that S ′ has consecutive coe4cients, if S has
consecutive coe4cients), such that E(S) ⊂ E(S ′),
which is a contradiction, since by hypothesis, S is
a strong minimal cover. (Note that S ′ is a minimal
cover since

∑
j∈S′−{i} aj6

∑
j∈S−{j1} aj6 a0 for

i∈ S ′ given S is a minimal cover, and
∑

j∈S′ aj ¿a0,
given A� + ai1¿a0 and assuming �¡ |S|). Then
zi1 = |S|−1 and Mci1 = ci1 =0. If k ¿ i1, k ∈N −E(S),
zk¿ zi1, and thus, Mck = ck = 0 ∀k ∈N − E(S).

Proposition 2.1 has important consequences for the
computational eOort required to obtain the facets of
the knapsack polytope derived from a strong minimal
cover. As a result, the new inequalities to generate can
be expressed as∑
i∈S

xi +
∑

i∈E(S)−S

�ixi6 |S| − 1; (10)

where the coe4cients �i ∈Z+ can be determined in
function of Mci, given by (7) see the next section. It is
also shown that these inequalities are facets of P.
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3. Obtaining facet-de�ning inequalities

Next we present anO(n log n) procedure for obtain-
ing the LCIs (10), which de:ne facets of P. Accord-
ing to the concepts and notation introduced in [1], see
also [3], if S is a minimal cover for (1), E(S) its ex-
tension to N , and Sh the set of the :rst h elements in
S, h=1; : : : ; |S|, then the set N can be partitioned into
the subsets N0; N1; : : : ; Nq, q= |S| − 1, where

N0 = N − E(S); N1 = E(S)−
q⋃

h=2

Nh;

Nh =


i∈E(S) :

∑
j∈Sh

aj6 ai ¡
∑
j∈Sh+1

aj


 ;

h= 2; : : : ; q: (11)

Let also the coe4cients �j, j∈N , and the sets I; J ⊆
N − S, N − S = I ∪ J , such that

�j = h ∀j∈Nh; h= 0; 1; : : : ; q; (12)

I =


i∈N − S :

∑
j∈S−S�i+1

aj6 a0 − ai


 ;

J = (N − S)− I: (13)

Remark 3.1. Since �i = 0 for i∈N0 = N − E(S), it
results that N − E(S) ⊆ I , provided that S is a strong
minimal cover (see [2]).

Remark 3.2. N − S = I (i.e., J = ∅) implies that S is
a strong minimal cover (see [2]).
Moreover, the next proposition shows the relation-

ship between the coe4cients Mci (7) and �i (12), i∈N−
S.

Proposition 3.1. If S is a minimal cover implied by
(1) then

Mci =

{
�i; i∈ I;
�i + 1; i∈ J:

(14)

Proof. (1) Case for i∈ I : From the de:nition of �i,
we have∑
j∈S�i

aj6 ai

and since S is a cover implied by (1), it results

a0¡
∑
j∈S

aj =
∑
j∈S�i

aj +
∑

j∈S−S�i

aj6 ai +
∑

j∈S−S�i

aj

and∑
j∈S−S�i

aj ¿a0 − ai:

Furthermore, since i∈ I , the following condition is
satis:ed:∑
j∈S−S�i+1

aj6 a0 − ai ¡
∑

j∈S−S�i

aj;

i.e.,

A|S|−(�i+1)6 a0 − ai ¡A|S|−�i :

Since � = |S| − �i (see the proof of Proposition 2.1)
the solution value of (6) can be written as

zi =

{ |S| − �i for i∈ I ∩ (E(S)− S);

|S| − �i − 1 for i∈ I ∩ (N − E(S));

and, in any case, from the de:nition of Mci (7), it results
Mci = �i since ci = 1 for i∈E(S) − S and ci = 0 for
i∈N − E(S).
(2) Case for i∈ J : From the de:nition of �i, we

have∑
j∈S�i+1

aj ¿ai

and since S is a minimal cover implied by (1), it results

ai +
∑

S−S�i+2

aj ¡
∑

j∈S�i+1

aj +
∑

S−S�i+2

aj6 a0;

and, then,∑
S−S�i+2

aj ¡a0 − ai: (15)

Furthermore, since i∈ J , the following condition is
satis:ed:

a0 − ai ¡
∑

j∈S−S�i+1

aj: (16)

From (15) and (16), we have �= |S| − �i − 1 and,
so,

zi =

{ |S| − �i − 1 for i∈ J ∩ (E(S)− S);

|S| − �i − 2 for i∈ J ∩ (N − E(S));

and, in any case, from the de:nition of Mci (7), it results
Mci = �i +1 since ci =1 for i∈E(S)− S and ci =0 for
i∈N − E(S).
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Consider the following partial result from Theorem
3 in [3].

Proposition 3.2. For any sequentially lifted facet (4)
of P,

�i =

{
�i; i∈ I;
�i or �i + 1; i∈ J:

Proof. See [3].

In addition, as it is also stated in [3], given a se-
quentially lifted facet F of P obtained from a minimal
cover S, the set of sequentially lifted facets that can
be obtained from S requires changing the positions in
F of the indices j from J , such that �j = �j + 1.

Theorem 3.1. If S is a minimal cover implied by (1)
and N − S = I , J = ∅, then the inequality∑
i∈S

xi +
∑

i∈N−S

�ixi6 |S| − 1;

where the coe9cients �i, i∈N −S are given by (12),
is the unique facet of P which can be obtained from
S. Furthermore, it is the unique facet of P having
coe9cients equal to 1 for all j∈ S and a rhs of |S|−1.

Proof. See [3].

Corollary 3.1. As it has been shown in Proposition
3.1, Mci=�i ∀i∈ I , then inequality (10) for J=∅ de:nes
a facet of P for �i = Mci ∀i∈ I . We recall that J = ∅
implies that S is a strong minimal cover.

In Theorem 3.2 below, we show what indices from
J must have the coe4cient �j = �j, and what indices
must have �j = �j + 1 for each facet. This informa-
tion is provided by the maximal cliques implied by
the given knapsack constraint (1). This crucial obser-
vation implies that the coe4cients �j can be directly
obtained without requiring any sequential lifting of the
cover inequality.
Given the knapsack inequality (1) and a minimal

cover S implied by (1), let

M(N − S) =


M ⊆ (N − S) :

∑
j∈M

aj6 a0


 :

Note that the elements of M(N − S) are subsets of
indices whose variables can take simultaneously the
value 1 in a feasible solution of (1), i.e.,

xj =

{
1; j∈M;
0; j∈ (N − S)−M

for any M ∈M(N − S). Furthermore, associated with
each subset M , we can de:ne the 0–1 variable xM ,
with coe4cient aM =

∑
j∈M aj. The introduction of

this class of sets, see [3], allows for the generalization
of the de:nition of the lifting coe4cients such that the
related coe4cient, say, McM of the new variable xM has
the expression McM =cM + |S|−1−zM , where cM gives
the number of variables from E(S)− S in set M (i.e.,
cM = |E(S)−S ∩M |), and zM is the optimal objective
function value of the knapsack problem

zM =max
∑
j∈E(S)

xj;

s:t:∑
j∈N−M

ajxj6 a0 − aM ;

xM = 1;

xj ∈{0; 1} ∀j∈N −M: (17)

The optimal objective function value in (17) is

zM = cM + (�− 1); (18)

where � is, as above, the :rst integer from 1 to |S|
such that A�−16 a0 − aM ¡A�. Similarly, �M is the
value given in (12), where j is replaced by M .
By using the above notation, consider the following

result.

Theorem 3.2. Let S be a strong minimal cover im-
plied by (1) and N − S = I ∪ J , J 
= ∅. Then for each
maximal clique C implied by (1), such that J ∩ C 
=
∅, the LCI (19) is a facet of P:

∑
j∈S

xj +
∑

j∈E(S)−S

�jxj6 |S| − 1; (19)

where

�j =




Mcj; j∈ I;
Mcj; j∈ J ∩ C;

Mcj − 1 for any other j∈ J:
(20)
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Proof. Consider the characterization of the class of
facets of P associated with minimal covers given in
[3]. In this case, inequality (19) de:nes a facet of P
if and only if

�j =

{
�j; j∈ I;
�j + "j; j∈ J;

(21)

with 06 "j6 1, j∈ J , where "∈R|J | is a vertex of
the set

T =


"∈R|J | :

∑
j∈M

"j6 McM −
∑
j∈M

�j;M ∈M(J )


 :

Note that expression (21) holds from Proposition
3.2, where "j for j∈ J is chosen as

"j =

{
1; j∈ J ∩ C;

0; j∈ J − C
(22)

and, then, expression (20) follows, provided that the
vector "∈R|J | as de:ned in (22) belongs to the set T .
Next, we prove it.
For M ∈M(J ) and each maximal clique C, see

that |M ∩C|=1, from the de:nition of the set M(J )
and since C is a clique. That is,

∑
j∈M "j = 1. Now,

let aj1 ¿ · · ·¿ ajM and h1 = �j1 ; : : : ; hM = �jM for the
variables xji , ji ∈M . Then, from (11) and (12), we
have

aM−{j1} = aM − aj1 ¿
∑
j∈Sh2

aj + · · ·+
∑
j∈ShM

aj

¿
∑

j∈Sh2+···+hM

aj: (23)

From (12) and (16), since j1 ∈ J , it results the :rst
inequality in (24). From expression (23) it results the
second inequality, and the last one follows:

a0−aM = a0−aj1 −aM−{j1}¡
∑

j∈S−Sh1+1

aj−aM−{j1}

6
∑

j∈S−Sh1+1

aj −
∑

j∈Sh2+···+hM

aj

=
∑
j∈S

aj −

 ∑

j∈Sh1+1

aj +
∑

j∈Sh2+···+hM

aj




6
∑

j∈S−Sh1+h2+···+hM+1

aj: (24)

Hence, the value of � in (18) satis:es

�6 |S| −
M∑
j=1

hj − 1;

and, then, from the de:nition of the coe4cient McM , it
results

McM ¿ 1 +
M∑
j=1

hj =
∑
j∈M

"j +
∑
j∈M

�j:

Thus, " satis:es the inequalities de:ning T , i.e.,
"∈T . Therefore, " is a vertex of T if and only if
condition (25) is satis:ed for |J | linearly independent
sets Mi:∑
j∈Mi

"j = McMi −
∑
j∈Mi

�j: (25)

Note that the sets Mi are linearly independent sets
provided that the |J | vectors u(Mi)∈R|J |, i∈ J are
linearly independent, where

uj(Mi) =

{
1; j∈Mi;

0; otherwise:

By choosing Mj = {j}, for j∈ J , it is easy to see
that (25) holds from Proposition 3.1, since Mcj=1+�j,
j∈ J .

Corollary 3.2. Inequality (19) is a sequentially lifted
facet of P, provided that "j ∈{0; 1} in Theorem 3.2.

Proposition 3.3. The set J of indices de:ned in (13)
can be identi:ed with complexity O( Ms log s), where
Ms= |E(S)− S| and s= |S|.

Proof. Let Ai and Bi, i = 0; : : : ; s be the sum of the i
smallest and largest coe4cients aj, j∈ S, respectively.
For any coe4cient 06 a6 a0, let �a be the smallest
integer such that

A|S|−1−�a 6 a0 − a¡A|S|−�a

and let (a be the largest integer such that

B(a 6 a¡B(a+1:

The integers �a and (a for a given a can be obtained
through a binary search and, so, the complexity is
O(log s). Note also that there are only Ms iterations.
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Example 3.1. Consider the inequality with 0–1 vari-
ables

5x1 + 3x2 + 3x3 + 3x4 + 2x5

+ 2x6 + 2x7 + 2x86 6; (26)

taken from [3]. Let the minimal cover S = {5; 6; 7; 8}
and its extension E(S)=N ={1; 2; : : : ; 8}, hence N −
S = {1; 2; 3; 4}. So, S is a strong minimal cover. The
setsNh (11) are obtained as follows:N0={∅},N2={1}
and then �1 = 2, N1 = {2; : : : ; 8}, and then �i = 1;
i = 2; : : : ; 8. So, I = ∅ and J = {1; 2; 3; 4}. We can
obtain the lifting coe4cients Mci ∀i∈N − S either by
using (7) or (14):

Mc1 = 3; Mc2 = 2; Mc3 = 2; Mc4 = 2:

Note that (26) implies the maximal cliques {1; 2},
{1; 3} and {1; 4}. The following inequalities can be
obtained by using (19):

3x1 + 2x2 + x3 + x4 + x5 + x6 + x7 + x86 3;

3x1 + x2 + 2x3 + x4 + x5 + x6 + x7 + x86 3;

3x1 + x2 + x3 + 2x4 + x5 + x6 + x7 + x86 3: (27)

It is easy to see that (27) is a set of sequentially lifted
facets. Moreover, these facets are the only distinct
facets with integer coe4cients that can be obtained
from the minimal cover S. Note that system (27) can
be obtained by the procedures ECIT and PCIT [5].

Example 3.2. Consider the inequality with 0–1 vari-
ables

43x1 + 41x2 + 40x3 + 21x4 + 20x5 + 20x6

+20x7 + 20x86 93: (28)

Let the minimal cover S = {4; 5; 6; 7; 8} and its
extension E(S) = N = {1; 2; : : : ; 8}, hence N − S =
{1; 2; 3}. So, S is a strong minimal cover. The sets Nh
(11) are obtained as follows: N0 = {∅}, N2 = {1; 2}
and N1 = {3; : : : ; 8}, and then �1 = �2 = 2, and �i =
1; i = 3; : : : ; 8. So, I = {1; 2} and J = {3}. We can
obtain the lifting coe4cients Mci ∀i∈N − S either by
using (7) or (14):

Mc1 = 2; Mc2 = 2; Mc3 = 2:

Note that (28) implies only trivial cliques. The fol-
lowing inequality can be obtained by using (19):

2x1 + 2x2 + 2x3 + x4 + x5 + x6 + x7 + x86 4: (29)

It is easy to see that (29) is a sequentially lifted
facet. It is the unique facet with integer coe4cients
that can be obtained from the minimal cover S. Note
that the facet (29) cannot be obtained by the pro-
cedures ECIT and PCIT; instead three tightening
cover-induced inequalities are identi:ed. Obviously,
those inequalities are dominated by (29).

4. Conclusions

We have shown that the complexity for identifying
the facets with integer coe4cients to be obtained from
a strong minimal cover, say S, is O(n log n) for n ≡
|N |, whereN is the set of indices in the given knapsack
constraint. These facets are a subset of the class of
facets that are characterized in Theorem 9 of [1]. An
important consideration is that the lifting coe4cients
do not depend upon the ordering of the indices in
N − S and, in any case, the indices belong to the
subset E(S)− S. Additionally, this subset can be split
into the sets, say, I and J , such that the coe4cients
whose indices belong to the set I can also be obtained
according to the Balas–Zemel expression. On the other
hand, explicit expressions are given for the coe4cients
whose indices belong to the sets J ∩ C and J − C,
where C is a maximal clique implied by the knapsack
constraint.
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