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pointingly small size. In Chapter 15, in fact, we shall introduce the notion of
NP-completeness in order to characterize those problems which, like ILP,
appear to be intrinsically difficult exactly because of their generality.

13.2
Total Unimodularity

Recall that in the max-flow and weighted bipartite matching problems, for exam-
ple, solutions to the linear program without special integer constraints were,
nevertheless, always integer. It is natural to ask what is at the root of our good
fortune in such cases, so that we can take full advantage of such a mecha-
nism. To answer this question, we first need the following definition of a central

concept.

Definition 13.1

A square, integer matrix B is called unimodular (UM) if its determinant
det (B) = +1. An integer matrix A is called totally unimodular (TUM) if
every square, nonsingular submatrix of 4is UM. []

If B is formed from a subset of m linearly independent columns of A4, it
determines the basic solution
B*“ip
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x = B™'b = 375

where B/ is the adjoint of B, and so if B is UM and b is integer (which we
always assume), x is integer. If we define the polytope
R(4) = {x: Ax =b, x =0}

to be the usual feasible set for the standard form LP, we have proved the
following theorem.

................................................................................

Theorem 13.1 If A is TUM, then all the vertices of R,(A) are integer for any
integer vector b.
Thus a standard form LP with TUM matrix will always lead to an integer

optimum when solved by the simplex algorithm.
When an LP is formulated with inequality constraints, the same result

holds. Let the corresponding polytope be
Ry(Ad) = {x: Ax < b, x=0}

Then we have the next theorem.
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Theorem 13.2 If A is TUM, then all the vertices of R,(A) are integer for any
integer vector b.

Proof This amounts to showing that if 4 is TUM, so is (4]7), for then
we can add slz.lck variables and apply Theorem 13.1. Let C be a square, nonsin-
gular submatrix of (4| 7). The rows of C can be permuted so that it can be written

won

w.hcrc? 1, is an identity matrix of size k and B is a square submatrix of 4, possibly
with its rows permuted. Therefore

det (C) = det (B) = +1
because 4 is TUM and C is nonsingular. ]

W.e shall now show that the cases we have observed in previous chapters
“’herf: integer solutions were automatic were in fact cases where the constraint
n‘fatrlx was TUM. The convenient sufficient (but not necessary) condition is
given by Theorem 13.3.

Theorem 13.3  An integer matrix A witha,; = 0, +-1is TUM if no more than two
nonzero entries appear in any column, and if the rows of A can be partitioned into
two sets I, and I, such that:

1. If a column has two entries of the same sign, their rows are in different
sets;

2. If a column has two entries of different signs, their rows are in the same
set.

Proof The proof is by induction on the size of submatrices. For the basis,
we need only observe that any submatrix of one element is TUM. Let C be any
submatrix of size k. If C has a column of all zeros, it is singular. If C has a
column with one nonzero entry, we can expand its determinant along that
column, and the result follows from the induction hypothesis.

The last case occurs when C has two nonzero entries in every column.
Then Conditions 1 and 2 of the theorem imply that
> a; = 1621: a for every j

iclh

That is, a linear combination of rows is zero, and hence det (C) = 0. ]

We then have the desired result.



