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What is the Worst Case Behavior of the Simplex Algorithm?

Norman Zadeh

Abstract. The examples published by Klee and Minty in 1972 do not pre-
clude the existence of a pivot rule which will make the simplex method, at
worst, polynomial. In fact, the continuing success of Dantzig's method sug-
gests that such a rule does exist.

A study of known examples shows that
(a) those which use �selective� pivot rules require exponentially large coe�-

cients, and
(b) none of the examples' pivot rules are typically used in practice, either

because of computational requirements or due to a lack of even-handed
movement through the column set.
In all �bad� problems, certain improving columns are entered ≈ 2m−2

times before other improving columns are entered once. This is done by making
the unused columns �appear� to yield small objective function improvement.

The purpose of this paper is to explain the Klee�Minty and Jeroslow
constructions, show how they can be modi�ed to be pathological with small
integral coe�cients, and then suggest a �least entered� pivot rule which forces
an improving column to be entered before any other column is entered for the
second time. This rule seems immune to the �deformed product construction�
which is the essence of all known exponential counterexamples.

1. Introduction
The simplex method has been solving linear programs with m constraints in

m to 3m pivots for over twenty years. In 1972, Klee and Minty demonstrated
the existence of linear programs with m inequality constraints in m non-negative
variables which require 2m − 1 pivots when any improving column may enter and
when the standard �max cj − zj� rule is followed. Applying their construction for
the standard rule leads to coe�cients in excess of 3m.

In 1973, Jeroslow published a modi�cation of a second Klee and Minty con-
struction. His modi�cation is pathological for the �maximum increase� rule. An
unre�ned application of this construction also yields exponential coe�cients.
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Other examples involving large coe�cients were subsequently published by
Zadeh [16] for minimum cost network �ow problems, Avis�Chvátal [1] for Bland's
rule (�rst positive), Murty [14] and Fathi [6] for complementary pivot algorithms,
and Goldfarb�Sit [7] for a �gradient� selection rule. An example due to Edmonds
for shortest path computations is also known [16].

The above examples may be viewed as �deformed product constructions.� Given
a polytope Pm requiring ≈ 2m pivots with a polynomial number of dimensions, a
new polytope Pm+1 is constructed by deforming a product Pm × V , where V is
some polytope usually of low dimension. In the �rst Klee�Minty construction Pm+1

di�ered from Pm by one dimension and two facets (V has one dimension and two
facets). In the Klee�Minty�Jeroslow construction, Pm+1 di�ered from Pm by two
dimensions and roughly 4k facets, where k is some positive integer. In the network
constructions [16], Pm+1 di�ered from Pm by 2m dimensions and 2m + 4 facets.

We show that any linear program with rational coe�cients may be expressed
with coe�cients 0, 1, −1, and 2. Modi�cations of the Klee�Minty and Jeroslow
constructions are given with integral coe�cients no greater than four. The Klee�
Minty examples are shown to be equivalent to resource allocation problems with
non-negative coe�cients in which all bases have determinants of ±1.

In all �bad� examples, the coe�cients are chosen so that the best columns
price out moderately, and are not entered until other columns have been entered
exponentially many times. Roughly speaking, for a deformed product Pm+1 ≈
Pm × V m, this means that the simplex method performs a 2m step pivot sequence
for Pm before entering any of the new variables associated with V m. The pivot
sequence for Pm is then performed again in the reverse order.

Geometrically, the simplex method stays on a lower Pm face of Pm × V m for
≈ 2m pivots, then moves through the added V m dimensions to an �upper� Pm face
where it spends another 2m pivots �undoing� pivots performed on the lower face.

Entering variables from V m early causes a permanent move away from the
lower face, killing the exponential growth.

The following rule forces movements away from faces irrespective of the level
or rate of improvement. It was considered primarily for theoretical purposes after
a thought provoking conversation with Arthur F. Veinott, Jr.

2. Least Entered Rule
Enter the improving variable which has been entered least often.
The above rule is easy to implement, and when used in conjunction with the

standard or �max increase� rules speeds up both. It is unlikely to cycle (the cycle
must contain all improving columns). It is our hope that the rule will prove to have
a worst case bound proportional to m×n, where m is the number of rows and n is
the number of columns.1 Examples of maximum �ow problems requiring ≈ m× n
pivots using this rule will be given in a forthcoming paper.

Other rules similar to the �least entered� rule which have been suggested [4]
are the Least Recently Considered (LRC) rule of Cunningham and the Least Re-
cently Basic (LRB) rule of E. L. Johnson. Both methods were apparently designed
for shortest path computations in networks but have obvious extensions to general

1This is similar to the old conjecture Ξ(d, n) ≈ (d−1)+1 of Klee [10] which was proven false
by Klee and Minty for the standard rule.
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linear programming which would kill the exponential growth of known counterex-
amples.

Unfortunately, polynomial proofs for the above rules, if they exist, might be
extremely hard, as they would reduce the current best bound for the diameters of
polytopes from 1

3 × 2d−2
(
n − d + 5

2

)
to a polynomials in n and d, where n is the

number of facets and d, the dimension.

3. The Klee�Minty Construction
The �rst Klee�Minty construction creates from an n-dimensional polytope Pn

with 2n faces requiring 2n − 1 pivots when any improving column may enter a
polytope Pn+1 with two more faces requiring 2n+1 − 1 pivots.

The construction is illustrated in Fig. 1. The path of vertices visited in Pn is
denoted p0, p1, . . . , P2n−1. The �rst polytope P 1 has two faces (x1 ≥ 0, x1 ≤ 1)
and requires one pivot. The second polytope P 2 is obtained from P 1 by adding two
additional constraints −x1/3 + x2 ≥ 0 and x1/3 + x2 ≤ 1, involving one additional
variable.

It is convenient to think of the pivot sequence for P 2 in terms of the slack vari-
ables associated with the various faces. The initial point p0 = (0, 0) is determined
by s2, s4 basic, s1, s3 non-basic. The sequence p0, p1, p2, p3 corresponds to entering
s1 then s3, and then s2. The variables s2, s4 and s1 are respectively deleted.

Pivot sequence:
No. 2 S1 S3 S2
No. 3 S1 S3 S2 S5 S1 S4 S2
No. 4 S1 S3 S2 S5 S1 S4 S2 S7 S1 S3 S2 S6 S1 S4 S2

Figure 1. An example of the Klee�Minty construction.
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Table 1. Example of the original Klee�Minty construction (upper
left), a scaling of the slacks to fool the standard rule (upper right),
and the addition of m(m − 1) variables and constraints to yield
integral coe�cients ≤ 4 (below).

Any improving column Standard rule
max x4

x1 − s1 = 0 replace
x1 + s2 = 1 slacks by

−x1/3 + x2 − s3 = 0 −s3/4
x1/3 + x2 + s− 4 = 1 s4/4
−x2/3 + x3 − s5 = 0 −s5/16
x2/3 + x3 + s6 = 1 s6/16
−x3/3 + x4 − s7 = 0 −s7/64
x3/3 + x4 + s8 = 1 s8/64

Small Coe�cients
Replace a quantity like s8/64 by a variable s′8, along with the constraints

4s′8 − s′′8 = 0, 4s′′8 − s′′′8 = 0, 4s′′′′8 − s8 = 0, all variables ≥ 0.

P 3 is obtained from P 2 by adding two more constraints involving one additional
variable. Note in Fig. 1 that the pivot sequence for P 3 is essentially the pivot
sequence for P 2, plus a movement form the lower face, followed by the sequence
for P 2 in the reverse order. We express this phenomenon in general by writing
→
P n+1 =

→
P n, s2n+1,

←
P n. In terms of entering slack variables,

→
P 3 = s1s3s2 s5

s1s4s2.

4. Fooling the Standard Rule
The examples in Fig. 1 take one pivot to solve when the standard max cj − zj

rule is employed. To fool this rule, Klee and Minty scale the variables so that a
much larger change in the entering slack variable is required to achieve the same
objective function change, or equivalently, to move to the same adjacent vertex.

As an illustration, let c̄(si) denote the relative cost factor for si. If ∆fi denotes
the change in the objective when si is entered, then c̄(si) = ∆fi/∆si. At p0 =
(0, 0, 0) in Fig. 1, c̄(s1) = 1

9 , c̄(s2) = 1
3 , and c̄(s5) = 1. The standard rule would

enter s5, moving from (0, 0, 0) to (0, 0, 1), the optimum, in one pivot. However, if s5

were replaced by s5/16, it would take a 16 unit change in s5 to move from (0, 0, 0)
to (0, 0, 1), and c̄(s5) would be 1

16 . A similar replacement of s2 by s2/4 would case
the standard rule to enter s1 and follow the same sequence as before.

The right hand side of Table 1 gives a scaling which will make the standard
rule exponential. Note that the coe�cients grow at a rate of 4m.

5. Examples with Small Integer Coe�cients
The large coe�cients in expression like s8/64, or more generally, s2n/4n−1, may

be eliminated adding n−1 additional variables and constraints. For the case s8/64,
we replace s8 by s′8 with the additional constraints 4s′8 − s′′8 = 0, 4s′′8 − s′′′8 = 0,
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4s′′′8 − s8 = 0, s′8, s′′8 , s′′′8 ≥ 0, as done in Table 1. To construct Pm in this fashion
using coe�cients no greater than 4, m(m−1) constraints and non-negative variables
must be added.

It should be noted that such a �coe�cient reduction� can always be performed,
but the �reduction� is cleanest when the large coe�cients in each column are mul-
tiples of a �xed power of two, for example,




3× 274

−1× 274

2× 274




Theorem 5.1. Let L be a linear program with rational coe�cients whose rep-
resentation requires a polynomial number of digits. Then L may be expressed using
integral coe�cients of 2, 1, −1, and 0 with a polynomial number of variables and
constraints.

Proof. The bi may be made to be 0 or 1 by suitably multiplying each row.
With this change, let dj denote the least common multiple of the divisors of elements
in column j. Then column j may be written as

xj

dj
×




cj

a1j

...
amj


 ,

where dj , cj , a1j , . . . , amj are integers. Let
∑

k d
(k)
j 2k denote the binary representa-

tion of dj and let
qj = max

1=1,...,m
{blog2 djc, blog2 aijc}.

Note that d
(k)
j = 0 or 1 for every k, j. De�ne a new variable xj = xj/dj by adding

new variables x
(k)
j , k = 0, 1, 2, . . . , qj ,

(
x

(k)
j = 2kxj

)
and constraints

(∑
k d

(k)
j x

(k)
j

)−
xj = 0 and −x

(k)
j + 2x

−(k−1)
j = 0, k = 1, . . . , qj . Let

∑
k d

(k)
j 2k be the binary

representation of aij . Now the term xjaij/dj may be expressed as
∑

k a
(k)
ij x

(k)
j . All

coe�cients are 0, ±1, or 2. The above construction requires
∑

j(qj + 1) additional
variables and constraints. ¤

When applying the simplex method to the above problems, care must be taken
to ensure that initial pivots eliminate x̄

(k)
j variables and retain xj . If xj is eliminated

and replaced by x
(`)
j , a rescaling of variables has occurred which will change relative

cost factors and may a�ect the pivot sequence.
The following theorem notes some similarities between the Klee�Minty con-

struction and the �bad� complementary pivot example due to Murty, and explains
how the Avis�Chvátal examples was obtained.

Theorem 5.2. Let Ln denote the nth problem constructed on the left side of
Table 1, with s2i, respectively, s2i−1 replaced by s2i/3i−1, respectively, s2i−1/3i−1.

Then Ln is equivalent to a resource allocation problem with non-negative inte-
gral coe�cients, equal objective coe�cients, and basis matrices whose determinants
are 1 or −1.



WHAT IS THE WORST CASE BEHAVIOR OF THE SIMPLEX ALGORITHM? 5

Proof. Solving the triangular system
x1 − s1 = 0

− x1

3
+ x2 − s3

3
= 0

− x2

3
+ x3 − s5

9
= 0

− x3

3
+ x4 − s7

27
= 0

. . . . . . . . . . . . . . . . . . . . .

for x1, . . . , xn yields
x1 = s1,

x2 =
s1 + s3

3
,

x3 =
s1 + s3 + s5

9
,

x4 =
s1 + s3 + s5 + s7

27
,

. . . . . . . . . . . . . . . . . . . . .

Substituting for xi in the remaining equations produces the equivalent problem

maximize 1
3n−1

(
s1 + s3 + s5 + s7 + · · ·+ s2n−1

)
= 1

subject to s1 + s2 = 1
2s1 + s3 + s4 = 3
2s1 + 2s3 + s5 + s6 = 9
2s1 + 2s3 + 2s5 + s7 + s8 = 27
... . . .
2s1 + 2s3 + 2s5 + 2s7 + · · ·+ s2n−1 + s2n = 3n−1,

si ≥ 0.

The constraint matrix is of the form (L | I) where L is a lower triangular matrix
with ones on the diagonal. This gives the result. ¤

The above problem can yield the same pivot sequence as the nth scaled problem
in Table 1 because all relative cost factors will be 0 or ± 1

3

n−1 at every vertex (there
will be many ties). To insure that the same sequence is followed s2i, respectively,
s2i−1 must be replaced by

s2i

ki−1
, respectively, s2i−1

ki−1
with k > 3,

in which case the constraint matrix would change but would remain lower triangular

maximize 102s1 + 10s3 + s5

subject to s1 + s2 = 102

20s1 + s3 + s4 = 104

200s1 + 20s3 + s5 + s6 = 106,
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Table 2. Relative cost factors associated.

s1 s2 s3 s4 s5 s6

0 1
9 0 1

12 0 1
16 0

1 0 − 1
9 − 1

12 0 1
16 0

2 0 1
9 0 − 1

12
1
16 0

3 − 1
9 0 0 − 1

12
1
16 0

4 1
9 0 0 1

12 0 − 1
16

5 0 − 1
9 0 1

12 0 − 1
16

6 0 1
9 − 1

12 0 0 − 1
16

7 − 1
9 0 − 1

12 0 0 − 1
16

may be obtained from Table 1 by replacing the 3's by 10's and taking k = 102.
The following assertion notes that a bounded pathological example can always

be transformed into one with all aij , bi, and cj ≥ 0.
Assertion 1. Let L be a linear program with a �nite optimal solution. Then

L may be transformed to an equivalent program L′ in which all coe�cients are
positive (non-negative).

Proof. A�x the constraint Σxi + sm+1 = M for su�ciently large M . Then
add suitable multiples of this constraint to each row until all coe�cients are positive.
The objective function will have a constant term involving −M which may be
disregarded. ¤

6. Bland's Rule (�rst improving column)
Table 6 lists the sequence of relative cost factors c̄(si) associated with the

vertices p0, . . . , p7 of P 3. Notice that the variables s2i and s2i−1 are complementary,
i.e., s2i × s2i−1 = 0 ∀i, as are their relative cost factors c̄(s2i)× c̄(s2i−1) = 0 ∀i.

Theorem 6.1. The examples in Table 1 follow the same pivot sequence with
Bland's rule.

Outline of Proof. It su�ces to show that the �rst improving column prices
out best. Let φ denote the objective function. For every n, φ(p0) = 0, φ(p2n−1 = 1,
and the jump in φ between lower and upper case is 1

3 . Let p1
i = (pi, φ(pi)/3) and

p2
i = (p1, 1− φ(pi)/3) for 0 ≤ i ≤ 2n − 1. Then the vertex sequence of Pn+1 is

p1
0, p

1
1, . . . , p

1
2n−1︸ ︷︷ ︸

lower case

, p2
2n−1, . . . , p

2
1, p

2
0︸ ︷︷ ︸

uppers case

For each increase in n, the objective change between successive points on lower
(upper) faces decreases by a factor of three. Because

the vertices for Pn+1 are obtained from the vertices for Pn by adding an extra
dimension (the objective value), the change in the entering slack required to move
from pi to pi+1 on the lower (upper) face remains the same. This implies that
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relative cost factors for old slacks are decreased in absolute value by a factor of
three for each increase in n. The new slack variables (with the highest indices)
are scaled to price out worse than the other variables. This observation and its
predecessor imply that the lowest indexed variables, when pro�table, price out
best. The exact formula, for c̄(s2i) > 0, is c̄(s2i) = 4

3

n(
3
4

)i, which decreases by a
factor of three for each increase in n. ¤

7. The Maximum Increase Rule
This rule enters the column yielding the maximum objective increase. A se-

quence of �bad� polytopes, P1, . . . ,Pn, will be constructed recursively. P1 is shown
at the top of Fig. 2. It has two dimensions, four faces, and requires two pivots
starting from (0, 0) when the objective is maximize x1. The two �lower faces� are
dotted for the purposes of identi�cation.

The second polytope P2, is four dimensional and appears below P1. P2 is a
deformed product of P1 with V 1, the two dimensional polytope shown in the upper
right.

P2 is best appreciated by imagining that one is looking down at the top of a
mountain. The shaded edges of P2 correspond to the upper faces of P1 crossed
with V 1. The dotted edges of P2 correspond to the bottom faces of P1 crossed
with V 1 and are not all shown. P1 corresponds to the two dimensional polytope
determined by (0, 0) and points a and b. Figure 2 is essentially an approximate
projection of P2 onto the V 1 coordinates, which are denoted x3 and x4.

P2 was designed so that, starting at (0, 0), and maximizing the x3 or �x�
coordinate, one �rst performs the pivot sequence for P1; executes several pivots
involving V 1 variables; �reverses� the sequence for P1; and ends at (1, 0).

In terms of entering slack variables, the forward pivot sequence p0 to p8 shown
in Fig. 2 may be expressed as

s1s2 s5s6s7 s3s4 s8→
P V 1

←
P V 1

P2 is a �reversible� polytope, in the sense that eight pivots are also required
if one starts at (1, 0) and minimizes x3. The reverse pivot sequence from (1, 0) to
(0, 0) is shown at the bottom of Fig. 2.

To insure that the pivot sequence for P1 is performed before variables in V 1

are entered, the di�erence in x coordinates between v0 = (0, 0) and v1 =
(

1
9 , 1

9

)
is chosen smaller than the di�erence in x coordinates between (0, 0) and vertex a.
This ensures that pivots involving variables of P1 are formed �rst as long as such
pivots are pro�table.

8. Construction of P3

P3 is constructed as a deformed product of P2 × V 2. V 2 is the same as V 1

except that the slopes of the lines through
(− 1

3 , 0
)
,
(

1
2 , 5

24

)
and

(
1
2 , 5

24

)
,
(

4
3 , 0

)
are

decreased in absolute value by a factor of 4. This e�ectively squashes the top half
of P3 so that the di�erence in x coordinates between v0 and v1 is 1

45
2 Variables of

P2 are now more �pro�table� than variables of V 2, so the whole pivot sequence for
P2 is performed before variables of V 2 are entered.

2v1 is determined by the intersection of lines y = x and y = x/16 + 1/48.
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Figure 2. A modi�cation of the Klee�Minty�Jeroslow construction.

Denoting the relevant slacks of V 2 corresponding to s5, s6, s7, s8, s9, s10, in
V 1 by s11, s12, s13, s14, s15, s16, the forward pivot sequence for P3 in terms of
entering slacks is

s1s2 s5s6s7 s3s4 s8︸ ︷︷ ︸
→
P 2

s11s12s13 s1s2 s10s9s8 s3s4 s7︸ ︷︷ ︸
←
P 2

s14

In general, Pn is constructed as a deformed product of Pn−1 and V n−1, where
V n−1 is the same as V 1 except the lines through

( − 1
3 , 0

)
,

(
1
2 , 5

24

)
and

(
1
2 , 5

24

)
,(

4
3 , 0

)
.

9. Examples with Small Coe�cients
Constraints with small integral coe�cients de�ning P1, P2, and P3 are shown

in Table 3. The system for Pn is generated by taking the system for Pn−1 and
adding the constraints determining V n−1, with x2n−1 replaced by x2n−1−(x2n−3/3)
for facets on the left of the line x2n−1 = 1

2 and x2n−1 replaced by x2n−1 +(x2n−3/3)
for facets on the right of x2n−1 = 1

2 . This yields the deformation, or tilting of the
product. Note that, aside from a translation of subscripts, the set of constraints for
V 2 di�ers from that for V 1 only in the �rst two inequalities, where a variable x′′6
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Table 3. x4, x′4, x6, x′6, x′′6 , x8, x′8, x′′8 , x′′′8 unrestricted.

max
x1

−x1 + x2 ≤ 0
x1 + x2 ≤ 1

−x1 − x2 ≤ 0
x1 − x2 ≤ 1





2 pivots

max
x3

x1 + 3x3 + 3x′4 ≤ 4

x1 − 3x3 + 3x′4 ≤ 1

4x4 − x′4 = 0
x1 − 3x3 + 3x4 ≤ 0
x1 + 3x3 + 3x4 ≤ 3

x1 − 3x3 ≤ 0
x1 + 3x3 ≤ 3

x1 − 3x3 − 3x′4 ≤ 1

x1 + 3x3 − 3x′4 ≤ 4





2× 2 + 4 = 8 pivots

max
x5

x3 + 3x53x′′6 ≤ 4

x3 − 3x5 + 3x′′6 ≤ 1

4x6 − x′6 = 0

4x′6 − x′′6 = 0
x3 − 3x5 + 3x6 ≤ 0
x3 + 3x5 + 3x6 ≤ 3

x3 − 3x5 ≤ 0
x3 + 3x5 ≤ 3

x3 − 3x5 − 3x′6 ≤ 1

x3 + 3x5 − 3x′6 ≤ 4





20 pivots

max
x7

x5 + 3x7 + 3x′′′7 ≤ 4

x5 − 3x7 + 3x′′′7 ≤ 1
. . . . . . . . . . . .

(representing 16x6) has replaced a variable x′4 (representing 4x4). This corresponds
to reducing the slope of the top two facets by a factor of four.

10. Testing the Problems
To run the problems it is recommended that the x variables be eliminated

and replaced by slacks. The starting basis then consists of those slacks which are
positive at the point (0, 0, 0, . . . , 0). For P2 the starting basis would be s3, s4, s7,
s8, s9, s10, and the slacks for the bottom two faces of V 1.
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