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Motivation

» Discounted games

» polytime reductions from parity and mean-payoff games

> simple optimality equations give “transparent” reduction

» P-matrix Linear Complementarity Problem

» well studied problem in mathematical programming

» many algorithms known
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P-matrix Linear Complementarity Problem

» Unique sink orientations (USO) of cubes

combinatorial framework for strategy improvement algorithms

Discounted games

» Optimality equations characterize unique values

Reduction from discounted games to PLCP

» Connections between algorithms

Further research



Linear Complementarity Problem (LCP)

Given: g € R", M € R™" Find: z, w € R" so that

z>0 L w=q+Mz>0

L. means orthogonal:

zZTw =0
2= ziwi=0 ali=1,...,n



Linear Complementarity Problem (LCP)

Given: g € R", M € R™" Find: z, w € R" so that

z>0 L w=q+Mz>0

L. means orthogonal:

zZTw =0
2= ziwi=0 ali=1,...,n

If g > 0, the LCP has trivial solutionw = q,z = 0.



LP in inequality form

primal :  max c'x
subject to Ax<b
x>0
dual: min y'b
subject to yTA>cT
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LP in inequality form

primal :  max c'x
subject to Ax<b
x>0
dual: min y'b
subject to yTA>cT
y>0

Weak duality: x, y feasible (fulfilling constraints)

= c'x<yTAx<y'b

Strong duality: primal and dual feasible

= dfeasible x,y: ¢’x=y'b (x,y optimal)



LCP generalizes LP

LCP encodes complementary slackness of strong duality:

c’x = yTAx =yTb
o (yTA-cHx=0, yT(b - Ax) =0.

20 20 >0 >0



LCP generalizes LP

LCP encodes complementary slackness of strong duality:

c’x = yTAx =yTb
o (yTA-cNx =0, yT(b - Ax) =0.
>0 >0 >0 >0
LP & LCP
X -c 0 AT\ [ x
G)ze = (B)(267)(5)=0
N—— N’ N e, e’
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LCPs and complementary cones
Given: g €e R", M € R™" Find: z € R" so that

z>20Lw=q+Mz>0

© z20Lw>0 (g=Iw-Mz

& q belongs to a complementary cone:

q € C(a) = cone {(—Mj, ej| i€ w,j¢ o}

forsomea €{1,...,n}, M= [MM;---Mg]

a={i|z,~>0}
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P-matrices

Def: M € R™" is a P-matrix if all its principal minors are positive.
Thm: M is a P-matrix & LCP (M, q) has unique solution Vq € R".



P-matrices

Def: M € R™" is a P-matrix if all its principal minors are positive.
Thm: M is a P-matrix & LCP (M, q) has unique solution Vq € R".

-(13) w-(32)

M is a P-matrix, as

Example

1
3

det(M;1) =2>0
det(Mx) =3 >0
det(M) =5>0

M’ is not a P-matrix, as det(M’) = -5 < 0



Complementary cones: P-matrix

(3 1)
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Multiple solutions




Unique sink orientations of cubes

[Szab6 and Welzl (2001)] [Stickney and Watson (1978)]

» n-dimensional hypercube
» edges oriented such that every face has a unique sink

The two USOs for n = 2:



USO for P-matrix LCP

LCP:z>0 L w>0, ’q:lw—Mz‘

For every « C {1, ..., n}, define B* € R™" by

—M;, i€ean
B%); =
(B%)i {e,-, i¢ o

Orient edges at vertex « oriented according to

sign ((B*)"'q)



PLCP USO example

—1/5( _31 '21 )z’+lw’=q’=($;g )zo

a=1{1,2}

o ={1) @=1{2

0
2 1 -1
Iw—Mz:lw—(1 3)z:q:(_1)



Cyclic USO

Cyclic USOs can arise from P-matrix LCPs.



Murty’s Least Index Method

Input: LCP(M, q) with P-matrix M.

Output: solution (w*, z*)

Startwith o := 0, q := q.
while g # 0 do:

> Let s = ming,. nfi | q; <0},
» Setar « a@®sand g « (B*) q.

Why does it work?

when qy,...,qn_4 2 0, we determine w; =0orz = 0.



Binary zero-sum discounted games

» Finite directed graph on states S = {1,..., n}
> Pal”[ltlon S = SMax U SMin



Binary zero-sum discounted games

» Finite directed graph on states S = {1,..., n}
> Pal”[ltlon S = SMax U SMin
» Every state has a left successor A(s) and right successor p(s)
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Binary zero-sum discounted games

Finite directed graph on states S = {1, ..., n}

Partition S = Spyax U Swin

Every state has a left successor A(s) and right successor p(s)
Every state hasareward-r: S+ Z
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Binary zero-sum discounted games

Finite directed graph on states S = {1, ..., n}

Partition S = Spax U Swin

Every state has a left successor A(s) and right successor p(s)
Every state hasareward-r: S+ Z

Discount factor 6 € (0,1) (same for both players)
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Binary zero-sum discounted games

Finite directed graph on states S = {1, ..., n}

Partition S = Spax U Swin

Every state has a left successor A(s) and right successor p(s)
Every state hasareward-r: S+ Z

Discount factor 6 € (0,1) (same for both players)

20 | <------ -20




Player objectives

» A play is an infinite path © = sg, s1, S3, . ..
> initial state sg
» owner of s; chooses sj;1 € { A(Si), p(si) }



Player objectives

» A play is an infinite path © = sg, s1, S3, . ..
> initial state sg
» owner of s; chooses sj;1 € { A(Si), p(si) }

» Max maximizes and Min minimizes

i 5'r(si)
i=0



Optimality equations

» Every state has a value v(s) characterized by:

: = ov(t
Vs € Suyax v(s) temr(ll?’:)((s)}(r(s) + ov(t))

in ° = i ov(t
Vs € Syin v(s) te{/\r(r;;’r:)(s)}(r(s)+ v(t))
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» Every state has a value v(s) characterized by:

: = ov(t
Vs € Suyax v(s) temr(ll?’:)((s)}(r(s) + ov(t))

in ° = i ov(t
Vs € Syin v(s) te{/\r(r;;g(g)}(r(s)+ v(t))

» Proofs:
» Banach fixed point theorem for contraction mappings
» Strategy improvement algorithm (constructive)



Optimality equations

» Every state has a value v(s) characterized by:

: = ov(t
Vs € Suyax v(s) temr(ll?’:)((s)}(r(s) + ov(t))

in ° = i ov(t
Vs € Syin v(s) te{/\r(r;;’r:)(s)}(r(s)+ v(t))

» Proofs:
» Banach fixed point theorem for contraction mappings
» Strategy improvement algorithm (constructive)

» Values give pure and positional optimal strategies:
Max (Min) picks succesor with largest (smallest) value.



Unique values for 6 = 1/2

32 -4

1 2
20 | *-— [ -20

H\H

-12

v(1) =32 =r(1) + 6 max(v(3),v(4)) = 20+1/2(24)



Unique values for 6 = 1/2

32 -4

1 2
20 | *-— | -20

H\H

-12

v(1) =32 =r(1) + 6 max(v(3),v(4)) = 20+1/2(24)
v(2) =-4 =r(2) + omax(v(1),v(4)) = -20+1/2(32)
v(3) =24 =r(3) + 6 min(v(1), v(4)) = 30+1/2(-12)

v(4) =-12 =r(4) + o6min(v(2),v(3)) = -10+1/2(-4)



Nonnegative slacks and complementarity
v(2) = r(2) + 6 max(v(1), v(4))

32 -4
1 2
20 | -— | -20

w(2)
l z(2)

4

-12

v(2)
v(2)

w(2)+ r(2) + ov(1)
z(2)+ r(2) + ov(4)

w(2),z(2) 20, w(2)-z(2)=0



Reduction to LCP

A4 : =
S € Syax v(s) e {i?sa;?(p(s)}(r(s) + ov(t))

Replace max/min with slacks and complementarity condition



Reduction to LCP

Vs € Syax : v(S) = ‘e {)l\?sa)n’xp(s)}(r(s) + ov(t))

Replace max/min with slacks and complementarity condition

Vs € Spax = v(S) = w(S) + r(s) + ov(A(S))

v(s) = 2(s) + r(s) + 6v(p(s))

VseS: w(s)>0.L z(s)>0



Reduction to LCP

Vs € Syax : v(S) = ‘e {)'\1(13,)(p(s)}(r(s) + ov(t))

v Swin : = i
S € Spin v(s) te{/‘r(nsl)l?p(s)}(r(s)+6v(t))

Replace max/min with slacks and complementarity condition

Vs € Syax = v(S) = w(S) + r(s) + ov(A(S))
v(s) = z(s) + r(s) + 6v(p(s))
Vs € Smin = v(s) = —w(s) + r(s) + dv(A(s))
v(s) = —z(s) + r(s) + 6v(p(s))
VseS: w(s)>0.L z(s)>0



Example

r(1)
r(2)
-r(3)
-r(4)

r(1)
r(2)
-r(3)
-r(4)

VseS:

w(v) 20 L z(v) >0
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v(1)
v(2)
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v(4)
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v(4)
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Eliminate v

A(l-6L)v =w + Ar
A(l-6R)v =z + Ar

Eliminating v we get

w+ Ar = A(I - 5L)(A(I - 6R))™'(z + Ar)

’wZOLzZM

M= A(l-6L)(I-6R)'A, q=(M-DAr



Example

M= A(l-6L)(I-6R)'A, q=(M-DAr

10 -5 0 10 0 -6
-5 1 0 0 01 0 -5
A("‘SL)=[ 0 0 -1 6] A("‘Sn)=[5 0 -1 o]
00 5 -1 06 0 —



Theorem [Levy-Desplanques]
If A € R™" js strictly diagonally dominant, i.e., |ajil > ¥.jxilaj| for all i,
then A is non-singular.




Theorem [Levy-Desplanques]

If A € R™" js strictly diagonally dominant, i.e., |ajil > ¥.jxilaj| for all i,
then A is non-singular.

» A(I - 06L) and A(I — 6R) are strictly diagonally dominant. E.g.

10 -5 0 10 0 -5
-5 1 0 0 01 0 -
A(l-oL)=] g 0 -1 s | AU-0R)=[4 o 1 o
00 & -1 06 0 -1

» SoM = A(I-56L)(I - 6R)~ A is well defined



Theorem [Johnson and Tsatsomeros (1995)]

Let M = BC~', where B, C € R™". Then, M is a P-matrix if
TC + (I - T)B is invertible for all T € [0, I].




Theorem [Johnson and Tsatsomeros (1995)]

Let M = BC~', where B, C € R™". Then, M is a P-matrix if
TC + (I - T)B is invertible for all T € [0, I].

w>0Llz>0]

M= A(I-6L)(I-6R)'A, q=(M-DAr

’ B = A(I-06L) and C = A(l - 6R) are strictly diagonally dominant. ‘

| Thus, TC + (I - T)Bis s.d.d., and hence invertible, for all T € [0, 1]. |

'Thus, M = BC~" is a P-matrix.




Discounted game PLCP: What is g?
Considering just the right successors p(s) we have

VP =r+6vP(p(s))
(I-8R)VF =r
vl = (1-6R)'r

and rewriting q in terms of vP

q=(M-DNAr
=Ad6(R - L)vP

_ [ +61v(p(8)) = vP(A())], s € Swax
* 7 |- 8lve(p(s)) = vP(A(S))], S € Swin




Strategy improvement algorithm

Definition
State s € Syax is switchable under strategy pair defined by p if

vP(A(s)) > vP(p(s))

Algorithm [Strategy Improvement for Max]
Start with p defined by arbitrary strategy Max and Min’s best response.

loop:
Obtain p’ from p by changing at all switchable s € Syax under vF.

Obtain p” from p’ so Min plays best response.

if p’” # p’ repeat withp « p”’.




Why does strategy improvement work?

Theorem [Global improvement from myopic improvement]

Letp and p’ be the strategy pairs before and after some iteration.
Then we have

Vs e S: v (s) > vP(s),

and

Is € S: v (s) > vP(s).

Finite number of pure positional strategies so algorithm terminates.
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» Recall v = r + 0RVP.
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Global improvement

» Want: A = vP'(s) — vP(s) > 0 for all s and A > 0 for some s
» Recall vP = r 4+ 6RVP.
A =6(R’VP' - Rvp)
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Global improvement

» Want: A = vP'(s) — vP(s) > 0 for all s and A > 0 for some s
» Recall vP = r 4+ 6RVP.
A =6(R’VP' - RvP)
=6(R'v#" - R'vP + R’V — RvP)
=6( R'vF — R'VP + R’V — RVP)

R'A d

A =(I-6R)'d
» (I-6R’)~1 > 0 and diag(l - 6R’)~' > 0.

» Wewantd = R’vP — RvP > 0 for all s and > 0 for some s.
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» Wewantd = R’vP — RvP > 0 for all s and > 0 for some s.
»
ds =[R’Vp]s - [RVP]S
=vP(p'(s)) - v*(p(s))



» Wewantd = R’vP — RvP > 0 for all s and > 0 for some s.

>

ds =[R’vFP]s — [RVP]s
=v*(p'(s)) - v (p(s))

» If p’(8) = p(s) then ds = 0, so assume not. Then
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We want d = R’vP — RvP > 0 for all s and > 0 for some s.

ds =[R’vFP]s — [RVP]s
=v*(p'(s)) - v (p(s))

If p’(s) = p(s) then ds = 0, so assume not. Then

If s € Syax, because s was switched:

vP(p'(s)) > vP(p(s))
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We want d = R’vP — RvP > 0 for all s and > 0 for some s.

ds =[R’vFP]s — [RVP]s
=v*(p'(s)) - v (p(s))

If p’(s) = p(s) then ds = 0, so assume not. Then

If s € Syax, because s was switched:
vP(p'(s)) > vP(p(s))
If s € Smin, because Min was playing a best response:

vP(p(s)) < vP(p'(s))



Inherited USO
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Strategy Improvement = Bottom-Antipodal
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Strategy Improvement = Bottom-Antipodal



Interpretation of Murty’s least index method

Algorithm

Fix a permutation of states. Switch the switchable state with smallest
index and repeat.

LT OO

Max’s states come first - variant of strategy improvement.

OTITTO)

This is a new algorithm.
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» | Polynomial-time algorithms! ‘

» Exponential examples for (all-switching) strategy improvement
» What strategy improvement (inherited) USOs arise from games?
» Different from strategy improvement USOs for 1-player games?

» Can we identify nontrivial classes of games giving nice M’s, e.g.,

» hidden-K matrices (LCP solvable as an LP)
> “well-conditioned”: polynomial PLCP interior point methods
[Kojima, Megiddo, Ye (1988)]
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Further research

Polynomial-time algorithms! ‘

Exponential examples for (all-switching) strategy improvement
» What strategy improvement (inherited) USOs arise from games?
» Different from strategy improvement USOs for 1-player games?
Can we identify nontrivial classes of games giving nice M’s, e.g.,

» hidden-K matrices (LCP solvable as an LP)
> “well-conditioned”: polynomial PLCP interior point methods
[Kojima, Megiddo, Ye (1988)]

Study other LCP and USO algorithms applied to games, e.g.,
Lemke’s algorithm, Cottle-Dantzig principal pivoting



