A Simple P-matrix Linear Complementarity Problem for Discounted Games

Marcin Jurdziński Rahul Savani

Department of Computer Science University of Warwick

Motivation

Discounted games

- polytime reductions from parity and mean-payoff games
- simple optimality equations give "transparent" reduction

► P-matrix Linear Complementarity Problem

- well studied problem in mathematical programming
- many algorithms known

Outline

- ► P-matrix Linear Complementarity Problem
 - Unique sink orientations (USO) of cubes
 combinatorial framework for strategy improvement algorithms
- Discounted games
 - Optimality equations characterize unique values
- Reduction from discounted games to PLCP
 - Connections between algorithms
- Further research

Linear Complementarity Problem (LCP)

Given: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$ Find: $z, w \in \mathbb{R}^n$ so that

$$z \ge 0$$
 \perp $w = q + Mz \ge 0$

$$\mathbf{z}^{\mathsf{T}}\mathbf{w} = 0$$

 $\Leftrightarrow \mathbf{z}_{i}\mathbf{w}_{i} = 0 \text{ all } i = 1, ..., n$

Linear Complementarity Problem (LCP)

Given: $\mathbf{q} \in \mathbb{R}^n$, $\mathbf{M} \in \mathbb{R}^{n \times n}$ Find: \mathbf{z} , $\mathbf{w} \in \mathbb{R}^n$ so that

$$z \ge 0$$
 \perp $w = q + Mz \ge 0$

$$\mathbf{z}^{\mathsf{T}}\mathbf{w} = 0$$

 $\Leftrightarrow \mathbf{z}_{i}\mathbf{w}_{i} = 0 \text{ all } i = 1, ..., n$

If $q \ge 0$, the LCP has trivial solution w = q, z = 0.

LP in inequality form

primal: max

subject to

 $c^T x$

 $Ax \leq b$

 $x \ge 0$

dual: min

subject to

y'b

 $y \ge 0$

 $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$

LP in inequality form

primal:
$$\max$$
 $c^T x$ subject to $Ax \le b$

dual: min
$$y'b$$

subject to $y^TA \ge c^T$
 $y \ge 0$

Weak duality: **x**, **y** feasible (fulfilling constraints)

$$\Rightarrow c^T x \leq y^T A x \leq y^T b$$

LP in inequality form

primal: max
$$c^T x$$
 subject to $Ax \le b$ $x \ge 0$

dual: min
$$y^T b$$

subject to $y^T A \ge c^T$
 $y \ge 0$

Weak duality: **x**, **y** feasible (fulfilling constraints)

$$\Rightarrow$$
 $c^T x \leq y^T A x \leq y^T b$

Strong duality: primal and dual feasible

$$\Rightarrow \exists$$
 feasible $x, y : c^T x = y^T b (x, y \text{ optimal})$

LCP generalizes LP

LCP encodes **complementary slackness** of strong duality:

$$c^{T}x = y^{T}Ax = y^{T}b$$

$$\Leftrightarrow (y^{T}A - c^{T})x = 0, \quad y^{T}(b - Ax) = 0.$$

$$\geq 0 \geq 0 \qquad \geq 0 \geq 0$$

LCP generalizes LP

LCP encodes **complementary slackness** of strong duality:

$$c^{T}x = y^{T}Ax = y^{T}b$$

$$\Leftrightarrow (y^{T}A - c^{T})x = 0, \quad y^{T}(b - Ax) = 0.$$

$$\geq 0 \geq 0 \geq 0 \geq 0$$

LP ⇔ LCP

$$\underbrace{\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}}_{\mathbf{z}} \ge 0 \quad \mathbf{\perp} \quad \underbrace{\begin{pmatrix} -\mathbf{c} \\ \mathbf{b} \end{pmatrix}}_{\mathbf{q}} + \underbrace{\begin{pmatrix} \mathbf{0} & \mathbf{A}^{\mathsf{T}} \\ -\mathbf{A} & \mathbf{0} \end{pmatrix}}_{\mathbf{M}} \underbrace{\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}}_{\mathbf{z}} \ge \mathbf{0}$$

Given: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$ Find: $z \in \mathbb{R}^n$ so that

$$z \ge 0 \perp w = q + Mz \ge 0$$

Given: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$ Find: $z \in \mathbb{R}^n$ so that

$$z \ge 0 \perp w = q + Mz \ge 0$$

$$\Leftrightarrow z \ge 0 \perp w \ge 0 \quad |q = Iw - Mz|$$

Given: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$ Find: $\mathbf{z} \in \mathbb{R}^n$ so that

$$z \ge 0 \perp w = q + Mz \ge 0$$

$$\Leftrightarrow z \ge 0 \perp w \ge 0 \quad |q = Iw - Mz|$$

⇔ **q** belongs to a **complementary cone**:

$$\mathbf{q} \in \mathbf{C}(\alpha) = \mathbf{cone} \{ -\mathbf{M}_i, \mathbf{e}_j \mid i \in \alpha, j \notin \alpha \}$$

for some
$$\alpha \subseteq \{1, ..., n\}$$
, $M = [M_1 M_2 \cdots M_n]$
 $\alpha = \{i \mid z_i > 0\}$

$$\mathbf{M} = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$$

$$\mathbf{e}_{2}$$

$$\mathbf{e}_{3}$$

$$\mathbf{e}_{4}$$

$$\mathbf{e}_{5}$$

$$\mathbf{e}_{7}$$

P-matrices

Def: $M \in \mathbb{R}^{n \times n}$ is a **P-matrix** if **all** its **principal minors** are **positive**.

Thm: M is a P-matrix \Leftrightarrow LCP (M, q) has unique solution $\forall q \in \mathbb{R}^n$.

P-matrices

Def: $M \in \mathbb{R}^{n \times n}$ is a **P-matrix** if **all** its **principal minors** are **positive**.

Thm: M is a P-matrix \Leftrightarrow LCP (M, q) has unique solution $\forall q \in \mathbb{R}^n$.

Example

$$\mathbf{M} = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \qquad \mathbf{M'} = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$$

M is a P-matrix, as

$$det(M_{11}) = 2 > 0$$

$$det(M_{22}) = 3 > 0$$

$$det(M) = 5 > 0$$

M' is not a P-matrix, as det(M') = -5 < 0

Complementary cones: P-matrix

Multiple solutions

Unique sink orientations of cubes

[Szabó and Welzl (2001)] [Stickney and Watson (1978)]

=

- ▶ *n*-dimensional hypercube
- edges oriented such that every face has a unique sink

The two USOs for n = 2:

USO for P-matrix LCP

$$LCP: \mathbf{z} \geq \mathbf{0} \perp \mathbf{w} \geq \mathbf{0}, \quad \mathbf{q} = \mathbf{I}\mathbf{w} - \mathbf{M}\mathbf{z}$$

For every $\alpha \subseteq \{1, ..., n\}$, define $\mathbf{B}^{\alpha} \in \mathbb{R}^{n \times n}$ by

$$(\mathbf{B}^{\alpha})_{i} = \begin{cases} -\mathbf{M}_{i}, & i \in \alpha \\ \mathbf{e}_{i}, & i \notin \alpha \end{cases}$$

Orient edges at vertex α oriented according to

sign
$$((B^{\alpha})^{-1}q)$$

PLCP USO example

$$-1/5 \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} z' + Iw' = q' = \begin{pmatrix} 2/5 \\ 1/5 \end{pmatrix} \ge 0$$

$$\alpha = \{1, 2\}$$

$$\alpha = \{1\}$$

$$\alpha = \emptyset$$

$$Iw - Mz = Iw - \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} z = q = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

Cyclic USO

Cyclic USOs can arise from P-matrix LCPs.

Murty's Least Index Method

Input: LCP(M, q) with P-matrix M.

Output: solution (w*, z*)

Start with $\alpha := \emptyset$, $\bar{q} := q$.

while $\bar{q} \not\geq 0$ do:

- ▶ Let $s = \min_{\{1,...,n\}} \{i \mid \bar{q}_i < 0\},$
- ▶ Set $\alpha \leftarrow \alpha \oplus \mathbf{s}$ and $\bar{\mathbf{q}} \leftarrow (\mathbf{B}^{\alpha})^{-1}\mathbf{q}$.

Why does it work?

when $\bar{q}_1, \dots, \bar{q}_{n-1} \ge 0$, we determine $w_n^* = 0$ or $z_n^* = 0$.

- ▶ Finite directed graph on states $S = \{1, ..., n\}$
- ▶ Partition $S = S_{Max} \cup S_{Min}$

- Finite directed graph on states $S = \{1, ..., n\}$
- ▶ Partition $S = S_{Max} \cup S_{Min}$
- ▶ Every state has a left successor $\lambda(s)$ and right successor $\rho(s)$

- Finite directed graph on states $S = \{1, ..., n\}$
- ▶ Partition $S = S_{Max} \cup S_{Min}$
- Every state has a left successor $\lambda(s)$ and right successor $\rho(s)$
- Every state has a reward r : S → Z

- ► Finite directed graph on states **S** = {1, ..., **n**}
- ▶ Partition $S = S_{Max} \cup S_{Min}$
- Every state has a left successor $\lambda(s)$ and right successor $\rho(s)$
- ▶ Every state has a reward $r : S \mapsto \mathbb{Z}$
- ▶ Discount factor $\delta \in (0,1)$ (same for both players)

- Finite directed graph on states $S = \{1, ..., n\}$
- ▶ Partition $S = S_{Max} \cup S_{Min}$
- Every state has a left successor $\lambda(s)$ and right successor $\rho(s)$
- ▶ Every state has a reward $r : S \mapsto \mathbb{Z}$
- ▶ Discount factor $\delta \in (0,1)$ (same for both players)

Player objectives

- ▶ A play is an infinite path $\pi = s_0, s_1, s_3,...$
 - ► initial state s₀
 - owner of s_i chooses $s_{i+1} \in \{ \lambda(s_i), \rho(s_i) \}$

Player objectives

- ▶ A play is an infinite path $\pi = s_0, s_1, s_3,...$
 - ► initial state s₀
 - owner of s_i chooses $s_{i+1} \in \{ \lambda(s_i), \rho(s_i) \}$
- Max maximizes and Min minimizes

$$\sum_{i=0}^{\infty} \delta^{i} \mathbf{r}(\mathbf{s}_{i})$$

Optimality equations

Every state has a value v(s) characterized by:

$$\forall s \in S_{\text{Max}}: \quad v(s) = \max_{t \in \{\lambda(s), \rho(s)\}} (r(s) + \delta v(t))$$

$$\forall s \in S_{\text{Min}}: \quad v(s) = \min_{t \in \{\lambda(s), \rho(s)\}} (r(s) + \delta v(t))$$

Optimality equations

Every state has a value v(s) characterized by:

$$\forall s \in S_{\text{Max}}: \quad v(s) = \max_{t \in \{\lambda(s), \rho(s)\}} (r(s) + \delta v(t))$$

$$\forall s \in S_{\text{Min}}: \quad v(s) = \min_{t \in \{\lambda(s), \rho(s)\}} (r(s) + \delta v(t))$$

- Proofs:
 - Banach fixed point theorem for contraction mappings
 - Strategy improvement algorithm (constructive)

Optimality equations

Every state has a value v(s) characterized by:

$$\forall s \in S_{\text{Max}}: \quad v(s) = \max_{t \in \{\lambda(s), \rho(s)\}} (r(s) + \delta v(t))$$

$$\forall s \in S_{\text{Min}}: \quad v(s) = \min_{t \in \{\lambda(s), \rho(s)\}} (r(s) + \delta v(t))$$

- Proofs:
 - Banach fixed point theorem for contraction mappings
 - Strategy improvement algorithm (constructive)
- Values give pure and positional optimal strategies:
 Max (Min) picks succesor with largest (smallest) value.

Unique values for $\delta = 1/2$

$$v(1) = 32$$
 = $r(1) + \delta \max(v(3), v(4)) = 20 + 1/2(24)$

Unique values for $\delta = 1/2$

$$\begin{array}{lll} \mathbf{v}(1) = \mathbf{32} & = \mathbf{r}(1) + \delta \max(\mathbf{v}(3), \mathbf{v}(4)) = & 20 + 1/2(24) \\ \mathbf{v}(2) = -4 & = \mathbf{r}(2) + \delta \max(\mathbf{v}(1), \mathbf{v}(4)) = & -20 + 1/2(32) \\ \mathbf{v}(3) = \mathbf{24} & = \mathbf{r}(3) + \delta \min(\mathbf{v}(1), \mathbf{v}(4)) = & 30 + 1/2(-12) \\ \mathbf{v}(4) = -12 & = \mathbf{r}(4) + \delta \min(\mathbf{v}(2), \mathbf{v}(3)) = & -10 + 1/2(-4) \end{array}$$

Nonnegative slacks and complementarity

$$w(2), z(2) \geq 0, \quad w(2) \cdot z(2) = 0$$

Reduction to LCP

$$\forall s \in S_{\text{Max}}: \quad v(s) = \max_{t \in \{\lambda(s), \, \rho(s)\}} (r(s) + \delta v(t))$$

Replace max/min with slacks and complementarity condition

Reduction to LCP

$$\forall s \in S_{\text{Max}}: \quad v(s) = \max_{t \in \{\lambda(s), \, \rho(s)\}} (r(s) + \delta v(t))$$

Replace max/min with slacks and complementarity condition

$$\forall s \in S_{Max}: \quad v(s) = w(s) + r(s) + \delta v(\lambda(s))$$
$$v(s) = z(s) + r(s) + \delta v(\rho(s))$$

$$\forall s \in S: w(s) \geq 0 \perp z(s) \geq 0$$

Reduction to LCP

$$\forall s \in S_{\text{Max}}: \quad v(s) = \max_{t \in \{\lambda(s), \, \rho(s)\}} (r(s) + \delta v(t))$$

$$\forall s \in S_{Min}: \quad v(s) = \min_{t \in \{\lambda(s), \rho(s)\}} (r(s) + \delta v(t))$$

Replace max/min with slacks and complementarity condition

$$\forall s \in S_{\text{Max}}: \quad v(s) = w(s) + r(s) + \delta v(\lambda(s))$$

$$v(s) = z(s) + r(s) + \delta v(\rho(s))$$

$$\forall s \in S_{\text{Min}}: \quad v(s) = -w(s) + r(s) + \delta v(\lambda(s))$$

$$v(s) = -z(s) + r(s) + \delta v(\rho(s))$$

$$\forall s \in S: \quad w(s) \ge 0 \perp z(s) \ge 0$$

Example

$$\forall s \in S:$$
 $w(v) \ge 0 \perp z(v) \ge 0$

$$\begin{pmatrix} v(1) \\ v(2) \\ -v(3) \\ -v(4) \end{pmatrix} = \begin{pmatrix} w(1) \\ w(2) \\ w(3) \\ w(4) \end{pmatrix} + \begin{pmatrix} r(1) \\ r(2) \\ -r(3) \\ -r(4) \end{pmatrix} + \delta \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} v(1) \\ v(2) \\ v(3) \\ v(4) \end{pmatrix}$$

$$\begin{pmatrix} v(1) \\ v(2) \\ -v(3) \\ -v(4) \end{pmatrix} = \begin{pmatrix} z(1) \\ z(2) \\ z(3) \\ z(4) \end{pmatrix} + \begin{pmatrix} r(1) \\ r(2) \\ -r(3) \\ -r(4) \end{pmatrix} + \delta \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} v(1) \\ v(2) \\ v(3) \\ v(4) \end{pmatrix}$$

Example

Eliminate v

$$A(I - \delta L)v = w + Ar$$
$$A(I - \delta R)v = z + Ar$$

Eliminating v we get

$$w + Ar = A(I - \delta L)(A(I - \delta R))^{-1}(z + Ar)$$

$$w = Mz + q$$

$$w \ge 0 \perp z \ge 0$$

$$\mathbf{M} = \mathbf{A}(\mathbf{I} - \delta \mathbf{L})(\mathbf{I} - \delta \mathbf{R})^{-1}\mathbf{A}, \quad \mathbf{q} = (\mathbf{M} - \mathbf{I})\mathbf{A}\mathbf{r}$$

Example

$$w = Mz + q$$

$$w \ge 0 \perp z \ge 0$$

$$\mathbf{M} = \mathbf{A}(\mathbf{I} - \delta \mathbf{L})(\mathbf{I} - \delta \mathbf{R})^{-1}\mathbf{A}, \quad \mathbf{q} = (\mathbf{M} - \mathbf{I})\mathbf{A}\mathbf{r}$$

$$A(I - \delta L) = \begin{pmatrix} 1 & 0 & -\delta & 0 \\ -\delta & 1 & 0 & 0 \\ 0 & 0 & -1 & \delta \\ 0 & 0 & \delta & -1 \end{pmatrix} \quad A(I - \delta R) = \begin{pmatrix} 1 & 0 & 0 & -\delta \\ 0 & 1 & 0 & -\delta \\ \delta & 0 & -1 & 0 \\ 0 & \delta & 0 & -1 \end{pmatrix}$$

Theorem [Levy-Desplanques]

If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, i.e., $|\mathbf{a}_{ii}| > \sum_{j \neq i} |\mathbf{a}_{ij}|$ for all i, then \mathbf{A} is non-singular.

Theorem [Levy-Desplanques]

If $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, i.e., $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for all i, then A is non-singular.

▶ $A(I - \delta L)$ and $A(I - \delta R)$ are strictly diagonally dominant. E.g.

$$A(I - \delta L) = \begin{pmatrix} 1 & 0 & -\delta & 0 \\ -\delta & 1 & 0 & 0 \\ 0 & 0 & -1 & \delta \\ 0 & 0 & \delta & -1 \end{pmatrix} \quad A(I - \delta R) = \begin{pmatrix} 1 & 0 & 0 & -\delta \\ 0 & 1 & 0 & -\delta \\ \delta & 0 & -1 & 0 \\ 0 & \delta & 0 & -1 \end{pmatrix}$$

So $M = A(I - \delta L)(I - \delta R)^{-1}A$ is well defined

Theorem [Johnson and Tsatsomeros (1995)]

Let $M = BC^{-1}$, where $B, C \in \mathbb{R}^{n \times n}$. Then, M is a P-matrix if TC + (I - T)B is invertible for all $T \in [0, I]$.

Theorem [Johnson and Tsatsomeros (1995)]

Let $M = BC^{-1}$, where $B, C \in \mathbb{R}^{n \times n}$. Then, M is a P-matrix if TC + (I - T)B is invertible for all $T \in [0, I]$.

$$w = Mz + q$$

$$w \ge 0 \perp z \ge 0$$

$$\mathbf{M} = \mathbf{A}(\mathbf{I} - \delta \mathbf{L})(\mathbf{I} - \delta \mathbf{R})^{-1}\mathbf{A}, \quad \mathbf{q} = (\mathbf{M} - \mathbf{I})\mathbf{A}\mathbf{r}$$

$$\mathbf{B} = \mathbf{A}(\mathbf{I} - \delta \mathbf{L})$$
 and $\mathbf{C} = \mathbf{A}(\mathbf{I} - \delta \mathbf{R})$ are strictly diagonally dominant.

Thus, TC + (I - T)B is s.d.d., and hence invertible, for all $T \in [0, I]$.

Thus, $M = BC^{-1}$ is a P-matrix.

Discounted game PLCP: What is q?

Considering just the right successors $\rho(s)$ we have

$$v^{\rho} = r + \delta v^{\rho}(\rho(s))$$
$$(I - \delta R)v^{\rho} = r$$
$$v^{\rho} = (I - \delta R)^{-1}r$$

and rewriting q in terms of v^{ρ}

$$\mathbf{q} = (\mathbf{M} - \mathbf{I})\mathbf{A}\mathbf{r}$$
$$= \mathbf{A}\delta(\mathbf{R} - \mathbf{L})\mathbf{v}^{\rho}$$

$$\mathbf{q_s} = \begin{cases} +\delta[\mathbf{v}^{\rho}(\rho(\mathbf{s})) - \mathbf{v}^{\rho}(\lambda(\mathbf{s}))], & \mathbf{s} \in \mathbf{S}_{\mathsf{Max}} \\ -\delta[\mathbf{v}^{\rho}(\rho(\mathbf{s})) - \mathbf{v}^{\rho}(\lambda(\mathbf{s}))], & \mathbf{s} \in \mathbf{S}_{\mathsf{Min}} \end{cases}$$

Strategy improvement algorithm

Definition

State $s \in S_{Max}$ is switchable under strategy pair defined by ρ if

$$\mathbf{v}^{\rho}(\lambda(\mathbf{s})) > \mathbf{v}^{\rho}(\rho(\mathbf{s}))$$

Algorithm [Strategy Improvement for *Max*]

Start with ρ defined by arbitrary strategy ${\color{red}Max}$ and ${\color{red}Min}$'s best response.

loop:

Obtain ρ' from ρ by changing at all switchable $\mathbf{s} \in \mathbf{S}_{\mathsf{Max}}$ under \mathbf{v}^{ρ} .

Obtain ρ'' from ρ' so **Min** plays best response.

if $\rho'' \neq \rho'$ repeat with $\rho \leftarrow \rho''$.

Why does strategy improvement work?

Theorem [Global improvement from myopic improvement]

Let ρ and ρ' be the strategy pairs before and after some iteration. Then we have

$$\forall s \in S : \mathbf{v}^{\rho'}(s) \geq \mathbf{v}^{\rho}(s) ,$$

and

$$\exists s \in S : \mathbf{v}^{\rho'}(s) > \mathbf{v}^{\rho}(s) .$$

Finite number of pure positional strategies so algorithm terminates.

▶ Want: $\triangle = v^{\rho'}(s) - v^{\rho}(s) \ge 0$ for all s and $\triangle > 0$ for some s

- ▶ Want: $\triangle = v^{\rho'}(s) v^{\rho}(s) \ge 0$ for all s and $\triangle > 0$ for some s
- ► Recall $\mathbf{v}^{\rho} = \mathbf{r} + \delta \mathbf{R} \mathbf{v}^{\rho}$.

- ▶ Want: $\triangle = v^{\rho'}(s) v^{\rho}(s) \ge 0$ for all s and $\triangle > 0$ for some s
- ► Recall $\mathbf{v}^{\rho} = \mathbf{r} + \delta \mathbf{R} \mathbf{v}^{\rho}$.

$$\Delta = \delta (R' v^{\rho'} - R v^{\rho})$$

- ▶ Want: $\Delta = v^{\rho'}(s) v^{\rho}(s) \ge 0$ for all s and $\Delta > 0$ for some s
- Recall $\mathbf{v}^{\rho} = \mathbf{r} + \delta \mathbf{R} \mathbf{v}^{\rho}$.

$$\Delta = \delta (R' v^{\rho'} - R v^{\rho})$$
$$= \delta (R' v^{\rho'} - R' v^{\rho} + R' v^{\rho} - R v^{\rho})$$

- ▶ Want: $\triangle = v^{\rho'}(s) v^{\rho}(s) \ge 0$ for all s and $\triangle > 0$ for some s
- Recall $\mathbf{v}^{\rho} = \mathbf{r} + \delta \mathbf{R} \mathbf{v}^{\rho}$.

$$\Delta = \delta (R' v^{\rho'} - R v^{\rho})$$

$$= \delta (R' v^{\rho'} - R' v^{\rho} + R' v^{\rho} - R v^{\rho})$$

$$= \delta (\underbrace{R' v^{\rho'} - R' v^{\rho}}_{R' \Delta} + \underbrace{R' v^{\rho} - R v^{\rho}}_{d})$$

- ▶ Want: $\Delta = v^{\rho'}(s) v^{\rho}(s) \ge 0$ for all s and $\Delta > 0$ for some s
- ► Recall $\mathbf{v}^{\rho} = \mathbf{r} + \delta \mathbf{R} \mathbf{v}^{\rho}$.

$$\Delta = \delta (R' v^{\rho'} - R v^{\rho})$$

$$= \delta (R' v^{\rho'} - R' v^{\rho} + R' v^{\rho} - R v^{\rho})$$

$$= \delta (\underbrace{R' v^{\rho'} - R' v^{\rho}}_{R' \Delta} + \underbrace{R' v^{\rho} - R v^{\rho}}_{d})$$

$$\Delta = (I - \delta R')^{-1} d$$

- ▶ Want: $\Delta = v^{\rho'}(s) v^{\rho}(s) \ge 0$ for all s and $\Delta > 0$ for some s
- ► Recall $\mathbf{v}^{\rho} = \mathbf{r} + \delta \mathbf{R} \mathbf{v}^{\rho}$.

$$\Delta = \delta (R' v^{\rho'} - R v^{\rho})$$

$$= \delta (R' v^{\rho'} - R' v^{\rho} + R' v^{\rho} - R v^{\rho})$$

$$= \delta (\underbrace{R' v^{\rho'} - R' v^{\rho}}_{R' \Delta} + \underbrace{R' v^{\rho} - R v^{\rho}}_{d})$$

$$\Delta = (I - \delta R')^{-1} d$$

 $(I - \delta R')^{-1} \ge 0 \text{ and } diag(I - \delta R')^{-1} > 0.$

- ▶ Want: $\triangle = v^{\rho'}(s) v^{\rho}(s) \ge 0$ for all s and $\triangle > 0$ for some s
- ► Recall $\mathbf{v}^{\rho} = \mathbf{r} + \delta \mathbf{R} \mathbf{v}^{\rho}$.

$$\Delta = \delta (R' v^{\rho'} - R v^{\rho})$$

$$= \delta (R' v^{\rho'} - R' v^{\rho} + R' v^{\rho} - R v^{\rho})$$

$$= \delta (\underbrace{R' v^{\rho'} - R' v^{\rho}}_{R' \Delta} + \underbrace{R' v^{\rho} - R v^{\rho}}_{d})$$

$$\Delta = (I - \delta R')^{-1} d$$

- $(I \delta R')^{-1} \ge 0 \text{ and } diag(I \delta R')^{-1} > 0.$
- ▶ We want $\mathbf{d} = \mathbf{R}' \mathbf{v}^{\rho} \mathbf{R} \mathbf{v}^{\rho} \ge \mathbf{0}$ for all \mathbf{s} and $\mathbf{v} > \mathbf{0}$ for some \mathbf{s} .

▶ We want $\mathbf{d} = \mathbf{R}' \mathbf{v}^{\rho} - \mathbf{R} \mathbf{v}^{\rho} \ge \mathbf{0}$ for all \mathbf{s} and \mathbf{s} of for some \mathbf{s} .

▶ We want $\mathbf{d} = \mathbf{R}' \mathbf{v}^{\rho} - \mathbf{R} \mathbf{v}^{\rho} \ge \mathbf{0}$ for all \mathbf{s} and $\mathbf{v} > \mathbf{0}$ for some \mathbf{s} .

$$d_{s} = [R'v^{\rho}]_{s} - [Rv^{\rho}]_{s}$$
$$= v^{\rho}(\rho'(s)) - v^{\rho}(\rho(s))$$

▶ We want $\mathbf{d} = \mathbf{R}' \mathbf{v}^{\rho} - \mathbf{R} \mathbf{v}^{\rho} \ge \mathbf{0}$ for all \mathbf{s} and $\mathbf{v} > \mathbf{0}$ for some \mathbf{s} .

$$\begin{aligned} \mathbf{d}_{\mathbf{s}} = & [\mathbf{R}' \mathbf{v}^{\rho}]_{\mathbf{s}} - [\mathbf{R} \mathbf{v}^{\rho}]_{\mathbf{s}} \\ = & \mathbf{v}^{\rho}(\rho'(\mathbf{s})) - \mathbf{v}^{\rho}(\rho(\mathbf{s})) \end{aligned}$$

• If $\rho'(s) = \rho(s)$ then $d_s = 0$, so assume not. Then

▶ We want $\mathbf{d} = \mathbf{R}' \mathbf{v}^{\rho} - \mathbf{R} \mathbf{v}^{\rho} \ge \mathbf{0}$ for all \mathbf{s} and $\mathbf{v} = \mathbf{0}$ for some \mathbf{s} .

$$d_{s} = [R'v^{\rho}]_{s} - [Rv^{\rho}]_{s}$$
$$= v^{\rho}(\rho'(s)) - v^{\rho}(\rho(s))$$

- If $\rho'(s) = \rho(s)$ then $d_s = 0$, so assume not. Then
- $p(\mathbf{s}) = p(\mathbf{s}) \text{ then } \mathbf{s} = \mathbf{s}, \text{ so assume that.}$

$$\mathbf{v}^{\rho}(\rho'(\mathbf{s})) > \mathbf{v}^{\rho}(\rho(\mathbf{s}))$$

▶ If $s \in S_{Max}$, because s was switched:

▶ We want $\mathbf{d} = \mathbf{R}' \mathbf{v}^{\rho} - \mathbf{R} \mathbf{v}^{\rho} \ge \mathbf{0}$ for all \mathbf{s} and $\mathbf{>} \mathbf{0}$ for some \mathbf{s} .

$$\begin{aligned} \mathbf{d}_{\mathbf{s}} = & [\mathbf{R}' \mathbf{v}^{\rho}]_{\mathbf{s}} - [\mathbf{R} \mathbf{v}^{\rho}]_{\mathbf{s}} \\ = & \mathbf{v}^{\rho}(\rho'(\mathbf{s})) - \mathbf{v}^{\rho}(\rho(\mathbf{s})) \end{aligned}$$

- If $\rho'(s) = \rho(s)$ then $d_s = 0$, so assume not. Then
- ▶ If $s \in S_{Max}$, because s was switched:

$$\mathbf{v}^{\rho}(\rho'(\mathbf{s})) > \mathbf{v}^{\rho}(\rho(\mathbf{s}))$$

▶ If $s \in S_{Min}$, because Min was playing a best response:

$$\mathbf{v}^{\rho}(\rho(\mathbf{s})) \leq \mathbf{v}^{\rho}(\rho'(\mathbf{s}))$$

Inherited USO

Inherited USO

Inherited USO

Inherited USO C а a

Interpretation of Murty's least index method

Algorithm

Fix a permutation of states. Switch the switchable state with smallest index and repeat.

Max's states come first - variant of strategy improvement.

This is a new algorithm.

Polynomial-time algorithms!

- Polynomial-time algorithms!
- Exponential examples for (all-switching) strategy improvement
 - What strategy improvement (inherited) USOs arise from games?
 - Different from strategy improvement USOs for 1-player games?

- Polynomial-time algorithms!
- Exponential examples for (all-switching) strategy improvement
 - What strategy improvement (inherited) USOs arise from games?
 - Different from strategy improvement USOs for 1-player games?
- ► Can we identify **nontrivial classes** of games giving **nice M**'s, e.g.,
 - hidden-K matrices (LCP solvable as an LP)
 - "well-conditioned": polynomial PLCP interior point methods [Kojima, Megiddo, Ye (1988)]

- Polynomial-time algorithms!
- ► Exponential examples for (all-switching) strategy improvement
 - What strategy improvement (inherited) USOs arise from games?
 - Different from strategy improvement USOs for 1-player games?
- ► Can we identify **nontrivial classes** of games giving **nice M**'s, e.g.,
 - hidden-K matrices (LCP solvable as an LP)
 - "well-conditioned": polynomial PLCP interior point methods [Kojima, Megiddo, Ye (1988)]
- Study other LCP and USO algorithms applied to games, e.g.,
 Lemke's algorithm, Cottle-Dantzig principal pivoting