A List Heuristic for Vertex Cover

Happy Birthday Vasek!

David Avis McGill University

Tomokazu Imamura Kyoto University

Operations Research Letters (to appear)

Online: http://cgm.cs.mcgill.ca/~avis

revised: 2006.11.16

Outline

- The Vertex Cover Problem
- Integer Programming Formulation
- LP-Relaxation
- Heuristics: LP rounding, matching & greedy
- List Heuristic
- Analysis of List Heuristic

Introduction

Vertex Cover

A subset of vertices C s.t. every edge has one of its endpoints in C.

Minimum Vertex Cover Problem

Find a minimum cardinality vertex cover.

ILP and LP

 $\begin{array}{c|c} \textbf{LP Relaxation of Vertex Cover(primal)} \\ & \min & \sum_{v \in V} x_v \\ & \text{s.t.} & x_u + x_v \geq 1 \quad \forall (u,v) \in E \\ & x_v \geq 0 \quad \forall v \in V \end{array}$

Non-integer solution is a fractional vertex cover.

Primal and Dual LPs

Primal LPmin $\sum_{v \in V} x_v$ s.t. $x_u + x_v \ge 1$ $\forall (u, v) \in E$ $x_v \ge 0$ $\forall v \in V$

Primal variables are vertex weights.

Dual variables are edge weights.

 $\delta(v)$ is the set of edges with endpoint v.

Dual: Matching

An integer feasible solution is a matching.

A non-integer solution is called a **fractional matching**.

LP duality

 $x = \{x_v\}$: any $\{0, 1\}$ primal feasible solution $y = \{y_e\}$: any feasible fractional matching Opt : size of min vertex cover.

By weak LP-duality,

$$\sum_{e \in E} y_e \le \sum_{v \in V} x_v$$

Since min cover is optimum ILP solution,

$$\sum_{e \in E} y_e \leq \mathsf{Opt} \leq \sum_{v \in V} x_v$$

LP heuristic

 $x^* = \{x_v^*\}$: optimal for LP relaxation.

Define $\{0,1\}$ -solution $x = \{x_v\}$ by rounding:

$$x_v = \begin{cases} 1 & (x_v^* \ge 1/2) \\ 0 & (x_v^* < 1/2) \end{cases}$$

Proposition.

x has approx. ratio 2.

- By definition, $\forall v \ x_v \leq 2x_v^*$.
- Since x^* is an optimum fractional cover,

$$\sum_{v \in V} x_v^* \leq \mathsf{Opt.}$$

Thus,

$$\frac{\sum x_v}{\text{Opt}} \le \frac{\sum 2x_v^*}{\text{Opt}} \le \frac{2\text{Opt}}{\text{Opt}} = 2$$

Matching heuristic

1. Take any maximal matching M.

2. Let C be set of the vertices incident with

some matching edge.

Proposition.

C has approx. ratio 2.

- |C| = 2|M|.
- M is a feasible solution of the dual.

Thus, by LP-duality, $Opt \ge |M| = |C|/2$ and $\frac{|C|}{Opt} \le \frac{|C|}{|C|/2} = 2.$

Greedy heuristic

while G has an edge do
 let v be the highest degree vertex.
 select v.
 remove v and all edges incident to it.
end
Output the selected vertices.

Has tight approx. ratio

$$H(\Delta) = 1 + \frac{1}{2} \dots + \frac{1}{\Delta}$$

 $(\Delta = \max \text{ vertex degree})$

Unweighted case : Johnson '74, Lovasz '75

Weighted case: Chvátal '79

Example of Greedy Heuristic

Worst case for Greedy heuristic

Opt = N

$$C_{\text{GRE}} = N + \lfloor \frac{N}{2} \rfloor + \lfloor \frac{N}{3} \rfloor + \dots + 1 \simeq N * H(N)$$

So $\frac{|C_{\text{GRE}}|}{\text{Opt}} \simeq H(N) = H(\Delta)$

Proof of Greedy upper bound

 $C = \{v_1, v_2, \dots, v_t\}$: vertices chosen by greedy.

 u_i : # of uncovered edges when v_i chosen.

Assign each of these edges weight $1/u_i$

Total edge weight assigned is |C|

At any vertex v:

At most k incident edges have weight $\geq 1/k$ (otherwise weight of first labelled is < 1/k)

So maximum weight of edges at v is $H(\Delta)$

Dividing all edge weights by $H(\Delta)$ gives a fractional matching of total weight $|C|/H(\Delta)$

So:
$$OPT \ge \frac{|C|}{H(\Delta)}$$

Weight of each vertex is at most $H(\Delta)$, eg. $w(x) = 1 + \frac{1}{3} + \frac{1}{4} + \frac{1}{4} \le 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = H(\Delta).$

Total edge weight is |C| = 5.

List heuristic

Sort vertices in non-increasing order by degrees.

for each vertex v in this order
if there is an edge incident to v
select v.
remove v and all its edges.

Output the selected vertices.

List heuristic: static ordering

Sort vertices in non-increasing order by degrees.

for each vertex v in this order
if there is an edge incident to v
select v.

remove v and all its edges.

Output the selected vertices.

Greedy heuristic: dynamic ordering

while G has an edge do

let v be the highest degree vertex. select v.

remove v and all edges incident to it.

end

Output the selected vertices.

Example of List Heuristic

Greedy would choose vertex 4 instead of 3

Motivating Example

- Nodes submit secret bids to supply connectivity to other nodes for a fixed price K
- Node *i* offers to connect to a subset δ(*i*) of other nodes.
- Regulator must accept bids in decreasing order by $d_i = |\delta(i)|$, as long as each bid connects to at least one new node.

 $|C_{\mathsf{List}}| \leq 3N/2$

since min degree on LHS > N/2 and $\leq N/2$ vertices on the RHS have degree > N/2 but.....

Bounds for List heuristic

This bound is tight up to the constant.

The above bound holds for any fixed vertex order based on the degree sequence.

Worst case for List decreasing

Worst case for any List heuristic N vertices degree N N vertices degree N^2 N vertices > N-1 degree N N-1 vertices degree N N vertices degree N $Opt = 2N - 1, \quad List = N^2,$ $\frac{\text{List}}{\text{Opt}} = \frac{N^2}{2N-1} \ge \frac{\sqrt{\Delta}}{2}.$

Proof of a weaker upper bound (1/2)

Theorem 3.
$$\frac{\text{List}}{\text{Opt}} \leq \sqrt{2\Delta}.$$

For i = 1, ..., t suppose List selects vertex v_i which has degree d_i .

Assign edge weights as follows:

for i = 1, ...t, assign **one** of v_i 's uncovered edges weight

$$y_e = \frac{1}{d_i}.$$

All unassigned edges get weight

$$y_e = \frac{1}{\Delta}.$$

This is a feasible fractional matching for G.

For each v_i selected one (blue) edge gets weight $1/d_i$.

The other (red) edges get weight $1/\Delta = 1/5$. Total edge weight is $3\frac{1}{6}$, so Opt ≥ 4 Proof of upper bound (2/2)

Lemma (Cauchy-Schwartz) If $d_i \ge 0, i = 1, ..., t$ have $\sum_{i=1}^{t} d_i \le 2m$ then $\sum_{i=1}^{t} d_i \ge \frac{t^2}{2m}.$

$$Opt \geq \sum_{e \in E} y_e$$

$$= \sum_{i=1}^{t} \frac{1}{d_i} + \frac{m-t}{\Delta}$$

$$\geq \frac{t^2}{2m} + \frac{m}{\Delta} - \frac{t}{\Delta} \quad (\text{Lemma})$$

$$\geq 2\sqrt{\frac{t^2}{2m} \cdot \frac{m}{\Delta}} - \frac{t}{\Delta} \quad (a+b \geq 2\sqrt{ab})$$

$$= \frac{2t}{\sqrt{2\Delta}} - \frac{t}{\Delta}$$

$$\geq \frac{t}{\sqrt{2\Delta}} \quad (\Delta \geq 2)$$

$$= \frac{List}{\sqrt{2\Delta}}$$

24

Conclusion

Four heuristics analyzed by LP methods.

Ranked by perfomance ration $PR = \frac{HEUR}{OPT}$:

- LP-rounding: PR = 2
- Matching: PR = 2
- Greedy: $PR = H(\Delta) = O(log(\Delta))$
- List: $PR = \sqrt{\Delta}/2 + 3/2$

In practice?