A List Heuristic for Vertex Cover

Happy Birthday Vasek!

David Avis
McGill University

Tomokazu Imamura
Kyoto University

Operations Research Letters (to appear)

Online: http://cgm.cs.mcgill.ca/~avis

revised: 2006.11.16

Outline

The Vertex Cover Problem

Integer Programming Formulation

L P-Relaxation

Heuristics: LP rounding, matching & greedy

List Heuristic

Analysis of List Heuristic

Introduction

Vertex Cover
A subset of vertices C s.t. every edge has
one of its endpoints in C.

Minimum Vertex Cover Problem
Find a minimum cardinality vertex cover.

ILP and LP

/ILP Formulation of Vertex Cover
min > xw
veV
st. zutzxo>1 V(u,v) €FE
_ Ty € {O, 1} YVveV .

LP Relaxation of Vertex Cover(primal)
min > Iy
veV
st. zutxo>1 V(u,v) €FE
_ Ty >0 YveV .

Non-integer solution is a fractional vertex cover.
3

Primal and Dual LPs

/Primal LP
min > xw
veV
s.t. xzutxo>1 V(u,v) €FE
k Ly 2 0 Yv c V

Primal variables are vertex weights.

/Dual LP
eck
s.t. > ye<1l YveV
ecd(v)
\ Ye Z O \V/e c E

Dual variables are edge weights.

5(v) is the set of edges with endpoint w.

Dual: Matching

Dual of LP Relaxation A
MmaX 2 Ye
eckH
S.t. > Ye<1l VYVveV
ecd(v)

An integer feasible solution is a matching.

A non-integer solution is called a fractional
matching.

0.5 0.5

0.5

LP duality

x = {xzy}: any {0, 1} primal feasible solution
y = {ye}: any feasible fractional matching
Opt : size of min vertex cover.

By weak LP-duality,

Since min cover is optimum ILP solution,

2 Ye S Opt S 2 Ty
eckE veV

LP heuristic

x* = {z}}: optimal for LP relaxation.

Define {0, 1}-solution = {z,} by rounding:

_ 1 (@>1/2)
TY0 0 (zF<1/2)

Proposition.
x has approx. ratio 2.

e By definition, Yv xzy < 2z.

e Since z* is an optimum fractional cover,

> xz, < Opt.
veV

T hus,

> To < > 2x7, < 20pt — 5
Opt Opt Opt

Matching heuristic

1. Take any maximal matching M.
2. Let C be set of the vertices incident with
some matching edge.

Proposition.
C' has approx. ratio 2.

o (O] =2|M]|.

e M is a feasible solution of the dual.

Thus, by LP-duality, Opt > |M| = |C|/2 and
c| _ ol _
Opt = |C|/2

Greedy heuristic

while G has an edge do

let v be the highest degree vertex.
select v.

remove v and all edges incident to it.
end

\Output the selected vertices.

Has tight approx. ratio

1 1
HA)=1+ ...+

(A = max vertex degree)

Unweighted case : Johnson '74, Lovasz '75

Weighted case: Chvatal '79

Example of Greedy Heuristic

10

Worst case for Greedy heuristic

N vertices
degree 1

N vertices N/2] vert
_ vertices
deg <=N degree 2
[N/3] vertices
degree 3
1 vertex
degree N
Opt =N

N N
CGRE=N+L5J+L§J‘|—°"+12N*H(N)
So IGSBEL ~ 1 (N) = H(A)

11

Proof of Greedy upper bound

C = {v1,vo,...,v¢}: vertices chosen by greedy.
u;. # of uncovered edges when v; chosen.
Assign each of these edges weight 1/u;
Total edge weight assigned is |C|

At any vertex v:

At most k incident edges have weight > 1/k
(otherwise weight of first labelled is < 1/k)

So maximum weight of edges at v is H(A)

Dividing all edge weights by H(A) gives a
fractional matching of total weight |C|/H(A)

: C|

12

Edge Weight Assignment by Greedy

13 3 4

Weight of each vertex is at most H(A), eg.
w(@) =14+5+3+7<1+5+5+5=H(A).

Total edge weight is |C| = 5.

13

List heuristic

~

Sort vertices in non-increasing order
by degrees.

for each vertex v in this order
If there is an edge incident to v
select v.
remove v and all its edges.

\Output the selected vertices. .

14

List heuristic: static ordering

Sort vertices in non-increasing order
by degrees.
for each vertex v in this order
If there is an edge incident to v
select v.
remove v and all its edges.
\ Output the selected vertices.

Greedy heuristic: dynamic ordering

while G has an edge do
let v be the highest degree vertex.
select v.
remove v and all edges incident to it.
end
\ Output the selected vertices.

15

Example of List Heuristic

Greedy would choose vertex 4 instead of 3

16

Motivating Example

e Nodes submit secret bids to supply con-
nectivity to other nodes for a fixed price
K

e Node i offers to connect to a subset §(7)
of other nodes.

e Regulator must accept bids in decreasing
order by d; = |§(¢)|, as long as each bid
connects to at least one new node.

17

List beats greedy on this example

Opt =N, |Cgrg|=~ N * H(N)

N vertices
degree 1

N vertices

deg <=N [N/2] vertices

degree 2

[N/3] vertices
degree 3

1 vertex
degree N

ICList| < 3N/2

since min degree on LHS > N/2 and < N/2
vertices on the RHS have degree > N/2

18

Bounds for List heuristic

Theorem 1. A
List \/A n 3
_ Opt -2 2 .
This bound is tight up to the constant.
Theorem 2. A
There is a class of graphs such that
List \/A
_ Opt - 2)

The above bound holds for any fixed vertex
order based on the degree sequence.

19

Worst case for List decreasing

. S~
N vertices

deg N+1

N vertices
degree N"2
N vertices
N
deg N+1 ’
N vertices
degree N

N vertices
deg N+1

Opt = 2N, List = N2+ N,

List_N—I—l_\/A_I_l
Opt 2 2 2

20

Worst case for any List heuristic

N vertices
degree N
N vertices
degree N"2
N vertices
degree N
N-1 vertices
degree N
N vertices
degree N

Opt =2N — 1, List= N2,

List _ N2 _ VA

Opt 2N -1~ 2

S~

> N-1

21

Proof of a weaker upper bound (1/2)

Theorem 3.

Ui
List sA.
Opt

For : = 1,...,t suppose List selects vertex v;
which has degree d;.

Assign edge weights as follows:
for :+ = 1,...t, assign one of v;'s uncovered
edges weight

Ye

SH
S

All unassigned edges get weight

1

yezz-

This is a feasible fractional matching for G.

22

Edge Weight Assignment by List

For each wv; selected one (blue) edge gets
weight 1/d;.
The other (red) edges get weight 1/A = 1/5.
Total edge weight is 31, so Opt > 4

23

Proof of upper bound (2/2)

“Lemma (Cauchy-Schwartz) N
If d; > 0,i=1,...,t have !_; d; < 2m then
42
> d; > —.
_ i=1 2m)
Opt > X Ye
ecl
. % 1 m —t
- i=1d; A
2 m ot
> — 4 — — Lemma
> 2m+A ()
2 m ot
> : — b > 2V ab
= \/QmA A (latb=z2vab)
2t t
VvV 2A A
t
> A\ > 2
> A Az2)
List

24

Conclusion

Four heuristics analyzed by LP methods.

HEUR.

Ranked by perfomance ration PR = OPT -

e LP-rounding: PR =2

e Matching: PR =2

e Greedy: PR= H(A) = O(log(A))

o List: PR=+A/2+3/2

In practice?

25

