A List Heuristic for Vertex Cover

 Happy Birthday Vasek!David Avis
McGill University

Tomokazu Imamura
Kyoto University

Operations Research Letters (to appear)

Online: http://cgm.cs.mcgill.ca/~avis
revised: 2006.11.16

- The Vertex Cover Problem
- Integer Programming Formulation
- LP-Relaxation
- Heuristics: LP rounding, matching \& greedy
- List Heuristic
- Analysis of List Heuristic

Introduction

Vertex Cover
A subset of vertices C s.t. every edge has one of its endpoints in C.

Minimum Vertex Cover Problem
Find a minimum cardinality vertex cover.

ILP and LP

ILP Formulation of Vertex Cover

$$
\begin{array}{lll}
\min & \sum_{v \in V} x_{v} & \\
\text { s.t. } & x_{u}+x_{v} \geq 1 \quad \forall(u, v) \in E \\
& x_{v} \in\{0,1\} \quad \forall v \in V \\
\hline
\end{array}
$$

LP Relaxation of Vertex Cover(primal)

$$
\begin{array}{ll}
\min & \sum_{v \in V} x_{v} \\
\text { s.t. } & x_{u}+x_{v} \geq 1 \quad \forall(u, v) \in E \\
& x_{v} \geq 0 \quad \forall v \in V
\end{array}
$$

Non-integer solution is a fractional vertex cover.

Primal and Dual LPs

Primal LP

$$
\begin{array}{ll}
\min & \sum_{v \in V} x_{v} \\
\text { s.t. } & x_{u}+x_{v} \geq 1 \quad \forall(u, v) \in E \\
& x_{v} \geq 0 \quad \forall v \in V
\end{array}
$$

Primal variables are vertex weights.

Dual LP

$$
\begin{array}{cl}
\max & \sum_{e \in E} y_{e} \\
\text { s.t. } & \sum_{e \in \delta(v)} y_{e} \leq 1 \quad \forall v \in V \\
& y_{e} \geq 0 \quad \forall e \in E
\end{array}
$$

Dual variables are edge weights.
$\delta(v)$ is the set of edges with endpoint v.

Dual: Matching

Dual of LP Relaxation

$$
\begin{array}{ll}
\max & \sum_{e \in E} y_{e} \\
\text { s.t. } & \sum_{e \in \delta(v)} y_{e} \leq 1 \quad \forall v \in V \\
& y_{e} \geq 0 \quad \forall e \in E
\end{array}
$$

An integer feasible solution is a matching.

A non-integer solution is called a fractional matching.

$\boldsymbol{x}=\left\{x_{v}\right\}$: any $\{0,1\}$ primal feasible solution
$\boldsymbol{y}=\left\{y_{e}\right\}:$ any feasible fractional matching
Opt : size of min vertex cover.

By weak LP-duality,

$$
\sum_{e \in E} y_{e} \leq \sum_{v \in V} x_{v}
$$

Since min cover is optimum ILP solution,

$$
\sum_{e \in E} y_{e} \leq \mathrm{Opt} \leq \sum_{v \in V} x_{v}
$$

LP heuristic

$\boldsymbol{x}^{*}=\left\{x_{v}^{*}\right\}:$ optimal for LP relaxation.
Define $\{0,1\}$-solution $\boldsymbol{x}=\left\{x_{v}\right\}$ by rounding:

$$
x_{v}= \begin{cases}1 & \left(x_{v}^{*} \geq 1 / 2\right) \\ 0 & \left(x_{v}^{*}<1 / 2\right)\end{cases}
$$

Proposition.

\boldsymbol{x} has approx. ratio 2.

- By definition, $\forall v x_{v} \leq 2 x_{v}^{*}$.
- Since x^{*} is an optimum fractional cover,

$$
\sum_{v \in V} x_{v}^{*} \leq \text { Opt. }
$$

Thus,

$$
\frac{\sum x_{v}}{\text { Opt }} \leq \frac{\sum 2 x_{v}^{*}}{\text { Opt }} \leq \frac{2 \mathrm{Opt}}{\mathrm{Opt}}=2
$$

Matching heuristic

1. Take any maximal matching M.
2. Let C be set of the vertices incident with some matching edge.

Proposition.

C has approx. ratio 2.

- $|C|=2|M|$.
- M is a feasible solution of the dual.

Thus, by LP-duality, Opt $\geq|M|=|C| / 2$ and

$$
\frac{|C|}{\mathrm{Opt}} \leq \frac{|C|}{|C| / 2}=2 .
$$

Greedy heuristic

while G has an edge do
let v be the highest degree vertex. select v.
remove v and all edges incident to it.
end
Output the selected vertices.

Has tight approx. ratio

$$
H(\Delta)=1+\frac{1}{2} \ldots+\frac{1}{\Delta}
$$

($\Delta=$ max vertex degree)

Unweighted case : Johnson '74, Lovasz '75

Weighted case: Chvátal '79

Example of Greedy Heuristic

Worst case for Greedy heuristic

Opt $=N$
$C_{\mathrm{GRE}}=N+\left\lfloor\frac{N}{2}\right\rfloor+\left\lfloor\frac{N}{3}\right\rfloor+\cdots+1 \simeq N * H(N)$
So $\frac{\left|C_{\text {GRE }}\right|}{\text { Opt }} \simeq H(N)=H(\Delta)$

Proof of Greedy upper bound

$C=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}:$ vertices chosen by greedy.
u_{i} : \# of uncovered edges when v_{i} chosen.

Assign each of these edges weight $1 / u_{i}$

Total edge weight assigned is $|C|$

At any vertex v :
At most k incident edges have weight $\geq 1 / k$
(otherwise weight of first labelled is $<1 / k$)

So maximum weight of edges at v is $H(\Delta)$

Dividing all edge weights by $H(\Delta)$ gives a fractional matching of total weight $|C| / H(\Delta)$

So: $\quad O P T \geq \frac{|C|}{H(\Delta)}$

Edge Weight Assignment by Greedy

Weight of each vertex is at most $H(\Delta)$, eg. $w(x)=1+\frac{1}{3}+\frac{1}{4}+\frac{1}{4} \leq 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=H(\Delta)$.

Total edge weight is $|C|=5$.

List heuristic

Sort vertices in non-increasing order by degrees.
for each vertex v in this order if there is an edge incident to v select v. remove v and all its edges. Output the selected vertices.

List heuristic: static ordering

Sort vertices in non-increasing order by degrees.
for each vertex v in this order if there is an edge incident to v select v.
remove v and all its edges.
Output the selected vertices.

Greedy heuristic: dynamic ordering
while G has an edge do
let v be the highest degree vertex. select v.
remove v and all edges incident to it.
end
Output the selected vertices.

Example of List Heuristic

Greedy would choose vertex 4 instead of 3

- Nodes submit secret bids to supply connectivity to other nodes for a fixed price K
- Node i offers to connect to a subset $\delta(i)$ of other nodes.
- Regulator must accept bids in decreasing order by $d_{i}=|\delta(i)|$, as long as each bid connects to at least one new node.

List beats greedy on this example

Opt $=N, \quad\left|C_{\mathrm{GRE}}\right| \simeq N * H(N)$

since min degree on LHS $>N / 2$ and $\leq N / 2$ vertices on the RHS have degree $>N / 2$ but...........

Bounds for List heuristic

Theorem 1.

$$
\frac{\text { List }}{\text { Opt }} \leq \frac{\sqrt{\Delta}}{2}+\frac{3}{2}
$$

This bound is tight up to the constant.

Theorem 2.
There is a class of graphs such that

$$
\frac{\text { List }}{\text { Opt }} \geq \frac{\sqrt{\Delta}}{2}
$$

The above bound holds for any fixed vertex order based on the degree sequence.

Worst case for List decreasing

Worst case for any List heuristic

Proof of a weaker upper bound (1/2)

Theorem 3.

$$
\frac{\text { List }}{\text { Opt }} \leq \sqrt{2 \Delta}
$$

For $i=1, \ldots, t$ suppose List selects vertex v_{i} which has degree d_{i}.

Assign edge weights as follows:
for $i=1, \ldots t$, assign one of v_{i} 's uncovered edges weight

$$
y_{e}=\frac{1}{d_{i}} .
$$

All unassigned edges get weight

$$
y_{e}=\frac{1}{\Delta} .
$$

This is a feasible fractional matching for G.

Edge Weight Assignment by List

For each v_{i} selected one (blue) edge gets weight $1 / d_{i}$.
The other (red) edges get weight $1 / \Delta=1 / 5$.
Total edge weight is $3 \frac{1}{6}$, so Opt ≥ 4

Lemma (Cauchy-Schwartz)
If $d_{i} \geq 0, i=1, \ldots, t$ have $\sum_{i=1}^{t} d_{i} \leq 2 m$ then

$$
\sum_{i=1}^{t} d_{i} \geq \frac{t^{2}}{2 m}
$$

$$
\begin{aligned}
\text { Opt } & \geq \sum_{e \in E} y_{e} \\
& =\sum_{i=1}^{t} \frac{1}{d_{i}}+\frac{m-t}{\Delta} \\
& \geq \frac{t^{2}}{2 m}+\frac{m}{\Delta}-\frac{t}{\Delta} \quad(\text { Lemma }) \\
& \geq 2 \sqrt{\frac{t^{2}}{2 m} \cdot \frac{m}{\Delta}}-\frac{t}{\Delta} \quad(a+b \geq 2 \sqrt{a b}) \\
& =\frac{2 t}{\sqrt{2 \Delta}}-\frac{t}{\Delta} \\
& \geq \frac{t}{\sqrt{2 \Delta}} \quad(\Delta \geq 2) \\
& =\frac{\text { List }}{\sqrt{2 \Delta}}
\end{aligned}
$$

Conclusion

Four heuristics analyzed by LP methods.

Ranked by perfomance ration $P R=\frac{H E U R}{O P T}$:

- LP-rounding: $P R=2$
- Matching: $P R=2$
- Greedy: $P R=H(\Delta)=O(\log (\Delta))$
- List: $P R=\sqrt{\Delta} / 2+3 / 2$

In practice?

