
 1

CS 491 G Combinatorial Optimization

Lecture Notes

 Junhui Jia

1. Maximum Flow Problems

Now let us discuss more details on maximum flow problems.

Theorem 1.1

A feasible flow x! is maximum if and only if there is no x! -augmenting path.

Proof:

Let P = “A feasible flow is maximum” and Q = “there is no x! -augmenting path”. It is
obvious that QP ⇒ . For the case of PQ ⇒ using the construction of proof of Max-
Flow and Min-Cut Theorem, we get a cut δ(R) with () ())(Rusf x δ=! , then combine the
Corollary of () ())(Rusf x δ≤! , we know x! is maximum. So Theorem is proved.

Theorem 1.2

If u! is integral and there exists a maximum flow, then there exists a maximum flow that
is integral.

Proof:

Set a feasible flow, which is an integral flow of maximum value. From theorem 1.1, if
there is no x! -augmenting path, x! is a maximum flow. Suppose there is an x! -augmenting
path, the contradiction is that x! is not an integral flow of maximum value, because the
new flow could be integral when x! and u! are integral. Hence there is no x! -augmenting
path, and x! must be a maximum flow. So Theorem 1.2 is proved.

Corollary 1.3

If x! is a feasible (r, s)-flow and δ(R) is an (r, s)-cut, then x! is maximum and δ(R) is
minimum if and only if

ee ux = , for all e ∈ δ(R) and 0=ex , for all e ∈ δ(R).

 2

2. The Augmenting Path Algorithm

2.1 The Ford-Fulkerson procedure

The Ford-Fulkerson Algorithm provides a tool to find a maximum flow and a minimum
cut. When we execute the step 2 of the Ford-Fulkerson procedure, there is a maximum
value permitted. It is ε = min(ε1, ε2), we call ε the x! -width of P. That is:

The maximum value permitted = min(ε1, ε2)
where
ε1 = min(ee xu − : e forward in P)
ε2 = min(ex : e reverse in P)

2.2 The Auxiliary or Residual Graph G(x!)

Definition: 2.1 Given a graph uEVG ,,= and current flow x! , we define G(x!) to be the

auxiliary graph, when put ()() VxGV =! and ()()xGEvw !∈ if and only if Evw ∈ and

vwvw ux < or Ewv ∈ and 0>wvx .

If for Evw ∈ , both vwvw ux < and 0>wvx are satisfied, then put two parallel arcs into

()()xGE ! . It is noticed that an auxiliary graph is un-weighted. An example is given in
Figure 1.1.

Observation

A (r, s) dipath in G(x!) is an x! augmenting path.

Defining the auxiliary graph supplies us a method for searching augmenting paths. It is
obvious as well that:

()() ExGE 2≤
!

Because there are only possibility of forward and reverse edges when you obtain an
auxiliary graph G(x!) from a graph G, the number of edges in an auxiliary graph G(x!)
must be at most twice of that of original graph G.

1. Find an x! -augmenting path P.
2. Increment flow x! along the path P.

In order to implement the augmenting path, create G(x!) . This can be done in ()mO time
having a path from r to s with Breadth-first search method.

Notation: In figure 1.1, the left hand number stands for the capacity of that edge and the
right hand number stands for the flow through that edge.

However, the augmenting path algorithm cannot be considered acceptable. Figure 1.2
shows a bad example for this algorithm. If every augmenting path uses arc ab, then each
augmentation will be of value 1, the algorithm will never terminate, and there is no
maximum flow.

The running time

For m edges and n vertices,

Uniform cost model:

∞

r s r s

1 1 1 1

1 1

3 1 3 1

4 2 4 2

1 0

1 1

1 1

p a

q q

p a

Figure 1.1 A feasible flow of value 3 and its auxiliary digraph G(x!)

r s

a

∞

∞

∞

Figure 1.2. A

1

bad Example
b
3

 for the
,
 ,
,

,
 ,
,
 ,
,

,

,

 augmenting path algorithm
b
b

 4

Input size = mmnm 3≤++

It is unbounded because the ratio =
m

mf
3
max is independent of m. The total time taken =

mfmax

Log cost model:
Let every edge has capacity of maxf , then we have

Input size = maxmax log3log fmfmnm ≤++

maxmaxlog3 fmfm →

where m maxf is the running time, choose mf 2max = , then we have







⇒→

m
Omm

m
m 223 2

It is an exponential function.

3. Edmonds-Karp Idea

3.1 Introduction to the Shortest x! -augmenting path

Definition: 3.1 A shortest augmenting path is an x! -augmenting path which has the
minimum possible number of arcs.

Definition: 3.2 ()vud x ,! is the length of the shortest path from u to v in G(x!).

Consider a typical augmentation from flow x! to 'x! determined by augmenting path P,
which have node sequence as v0, v1, . . . , vk. Let ()vrd x ,! be the least length path from r to
v in G(x!) of a (r, v) dipath, then we have () ivrd ix =,! and () iksvd ix −=,! . If an arc vw
of ()'xG ! is not an arc of G(x!), then ivv = , 1−= ivw for some i.

Question: How to implement in O(m) time?

Breadth-first search will accomplish it in O(m) time. So that it is easier to find a shortest
augmenting path than to find an augmenting path. This gives us a polynomial-time
algorithm for the maximum flow problem.

Lemma 3.2

For each Vv ∈ , we have that

 5

() ()vrdvrd xx ,,' !! ≥ .

Proof: Let a node v be a vertex for which the lemma is false. That is

() ()vrdvrd xx ,,' !! <

Choose the node v such that and v is the vertex for which ()vrd

x ,'! is the smallest all such
“violating” vertices. Let 'P be a (r, v) dipath in ()'xG ! of length ()vrd

x ,'! and let w be the
node before v. Then

() () () () 1,1,,, '' +≥+=> wrdwrdvrdvrd xxxx !!!!

Now We can conclude that wv is not an arc of G(x!) since if wv is an arc of G(x!), then

() () 1,, +≤ wrdvrd xx !!

Suppose there is an arc in ()'xG ! but not in G(x!), then the arc must have been reversed in
G(x!). We have

ivw = and 1−= ivv

A contradiction comes up immediately since

11 +≥− ii

So the Lemma 3.2 is proved. Likewise, we can prove that

() ()svdsvd xx ,,' !! ≥

Lemma 3.3

If () ()srdsrd xx ,,' !! = ,

Let ()xE~ ={ Ee ∈ : e is an arc of a shortest x! -augmenting path},
Then () ()xExE !! ~'~ ⊂ .

Proof: Pick some edges that satisfy ()'~ xEe !∈ and

()xEe !~∈

Let () ksrd x =,! , e induces an arc vw in ()'xG ! and () 1,' −= ivrd
x! , () ikswd

x −=,'! for
some i, where 1−= ivv and ivw = , as shown in Figure 3.1.

Notation: In figure 3.1, the only edge tha
path P. The other paths are exactly the sam

Therefore, () () 1,, −≤+ kswdvrd xx !! = d

x '!

(()xEe !~∈) is not true, then '
ee xx !! ≠ , b

Therefore, every edge in ()'~ xE ! must be in

(xE !~

Now let’s prove ()'~ xE ! is the proper sub
saturated. If it must be used on another s
what it is on G(x!). It is illustrated in Figu
edge of the path P, the length of any path

()'~ xE ! . Then the Lemma 3.3 would be prov

It is obvious that for the original graph we

() 1, −= ivrd x! , () ikswd x −=,!
and

() ⇒= iwrd x ,! () iwrd
x ≥,'!

() ⇒+−= 1, iksvd x! () 1,' +−≥ iksvd
x!

So the length of P will be at least

!

v
r s

P w

Figure 3.1 Illustration
6

t can have capacities changed arc must along
e as those of G(x!).

()vr, + ()swd
x ,'! = () ()iki −+−1 , Suppose this

ut Pe ∈ in G(x!). This is a contradiction.

()xE !~ , that is

) ()xE !~' ⊆

set of ()xE !~ . Consider the edge vwe : that is
hortest path, the direction must be reversed at
re 3.2. what we need to find out is the critical

using it is at least k+2 and it does not belong to
ed.

have

()'xG

 for the proof of () ()xExE !! ~'~ ⊆

211 +=++−+ kiki

where kii vsvwvvvrVP ===== + "" ,,,, 110 , () 1, += iwrd x! , () iksvd x −=,! ,

() ksrd x =,! .

So Lemma 3.4 is proved.

References

1. William Cook, William H. Cunningh

Combinatorial Optimization. John Wiley &

v
r s

P

w

Figure 3.2 Illustration for the p
7

am, William R. Pulleyblank, and Alexander Schrijver.
 Sons, INC., 1998.

()'xG !

roof of ()'~ xE ! is the proper subset of ()xE !~ .

	CS 491 G Combinatorial Optimization
	Maximum Flow Problems
	
	
	
	
	
	
	
	Theorem 1.1
	Theorem 1.2
	Corollary 1.3
	The Augmenting Path Algorithm
	2.2 The Auxiliary or Residual Graph G(�)
	Observation
	However, the augmenting path algorithm cannot be considered acceptable. Figure 1.2 shows a bad example for this algorithm. If every augmenting path uses arc ab, then each augmentation will be of value 1, the algorithm will never terminate, and there is n
	3.	Edmonds-Karp Idea
	Lemma 3.2
	Lemma 3.3

