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1. Maximum Flow Problems 
 
Now let us discuss more details on maximum flow problems. 
  
Theorem 1.1 
 
A feasible flow x!  is maximum if and only if there is no x! -augmenting path. 
 
Proof:  
 
Let P = “A feasible flow is maximum” and Q = “there is no x! -augmenting path”. It is 
obvious that QP ⇒ . For the case of PQ ⇒  using the construction of proof of Max-
Flow and Min-Cut Theorem, we get a cut δ(R) with ( ) ( ))( Rusf x δ=! , then combine the 
Corollary of ( ) ( ))( Rusf x δ≤! , we know x!  is maximum. So Theorem is proved. 
 
Theorem 1.2 
 
If u!  is integral and there exists a maximum flow, then there exists a maximum flow that 
is integral. 
 
Proof:  
 
Set a feasible flow, which is an integral flow of maximum value. From theorem 1.1, if 
there is no x! -augmenting path, x!  is a maximum flow. Suppose there is an x! -augmenting 
path, the contradiction is that x!  is not an integral flow of maximum value, because the 
new flow could be integral when x!  and u!  are integral. Hence there is no x! -augmenting 
path, and x!  must be a maximum flow. So Theorem 1.2 is proved. 

 
Corollary 1.3 
 
If x!  is a feasible (r, s)-flow and δ(R) is an (r, s)-cut, then x!  is maximum and δ(R) is 
minimum if and only if 

ee ux = , for all e ∈  δ( R ) and 0=ex , for all e ∈  δ( R ). 
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2. The Augmenting Path Algorithm 
 
2.1 The Ford-Fulkerson procedure 
 

 
 
The Ford-Fulkerson Algorithm provides a tool to find a maximum flow and a minimum 
cut. When we execute the step 2 of the Ford-Fulkerson procedure, there is a maximum 
value permitted. It is ε  = min(ε1, ε2), we call ε the x! -width of P. That is: 
 
The maximum value permitted = min(ε1, ε2) 
where 
ε1 = min( ee xu −  :  e forward in P) 
ε2 = min( ex  :  e reverse in P) 
 
2.2 The Auxiliary or Residual Graph G( x! ) 
 
Definition: 2.1 Given a graph uEVG ,,=  and current flow x! , we define G( x! ) to be the 

auxiliary graph, when put ( )( ) VxGV =!  and ( )( )xGEvw !∈  if and only if Evw ∈  and 

vwvw ux <  or Ewv ∈ and 0>wvx . 
 
If for Evw ∈ , both vwvw ux <  and 0>wvx  are satisfied, then put two parallel arcs into 

( )( )xGE ! . It is noticed that an auxiliary graph is un-weighted. An example is given in 
Figure 1.1. 

 
Observation  
 
A (r, s) dipath in G( x! ) is an x!  augmenting path. 
 
Defining the auxiliary graph supplies us a method for searching augmenting paths. It is 
obvious as well that: 

 
( )( ) ExGE 2≤
!  

 
Because there are only possibility of forward and reverse edges when you obtain an 
auxiliary graph G( x! ) from a graph G, the number of edges in an auxiliary graph G( x! ) 
must be at most twice of that of original graph G.        
 

 
1. Find an x! -augmenting path P. 
2. Increment flow x!  along the path P. 

 



 

In order to implement the augmenting path, create G( x! ) . This can be done in ( )mO  time 
having a path from r to s with Breadth-first search method.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notation: In figure 1.1, the left hand number stands for the capacity of that edge and the 
right hand number stands for the flow through that edge. 
 
However, the augmenting path algorithm cannot be considered acceptable. Figure 1.2 
shows a bad example for this algorithm. If every augmenting path uses arc ab, then each 
augmentation will be of value 1, the algorithm will never terminate, and there is no 
maximum flow.   
 
 
 
 
 
 
 
 
 
 
 
 
The running time 
 
For m edges and n vertices,  
 
Uniform cost model:  
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Figure 1.1 A feasible flow of value 3 and its auxiliary digraph G( x! ) 
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Input size = mmnm 3≤++  
 

It is unbounded because the ratio = 
m

mf
3
max  is independent of m. The total time taken  = 

mfmax   
 
Log cost model: 
Let every edge has capacity of maxf , then we have  
  

Input size = maxmax log3log fmfmnm ≤++  

maxmaxlog3 fmfm →  
 

where m maxf  is the running time, choose mf 2max = , then we have 
 







⇒→

m
Omm

m
m 223 2  

It is an exponential function. 
 
3. Edmonds-Karp Idea 
 
3.1 Introduction to the Shortest x! -augmenting path 
 
Definition: 3.1 A shortest augmenting path is an x! -augmenting path which has the 
minimum possible number of arcs. 
 
Definition: 3.2 ( )vud x ,!  is the length of the shortest path from u to v in G( x! ).  
 
Consider a typical augmentation from flow x!  to 'x!  determined by augmenting path P, 
which have node sequence as v0, v1, . . . , vk. Let ( )vrd x ,!  be the least length path from r to 
v in G( x! ) of a (r, v) dipath, then we have ( ) ivrd ix =,!  and ( ) iksvd ix −=,! . If an arc vw 
of ( )'xG !  is not an arc of G( x! ), then ivv = ,  1−= ivw  for some i. 
 
Question: How to implement in O(m) time? 
 
Breadth-first search will accomplish it in O(m) time. So that it is easier to find a shortest 
augmenting path than to find an augmenting path. This gives us a polynomial-time 
algorithm for the maximum flow problem. 

 
Lemma 3.2 

 
For each Vv ∈ , we have that  
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( ) ( )vrdvrd xx ,,' !! ≥ . 
 
Proof: Let a node v be a vertex for which the lemma is false. That is 
 

( ) ( )vrdvrd xx ,,' !! <  
 
Choose the node v such that and v is the vertex for which ( )vrd

x ,'!  is the smallest all such 
“violating” vertices. Let 'P  be a (r, v) dipath in ( )'xG !  of length ( )vrd

x ,'!  and let w be the 
node before v. Then 
 

( ) ( ) ( ) ( ) 1,1,,, '' +≥+=> wrdwrdvrdvrd xxxx !!!!  
 

Now We can conclude that wv is not an arc of G( x! ) since if wv is an arc of G( x! ), then 
  

( ) ( ) 1,, +≤ wrdvrd xx !!  
 
Suppose there is an arc in ( )'xG !  but not in G( x! ), then the arc must have been reversed in 
G( x! ). We have 
 

ivw =  and 1−= ivv  
 
A contradiction comes up immediately since  
 

11 +≥− ii  
 
So the Lemma 3.2 is proved. Likewise, we can prove that 
 

( ) ( )svdsvd xx ,,' !! ≥  
 

Lemma 3.3 
 
If ( ) ( )srdsrd xx ,,' !! = , 

Let ( )xE~ ={ Ee ∈ : e is an arc of a shortest x! -augmenting path}, 
Then ( ) ( )xExE !! ~'~ ⊂ . 
 
Proof: Pick some edges that satisfy ( )'~ xEe !∈  and 
 

( )xEe !~∈  
 

Let ( ) ksrd x =,! , e induces an arc vw in ( )'xG !  and ( ) 1,' −= ivrd
x! , ( ) ikswd

x −=,'!  for 
some i, where 1−= ivv  and ivw = , as shown in Figure 3.1. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notation: In figure 3.1, the only edge tha
path P. The other paths are exactly the sam
 
Therefore, ( ) ( ) 1,, −≤+ kswdvrd xx !!  = d

x '!

( ( )xEe !~∈ ) is not true, then '
ee xx !! ≠ , b

Therefore, every edge in ( )'~ xE !  must be in 
 

(xE !~

Now let’s prove ( )'~ xE !  is the proper sub
saturated. If it must be used on another s
what it is on G( x! ). It is illustrated in Figu
edge of the path P, the length of any path 

( )'~ xE ! . Then the Lemma 3.3 would be prov
 
It is obvious that for the original graph we 
 

( ) 1, −= ivrd x! , ( ) ikswd x −=,!  
and 

( ) ⇒= iwrd x ,! ( ) iwrd
x ≥,'!  

( ) ⇒+−= 1, iksvd x! ( ) 1,' +−≥ iksvd
x!  

 
So the length of P will be at least  

!
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Figure 3.1 Illustration
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t can have capacities changed arc must along 
e as those of G( x! ). 

( )vr, + ( )swd
x ,'!  = ( ) ( )iki −+−1 , Suppose this 

ut Pe ∈  in G( x! ). This is a contradiction. 

( )xE !~ , that is 

) ( )xE !~' ⊆  
 

set of ( )xE !~ . Consider the edge vwe :  that is 
hortest path, the direction must be reversed at 
re 3.2. what we need to find out is the critical 

using it is at least k+2 and it does not belong to 
ed. 

have 

( )'xG

 for the proof of ( ) ( )xExE !! ~'~ ⊆   



 

 
211 +=++−+ kiki  

 
where kii vsvwvvvrVP ===== + "" ,,,, 110 , ( ) 1, += iwrd x! ,  ( ) iksvd x −=,! , 

( ) ksrd x =,! . 
 
So Lemma 3.4 is proved. 
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( )'xG !

roof of ( )'~ xE !  is the proper subset of ( )xE !~ . 
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