
CS 491G Combinatorial Optimization

Lecture Notes

David Owen

June 11, 13

1 Maximum Flow Problems

Given a directed graph with weighted edges, we would like to know the maximum flow possible between two
special vertices in the graph, the source vertex r and the sink vertex s; that is, we imagine some fluid being
pumped from r through the graph to s, and we think of edge weights as capacities limiting the amount of
fluid that may be pumped through that edge. We assume that an infinite supply is available at r, and that s
can consume an infinite amount, so that only edge capacities (we will call the edge weights “capacities” from
now on) limit flow through the graph. We also restrict all edge capacities and flows to integers, although in
general the Max-Flow problem may be solved for any edge capacity and flow values.

For example, we can solve Max-Flow by inspection for the following simple graph:

r

a
7 b

3

s
4

2

2

1

There are only two edges connected to s (eas, ebs), so the Max-Flow can not exceed the sum of these
edges’ capacities (4 + 2 = 6). We can pump 4 to a through era without exceeding its capacity (7), and we
can pump 2 to b without exceeding its capacity (3). With 4 available at a and 2 available at b, we can fill
eas and ebs to capacity; therefore the Max-Flow = 6.

Edge capacities may be = ∞; if so that edge will not limit flow. This fact can be used to transform a
graph with more than one source or sink (or more than one of both) into a single-source, single-sink problem.
We start with the graph below, in which u indicates an arbitrary edge capacity, and the dotted vertices and
edges indicate some arbitrary subgraph between multiple source vertices r1 . . . r3 and multiple sink vertices
s1 . . . s4:

r_1

r_3

r_2

u

u

u

s_1

s_2

s_4

s_3

u

u

u

u

1

If we add a “super-source” r and a “super-sink” s to the graph, and if we connect r to the sources and s to
the sinks already in in the graph via infinite-capacity edges, we have the following single-source, single-sink
graph (since flow is only limited by the finite-capacity edges from the previous graph, our Max-Flow solution
for this graph would be the same as for the previous):

r

r_1

inf

r_3
inf

r_2

inf

s

u

u

u

s_1

inf

s_2 inf

s_4

inf
s_3

inf

u

u

u

u

1.1 Example: Professors’ Teaching Assignments

Suppose we have a list of professors and a list of courses in need of a professor for the coming semesters.
The professors have indicated which of the courses they would be willing to teach. We would like to assign
one course to each professor such that a) at most one professor is assigned to any course, and b) professors
are only assigned to courses they would be willing to teach. We can model the problem as a directed graph
so that the Max-Flow solution for that graph is the assignment solution we are looking for. First of all, we
put professors on the left and courses on the right, with a (unit-capacity) directed edge from a professor to
a course indicating the professor would be willing to teach the course:

Subramani

VanScoy

Shereshevsky

Montgomery

491
1

346

1

3261

236
1

336
1

1

1

126

1

2681

1

2

We now add a source vertex r and a sink vertex s connected in the following way via unit-capacity edges:

r

Subramani
1

VanScoy

1

Shereshevsky

1

Montgomery

1

s

491
1

346

1

3261

236
1

336
1

1

1

126

1

2681

1

1

1

1

1

1

1

1

Since a maximum of 1 may flow into each professor vertex (limited by the capacity of edges coming from
r), a maximum of 1 may flow out of each professor vertex. And we have restricted flows to integers, so that
the flow out of each professor vertex to any particular course must be 0 or 1. This means there will be at
most one edge through which there is a flow from a particular professor vertex to any course vertices (i.e.
a professor will not be assigned more than one course). Flows out of course vertices to s must also be 0 or
1, since the capacity of edges from courses to s is 1. And because there is a single edge coming out of each
course vertex, a maximum flow of 1 may go through that vertex (i.e. no course may be assigned more than
one professor). In this case our Max-Flow solution = 4, which means that an assignment exists in which all
four professors will be assigned courses they have indicated they are willing to teach.

1.2 Background and Definitions

It turns out that we do not need to stipulate both integral capacities and integal flows. We have the following
lemma (we will not prove it here):

Lemma

If all edge capacities are integers, the Max-Flow must also be integral.

For an integral flow = k, there is a “family” of k (r-s) dipaths (not necessarily distinct dipaths beginning
at r and ending at s) {P1 . . . Pk} such that:

|{i : Pi uses edge e}| ≤ ue

That is, the number of Pi’s using edge e is ≤ the capacity of e (ue). We can think of these paths as each
carrying a unit flow from r to s. There can not be more than ue unit flows going through e, so at most ue
of these paths may use e. And if the total flow is k, there must be k unit flows (and therefore k of these
paths) going from r to s.

We let xe be = to the number of Pi’s using edge e:

xe = |{i : Pi uses e }|

3

So we have an xe for every edge; that is, ~x assigns a number to every edge. We have stated above that
for a flow k there must be k (r-s) dipaths, that xe is equal to the number of those dipaths using edge e.
But what if we are given ~x by itself and want to know whether it represents a legitimate flow vector? The
following condition must hold:

~x is a flow if:∑
(xwv : w ∈ V, ewv ∈ E) −

∑
(xvw : w ∈ V, evw ∈ E) = 0, ∀v ∈ V \ {r, s}.

The amount coming into vertex w (the first
∑

(. . .)) minus the amount going out (the second
∑

(. . .))
must be zero—nothing can be stored in w. We call this “conservation of flow.” We call flows “feasible” if
they satisfy the condition above, ~x values are positive, and no edge capacities are exceeded (the simplest
feasible flow ~x = ~0):

~x is a feasible flow if:

~x is a flow, and 0 ≤ xvw ≤ uvw.

When given a flow ~x through some graph G, we represent the edges of G as (ue, xe), and we define f~x(v)
as the net flow into vertex v; the net flow into s, f~x(s), is the flow we would like to maximize. Using this
notation we formulate Max-Flow as a linear program:

max f~x(s)
s.t . f~x(v) = 0, ∀v ∈ V \ {r, s}

0 ≤ xe ≤ ue

We can formulate Max-Flow as a linear program, but we would like to find a simpler way to solve it.
With that in mind, we propose the following connection between the Pi dipaths and flow value k discussed
above:

(Proposition 3.1 in the text [1, p.38])

(a) ∃ a family of (r-s) dipaths (P1 . . . Pk) such that |{i : Pi uses edge e}| ≤ ue, ∀e ∈ E
if and only if (b) ∃ an integral feasible (r-s) flow of value k.

The proof that (a)⇒(b) should be obvious: we can use the left-hand side of the capacity limitation for
each path Pi (|{. . .}| above) as the value for each xi in ~x, so that no edge’s capacity is exceeded and the sum
of all xi’s = k.

Now we must prove that (b)⇒(a). We are given an integral feasible flow value k. If k = 0, we have zero
Pi’s and the proposition is trivial. If k ≥ 1, there must be at least one edge of at least unit-capacity coming
into s. If that edge exists (we will call it evs), there must be at least one edge of unit capacity coming into
its beginning vertex v, and there must be some edge coming into that edge’s beginning vertex, etc., all the
way back to r. So if k ≥ 0 there must be at least one dipath Pi. We can eliminate that path from the graph
and let k = k− 1. If k is still ≥ 0, we repeat the process again and again until k = 0. At that point we have
eliminated k dipaths P1 . . . Pk. We note the following related lemma:

Lemma (which we will not prove here)

Every feasible flow is the sum of at most m flows.

4

We also note that a “maximum circulation” problem related to Max-Flow may be modeled by adding an
edge from s back to r and extending the flow conservation condition to these vertices:

r

s

This edge added for
Max Circulation problem.

1.3 Maximum Flows and Minimum Cuts

Cut (for digraphs):

Given a set R ⊆ V, the set δ(R) = {evw : v ∈ R, w /∈ R} is called a “cut.”

So a cut is a set of edges beginning in R but ending outside of R (in R̄).

(r-s) Cut:

A cut δ(R) such that r ∈ R, s /∈ R.

And an (r-s) cut is a set of edges as defined above, with the extra stipulation that the graph is divided
by the cut, so that r is in R and s is not.

Lemma (Proposition 3.3 in the text [1, p.40]):

Given an (r-s) cut δ(R) and any (r-s) flow ~x, we have x(δ(R)) − x(δ(R̄)) = f~x(s)
(x(a set) = the sum of ~x values on edges in that set).

This lemma says that the total flow out of R minus the total flow into R = f~x(s). To prove the lemma,
we first of all consider a graph divided into subgraphs R, R̄ \ {s}, and s:

r sR R̄ \ {s}

5

There will likely be some edges that begin and end inside the set R̄ \ {s} (any edge evw such that
v ∈ R̄ \ {s}, v ∈ R̄ \ {s}):

r s

v

w

R

R̄ \ {s}

Since vertices inside the graph (all vertices except r and s) cannot store any flow, the net flow of all these
edges inside R̄ \ {s} must be zero: ∑

f~x(v) = 0, ∀v ∈ R̄ \ {s}

Since f~x(s) = f~x(s), we can add the equalities to get the following relationship:∑
f~x(v) = 0, ∀v ∈ R̄ \ {s}

f~x(s) = f~x(s)∑
f~x(v) + f~x(s) = f~x(s), ∀v ∈ R̄ \ {s}

We also claim the following equality to be true for all v ∈ R̄ \ {s}:

f~x(v) =
∑
w∈R xwv − (

∑
w∈R xvw +

∑
w∈R̄\{s} xvw + xvs) +

∑
w∈R̄\{s} xwv

The picture below illustrates the terms of the equation above: f~x(v) is the net flow into v;
∑
w1∈R xw1v

is the sum of everything flowing into v from the set R (the set of xw1v’s is δ(R));
∑
w2∈R xvw2 is the sum

of everything flowing out of v into R (the set of xvw2 ’s is δ(R̄));
∑
w3∈R̄\{s} xvw3 is the sum of everything

flowing from v to vertices in R̄ \ {s} (the same set v is in); xvs is the flow from v to s; and
∑
w4∈R̄\{s} xw4v

is the sum of everything flowing into v from R̄ \ {s} (again, the same set v is in) into v. So the right hand
side of this equation covers all the possible edges to and from v, adding flows coming into v and subtracting
flows going out. And the left side (again) is therefore the net flow into v.

r s

w_1

v

w_2

w_3

w_4

R
R̄ \ {s}

6

The equation and illustration above apply to each vertex v from the set R̄ \ {s}. So we can sum up all of
those equations (one for each vertex v ∈ R̄ \ {s}) and get

∑
v∈R̄\{s} f~x(v), which is the first term from the

previous equation (
∑
f~x(v) + f~x(s) = f~x(s)). Summing all these vertices, we have:

∑
v∈R̄\{s} (f~x(v))

=
∑
v∈R̄\{s} (

∑
w∈R xwv − (

∑
w∈R xvw +

∑
w∈R̄\{s} xvw + xvs) +

∑
w∈R̄\{s} xwv)

We stated earlier that for all v in R̄ \ {s},
∑
f~x(v) = 0, since none of these vertices can store any flow.

So this means that the two terms above pertaining to edges completely within R̄ \ {s} will cancel each other
out: ∑

v∈R̄\{s} (
∑
w∈R̄\{s} xwv) −

∑
v∈R̄\{s} (

∑
w∈R̄\{s} xvw) = 0

After cancelling, we have:∑
v∈R̄\{s} (f~x(v)) =

∑
v∈R̄\{s} (

∑
w∈R xwv − (

∑
w∈R xvw + xvs))

f~x(s) can be broken up in the following way:

f~x(s) =
∑
v∈R xvs +

∑
v∈R̄\{s} xvs

We now have equalities for
∑
f~x(v) and f~x(s), which we can substitue into

∑
f~x(v) + f~x(s) = f~x(s):∑

v∈R̄\{s} (
∑
w∈R xwv − (

∑
w∈R xvw + xvs)) +

∑
v∈R xvs +

∑
v∈R̄\{s} xvs = f~x(s)

The xvs terms cancel each other out, so that we have:∑
v∈R̄\{s} (

∑
w∈R xwv − (

∑
w∈R xvw)) +

∑
v∈R xvs = f~x(s)

We can simply rename v in the third term above w:∑
v∈R̄\{s} (

∑
w∈R xwv − (

∑
w∈R xvw)) +

∑
w∈R xws = f~x(s)

And simplify: ∑
v∈R̄\{s}, w∈R (xwv − xvw + xws) = f~x(s)

These are the edges referred to in the lemma! The xwv’s and xws’s together constitute the flow through
the cut δ(R), and the xvw’s the flow through the cut δ(R̄). So we have proved the lemma.

Corollary (3.4 in the text [1, p.40]):

For any feasible flow ~x and any (r-s) cut, f~x(s) ≤ u(δ(R)).

The corollary states that the net flow into s cannot exceed the sum of the capacities of the edges in the
(r-s) cut. This makes sense, since we we have just shown that the net flow into s is at most equal to the flow
across the cut (it would be equal if there is no flow across the cut in the opposite direction—if δR̄ = 0),
which obviously can not exceed the sum of the capacities of edges in the cut.

Max-Flow Min-Cut Theorem

If G = 〈V,E, ~u〉 is a flow graph,

max{f~x(s) : ~x is a feasible flow} = min{u(δ(R)) : R is an (r-s) cut}

7

We note that in terms of linear programming, Max-Flow and Min-Cut are duals of each other. Before
proving the theorem we need two definitions:

~x-Incrementing Path:

Given a flow ~x, a path p in a graph G is called “~x-incrementing” if

1. every forward arc e has flow xe < capacity ue;

2. every reverse arc e has flow xe > 0.

~x-Augmenting Path:

An (r-s) ~x-incrementing path is called ~x-augmenting path.

~x-augmenting paths are those paths from r to s through which the flow may be increased, through forward
arcs whose flow is less than their capacity and through backward arcs whose flow is greater than zero (and
may therefore be decreased).

To prove the Max-Flow Min-Cut therorem, we let ~x be a Max-Flow. This means there is no ~x-augmenting
path. If there were an ~x-augmenting path, the flow from r to s through that path could be increased, implying
that the former flow ~x was not in fact the Max-Flow. There may be ~x-incrementing paths, however. We let
R = {v : there is an ~x-incrementing path from r to v}. We note that s may not be part of R, but r must
be part of R. It follows that {evw : v ∈ R,w /∈ R} is an (r-s) cut. And we know that the flow xvw (through
edge evw ∈ δ(R)) must be equal to the capacity uvw, otherwise evw would make up part of an ~x-incrementing
path, and we would put w in R. By the same reasoning all edges in δ(R̄) (those edges going from v ∈ R̄
to w ∈ R) must have flow xvw = 0. So we know that, for all edges in the cut δ(R), xvw = uvw; and for all
edges in the cut δ(R̄), xvw = 0. From the previous theorem, we know:

~x(δ(R)) − ~x(δ(R̄)) = f~x(s)

If we substitute u(δ(R)) for ~x(δ(R)) and 0 for ~x(δ(R̄)), we have proved the theorem:

u(δ(R)) = f~x(s)

References

[1] William Cook, William H. Cunningham, William Pulleyblank, and Alexander Schrijver. Combinatorial
Optimization. John Wiley & Sons, 1998.

8

