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I—Existing Methods of Mine Design

An open pit mine.
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Open Pit Mine
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» The ground is broken up into sections

=t




Proposal & Area Exam

LExisting Methods of Mine Design

» Using estimation or simulation techniques from drill hole
data, economic values are produced for each block

<

» Ore blocks can return a profit when mined
» Waste blocks cost money to remove
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» Each block is considered as a node of a graph
» Arcs are added to represent slope requirements
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Graph Closure

» A graph closure is a subset S of nodes such that no arcs
leave S

» A maximum weight graph closure is known as “the ultimate

pit
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LExisting Methods of Mine Design

Maximum Network Flow

» source node s with arcs to each ore node
» sink node t with arcs from each waste node

» Capacities on the arcs are the absolute value of the blocks
» Slope arcs have infinite capacity
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LExisting Methods of Mine Design

Minimum Cut
The minimum cut represents the maximum weight graph
closure

» Minimize the waste inside and the ore outside the pit
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Pushbacks

» The ultimate pit is much to large to produce short term
schedules on

» The pit is broken up into smaller more manageable pieces
called pushbacks

P1

P2

P4
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Pushback Design

» There are a number of techniques used to produce
pushbacks

» The most popular is to scale some factor affecting the
economic block model and run an ultimate pit algorithm

Low Metal Price

High Metal Price

» With an artificially low price of metal - a small pit will be
produced
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Problems with Existing Pushback Design Methods

» This process is somewhat add-hoc and successive pits
may have drastically different sizes and not connected

» Such problems are termed “gap” problems in mining
literature
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Partially ordered knapsack

» One would like a way to produce a pit with a given
knapsack constraint

n
max Z Wi X
i=1
s.t. X < X for block i above j

n

Z cixi < b (1)
i=1

Xj € {0, 1}VI'

» Constraint (1) ruins total unimodularity

» No natural way to add a knapsack constraint to the min cut
formulation
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Discounting
Another problem with existing methods is that they are greedy
and don’t consider economic discounting
» Discount rate of 10%

P1=10 P2=10

P3=10

P1=9
P3=7

P2=14

» NPV of Design 1 = 27.36
» NPV of Design 2 = 27.51
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LCc:)mplexity

Complexity of POK

» The POK problem can be shown to be NP-complete from a
reduction from maximum clique

'W

B vaueof1
@ Vvalueof0

» The graph has a clique of size s if and only if the directed
graph has a graph closure of weight (3) with at most
b= (3) + s nodes
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LCc:)mplexity

Complexity of connectivity

» This reduction needs doesn’t work in the context of the
open it problem, the nodes have bounded degree.

» Requiring the blocks removed to be physically connected
make the problem NP-complete even for one level (relates
to underground).

» Reduction from “Connected node cover in planar graphs of
maximum degree 4” (Garey and Johnson)

» a node cover is a subset of nodes such that each edge has
at least one endpoint in the subset

» a node cover is connected if the graph it induces is
connected
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LCc:)mplexity

» Given a planar graph of maximum degree 4, Tamassia and
Tollis gave an algorithm to embed the graph in a grid of
size O(n?) in linear time
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LCc:)mplexity

» Bisect the edges to form grid nodes, and identify a special
node corresponding to the edge in each path
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LComplexity

» The maximum valued subset of connected blocks defines

the minimum connected node cover

block value =n"2
block value =-n*4
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LPipage Rounding

Pipage Rounding - IP formulation

n n
max > wixi+ Y Py
i—1 =1

st x<1-y Vi € DownCone(j)

n
S ay<b
i=1

Xi>}’j€{0’1} VI,]

» x; = 1 if block i is left in the ground

» y; = 1if block i is sent to the mill

» ¢;, pi and w; are respectively the knapsack size, profit and
cost associated with block i
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LPipage Rounding

We can relax the IP and rewrite it as:

n

n
max Y w(1—max{y:j€ Cone(i)})+ > py
=

i=1
n
st. > cyi<b
i=1
0<y <1

Let F(x) = > 1L, Wi(erCone(i)(1 — i)+ 27:1 PjYj
» F(x) equals the objective function at integral vectors
(strictly below elsewhere).
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LPipage Rounding

» Solve the LP relaxation, to obtain a fractional solution y*.

» Choose two indices, /" and i, such that 0 < y;i, v, < 1.

» Sety; +eand y;, — e;—" where ¢ is an endpoint of the
interval:

Cjr

. Cjn .
[~ min{y;y, (1 — y,w)c%}, min{1 — yj, yin—}]
I/

)

» Choose the endpoint such that F(y(¢)) > F(y*)



Proposal & Area Exam

LPipage Rounding

This algorithm performed well on a real data set (within 6.9% of
optimal).
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The POK problem can be formulated naturally as a maximum
directed cut problem with a knapsack constraint.

@

\~ N \ &‘::- T -
Ne o

By

-infinity

ro— |
o2
o |

= Hs

ol
%
D —



Proposal & Area Exam

LDirec:ted Cut Polytope

Maximum Cut Polytope

The cut vector for S is:

0(S) = (x12,X13, X14, X1 5, X23, Xo4, X205, X34, X35, Xa5)
= (1,1,1,0,0,1,0,1,1)

The cut polytope, CUTY, is the convex hull of all cut vectors for
Kp.
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LDiret:ted Cut Polytope

Maximum Directed Cut Polytope

The directed cut vector for S is:

57(S) = (X1.2),X(1,3): -+ X(5,3)s X(5.4))
= (1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1)

The directed cut polytope, DCUTY is the convex hull of all
directed cut vectors of the complete directed graph.
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LDiret:ted Cut Polytope

Triangle Inequalities

It's known that for any three nodes /., k of K}, the following
inequalities are facet inducing for CUTY":

(@)

Xik — X,'/' = Xjk 0
2 3)

<
Xij + Xjk + Xk <

These inequalities for every triple define what is known as the
semi-metric polytope METL. Inequalities (2) define the
semi-metric cone MET .
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LDiret:ted Cut Polytope

» We can prove similar results in the directed case:

X(ik) = X(ij) = Xgo) < 0
X(ij) + Xk + Xkiy < 1

are facet inducing for DCUTY.
» We define the directed semi-metric polytope, DMETL, by
the triangle inequalities and:

X(ij) T XGk) T X,y = Xy + X(k,j) T X(ik)-
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LDirec:ted Cut Polytope

Projecting the Triangle Inequalities

For general graph G, a linear description of the projection of
MET and MET, onto E(G) is well understood.

V4

V5

va

V7

MET(G) = {x € RE|xe—x(C\ {e}) < 0 for C cycle of G, e € C}
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LDiret:ted Cut Polytope

We have a similar characterization for the projection of DMET,
onto the A(G) for an arbitrary digraph.

X(7,8) < X(7,.2) + X(2,3) T X(3,4) T X(a5) + X(5.8)
X(1,2) T X2,3)F, -, TX(5,1) = X(2,1) T X(3,2) T ---, TX(1 5)
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LDirected Cut Polytope

Since we can optimize over DMETY in polynomial time, we can
assign an objective function value of 0 to edges not appearing
in G and optimize over DMET(G).

max ) CijXij)
(i/)EAG)
s.t.  xe DMETY

D> WipXij <b
(i)eAG)

Natural relaxation of the POK problem.
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LDirected Cut Polytope

Other results related to the directed cut polytope.
» The dimension of the DMETY and DCUTS is (5) +n— 1.

» Other facet inducing inequalities: directed versions of
hypermetric inequalities (pure, pentagonal,...).

» Bijection between the convex hull of two cut polytopes and
the directed cut polytope.

» Switching, permutation and lifting operations for valid
inequalities.
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LDirected Cut Polytope

Further Work

» Study the structure of DMETY(G) intersected with a
knapsack constraint.

» Characterization of when DMET™(G) =DCUTY(G), for
undirected graphs METE(G) =CUTZ(G) if G is Ks-minor
free.

» Complete the linear description of DMETY(G).

» Combinatorial algorithm for finding violated projected
inequalities for DMET(G) and DMETH(G).
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I—Directed Cut Polytope

Undirected Cut
Polytope 1

Undirected Cut
Polytope 2
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Undirected Cut
Polytope 1

Undirected Cut
Polytope 2

Directed Cut
Polytope
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The dimension of the DCUT} is (5) +n — 1
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LDirected Cut Polytope

Let A be the family of all cut vectors, if
CUT,={xeRE|vx<Ofori=1,.,m}

then

CUTS = {x e RE(V')Tx < —v(8(8)) fori =1,...,mand §(S) € A

where v(3(S)) = vT8(S) = Y jjess) vi and val®) = —ve if
e € §(S) and v, otherwise
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