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Existing Methods of Mine Design

An open pit mine.
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Existing Methods of Mine Design

I The ground is broken up into sections
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Existing Methods of Mine Design

I Using estimation or simulation techniques from drill hole
data, economic values are produced for each block

I Ore blocks can return a profit when mined
I Waste blocks cost money to remove
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Existing Methods of Mine Design

I Each block is considered as a node of a graph
I Arcs are added to represent slope requirements
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Existing Methods of Mine Design

Graph Closure

I A graph closure is a subset S of nodes such that no arcs
leave S

I A maximum weight graph closure is known as “the ultimate
pit”
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Existing Methods of Mine Design

Maximum Network Flow
I source node s with arcs to each ore node
I sink node t with arcs from each waste node

I Capacities on the arcs are the absolute value of the blocks
I Slope arcs have infinite capacity
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Existing Methods of Mine Design

Minimum Cut
The minimum cut represents the maximum weight graph
closure

I Minimize the waste inside and the ore outside the pit
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Existing Methods of Mine Design

Pushbacks

I The ultimate pit is much to large to produce short term
schedules on

I The pit is broken up into smaller more manageable pieces
called pushbacks
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Existing Methods of Mine Design

Pushback Design
I There are a number of techniques used to produce

pushbacks
I The most popular is to scale some factor affecting the

economic block model and run an ultimate pit algorithm

I With an artificially low price of metal - a small pit will be
produced
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Existing Methods of Mine Design

Problems with Existing Pushback Design Methods
I This process is somewhat add-hoc and successive pits

may have drastically different sizes and not connected

I Such problems are termed “gap” problems in mining
literature
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Existing Methods of Mine Design

Partially ordered knapsack
I One would like a way to produce a pit with a given

knapsack constraint

max
n∑

i=1

wixi

s.t . xi ≤ xj for block i above j
n∑

i=1

cixi ≤ b (1)

xi ∈ {0,1}∀i

I Constraint (1) ruins total unimodularity
I No natural way to add a knapsack constraint to the min cut

formulation
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Existing Methods of Mine Design

Discounting
Another problem with existing methods is that they are greedy
and don’t consider economic discounting
I Discount rate of 10%

I NPV of Design 1 = 27.36
I NPV of Design 2 = 27.51
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Complexity

Complexity of POK
I The POK problem can be shown to be NP-complete from a

reduction from maximum clique

I The graph has a clique of size s if and only if the directed
graph has a graph closure of weight

(s
2

)
with at most

b =
(s

2

)
+ s nodes
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Complexity

Complexity of connectivity

I This reduction needs doesn’t work in the context of the
open it problem, the nodes have bounded degree.

I Requiring the blocks removed to be physically connected
make the problem NP-complete even for one level (relates
to underground).

I Reduction from “Connected node cover in planar graphs of
maximum degree 4” (Garey and Johnson)

I a node cover is a subset of nodes such that each edge has
at least one endpoint in the subset

I a node cover is connected if the graph it induces is
connected
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Complexity

I Given a planar graph of maximum degree 4, Tamassia and
Tollis gave an algorithm to embed the graph in a grid of
size O(n2) in linear time
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Complexity

I Bisect the edges to form grid nodes, and identify a special
node corresponding to the edge in each path
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Complexity

I The maximum valued subset of connected blocks defines
the minimum connected node cover



Proposal & Area Exam

Pipage Rounding

Pipage Rounding - IP formulation

max
n∑

i=1

wixi +
n∑

j=1

pjyj

s.t . xj ≤ 1− yi ∀i ∈ DownCone(j)
n∑

i=1

cjyj ≤ b

xi , yj ∈ {0,1} ∀i , j

I xi = 1 if block i is left in the ground
I yi = 1 if block i is sent to the mill
I ci ,pi and wi are respectively the knapsack size, profit and

cost associated with block i
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Pipage Rounding

We can relax the IP and rewrite it as:

max
n∑

i=1

wi(1−max{yj : j ∈ Cone(i)}) +
n∑

j=1

pjyj

s.t .
n∑

i=1

ciyi ≤ b

0 ≤ yi ≤ 1

Let F (x) =
∑n

i=1 wi(
∏

k∈Cone(i)(1− yi)) +
∑n

j=1 pjyj

I F (x) equals the objective function at integral vectors
(strictly below elsewhere).
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Pipage Rounding

I Solve the LP relaxation, to obtain a fractional solution y∗.
I Choose two indices, i ′ and i ′′, such that 0 < y∗i ′ , y

∗
i ′′ < 1.

I Set y∗i ′ + ε and y∗i ′′ − ε
ci′
ci′′

where ε is an endpoint of the
interval:

[−min{yi ′ , (1− yi ′′)
ci ′′

ci ′
},min{1− yi ′ , yi ′′

ci ′′

ci ′
}]

I Choose the endpoint such that F (y(ε)) ≥ F (y∗)
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Pipage Rounding

This algorithm performed well on a real data set (within 6.9% of
optimal).
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Directed Cut Polytope

The POK problem can be formulated naturally as a maximum
directed cut problem with a knapsack constraint.
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Directed Cut Polytope

Maximum Cut Polytope

The cut vector for S is:

δ(S) = (x12, x13, x14, x1,5, x23, x24, x25, x34, x35, x45)

= (1,1,1,0,0,1,0,1,1)

The cut polytope, CUT�n , is the convex hull of all cut vectors for
Kn.
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Directed Cut Polytope

Maximum Directed Cut Polytope

The directed cut vector for S is:

δ+(S) = (x(1,2), x(1,3), ..., x(5,3), x(5,4))

= (1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1)

The directed cut polytope, DCUT�n is the convex hull of all
directed cut vectors of the complete directed graph.
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Directed Cut Polytope

Triangle Inequalities

It’s known that for any three nodes i , j , k of Kn the following
inequalities are facet inducing for CUT�n :

xik − xij − xjk ≤ 0 (2)
xij + xjk + xki ≤ 2 (3)

These inequalities for every triple define what is known as the
semi-metric polytope MET�n . Inequalities (2) define the
semi-metric cone METn.
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Directed Cut Polytope

I We can prove similar results in the directed case:

x(i,k) − x(i,j) − x(j,k) ≤ 0
x(i,j) + x(j,k) + x(k ,i) ≤ 1

are facet inducing for DCUT�n .
I We define the directed semi-metric polytope, DMET�n , by

the triangle inequalities and:

x(i,j) + x(j,k) + x(k ,i) = x(j,i) + x(k ,j) + x(i,k).
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Directed Cut Polytope

Projecting the Triangle Inequalities

For general graph G, a linear description of the projection of
MET�n and METn onto E(G) is well understood.

MET(G) = {x ∈ RE
+|xe−x(C \{e}) ≤ 0 for C cycle of G,e ∈ C}
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Directed Cut Polytope

We have a similar characterization for the projection of DMETn
onto the A(G) for an arbitrary digraph.

x(7,8) ≤ x(7,2) + x(2,3) + x(3,4) + x(4,5) + x(5,8)

x(1,2) + x(2,3)+, ...,+x(5,1) = x(2,1) + x(3,2)+, ...,+x(1,5)
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Directed Cut Polytope

Since we can optimize over DMET�n in polynomial time, we can
assign an objective function value of 0 to edges not appearing
in G and optimize over DMET(G).

max
∑

(i,j)∈A(G)

c(i,j)x(i,j)

s.t . x ∈ DMET�n∑
(i,j)∈A(G)

w(i,j)x(i,j) ≤ b

Natural relaxation of the POK problem.
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Directed Cut Polytope

Other results related to the directed cut polytope.
I The dimension of the DMET�n and DCUT�n is

(n
2

)
+ n − 1.

I Other facet inducing inequalities: directed versions of
hypermetric inequalities (pure, pentagonal,...).

I Bijection between the convex hull of two cut polytopes and
the directed cut polytope.

I Switching, permutation and lifting operations for valid
inequalities.
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Directed Cut Polytope

Further Work

I Study the structure of DMET�(G) intersected with a
knapsack constraint.

I Characterization of when DMET�(G) =DCUT�(G), for
undirected graphs MET�(G) =CUT�(G) if G is K5-minor
free.

I Complete the linear description of DMET�(G).
I Combinatorial algorithm for finding violated projected

inequalities for DMET(G) and DMET�(G).
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Directed Cut Polytope
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Directed Cut Polytope
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Directed Cut Polytope

The dimension of the DCUT�n is
(n

2

)
+ n − 1
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Directed Cut Polytope

Let A be the family of all cut vectors, if

CUTn = {x ∈ REn |vT
i x ≤ 0 for i = 1, ...,m}

then

CUT�n = {x ∈ REn |(vδ(S)
i )T x ≤ −vi(δ(S)) for i = 1, ...,m and δ(S) ∈ A}.

where v(δ(S)) = vT δ(S) =
∑

ij∈δ(S) vij and vδ(S)
e = −ve if

e ∈ δ(S) and ve otherwise
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