Notes on Heuristics Winter 1978 V. Chvátal

1. Scheduling Independent Tasks

Let us consider a set of identical processors P_1, P_2, \dots, P_m and a set of tasks T_1, T_2, \dots, T_n . Each task T_i has an execution time t_i and requires only one processor. The processors operate in parallel and none of them can execute more than one task at a time; once it has begun executing T_i , it continues executing it until its completion time t_i time units later.

For example, if m=3, n=11 and $(t_1, t_2, \dots, t_{11})$ reads 2,4,3,4,4,5,2,1,4,3,2

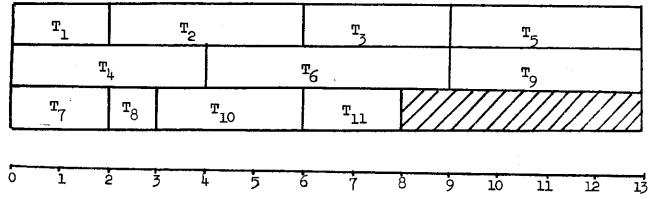
then a possible schedule might go as follows:

P₁ processes T₁,T₂,T₃,T₅

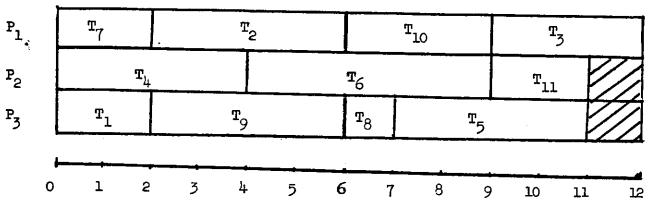
 P_2 processes T_4, T_6, T_9

Pg processes T7,T8,T10,T11

This schedule is represented by the diagram shown below.

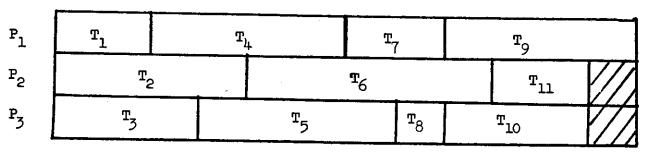


One of the possibly desirable goals is to get <u>all</u> the work done as soon as possible. In this sense, the schedule shown above is inferior to that shown below.



Even when there are only two processors, finding an <u>optimal</u> schedule may be a very difficult problem. Hence it is important to have <u>efficient</u> algorithms which <u>approximate</u> optimal solutions with reasonable accuracy.

The most straightforward of these heuristics is the LIST heuristic: we consider the tasks in the order in which they appear on our list T_1, \ldots, T_n and assign them the processors in such a way that, as soon as a processor becomes idle, it is assigned the next available task. When applied to our example, LIST yields the (optimal) schedule shown below.



0 1 2 3 4 5 6 7 8 9 10 11 12 However, there are nasty examples on which LIST does not perform that well. The following figure shows the LIST schedule and the optimal schedule for 5,5,5,5,1,1,1,1,6.

1	11
5	
3	
4	
5	
67890	

1	6	
2	7	
3	8	
4	9	
5	10	
11		

More generally, there are examples with n=2m-1 where the finishing time L of LIST equals 2m-1 but the optimal finishing time OPT is only m. Nevertheless, we shall prove that the ratio L/OPT cannot get any worse than that.

THEOREM 1.1.
$$L \leq (2 - \frac{1}{m})$$
 OPT

The theorem follows immediately from the following lemma combined with the observation that $OPT \geq t$.

LEMMA 1.2. If t is the execution time of a task which finishes last in LIST schedule then

$$L \leq OPT \left(1 + \frac{m-1}{m} \cdot \frac{t}{OPT}\right)$$
.

PROOF.

Since no processor is idle before time L-t, we have

$$(\sum_{i=1}^{n} t_{i}) - t \ge m(L - t).$$

Combining these two inequalities we obtain the desired result.

A slightly more sophisticate heuristic is LIST DECREASING: first order the tasks so that $t_1 \geq t_2 \geq \cdots \geq t_n$ and then apply LIST. An example where LIST DECREASING performs relatively poorly is given by m=6, n=13 and execution times

The LIST DECREASING heuristic delivers a schedule with finishing time LD=23 whereas the optimal finishing time OPT is only 18.

1	11	13
2	12	
3	9	
4	10	
5	7	
6	8	

1	1			
2		9		
3		8		
4		7		
5		6		
11	12	13		

More generally, there are examples with n=2m+1, LD=4m-1 and OPT=3m for all m. However, the ratio LD/OPT cannot get any worse.

THEOREM 1.3. LD
$$\leq$$
 OPT $(\frac{4}{5} - \frac{1}{5m})$.

Before proving this theorem, let us establish a simple lemma.

LEMMA 1.4. If
$$t_1 \ge t_2 \ge ... \ge t_n > OPT/3$$
 then LD = OPT.

PROOF. In the optimal schedule, each processor executes at most two tasks. To simplify the formalism, we shall introduce 2m-n dummy tasks with execution times zero. Then we may claim that each processor P_i executes precisely two tasks, with execution times a_i and b_i. Without loss of generality we may assume that

$$a_1 \ge a_2 \ge a_3 \ge \cdots \ge a_m$$

and that

$$a_1 \ge b_1, a_2 \ge b_2, \dots, a_m \ge b_m.$$

Clearly, these inequalities imply $a_1^{=t}_1$. If $a_i^{=t}_1$ for all $i=1,2,\ldots,k-1$ but $a_k^{< t}_k$ then necessarily $t_k^{=b}_i$ for some i< k. Interchanging b_i and a_k we obtain an optimal schedule again since $a_i^{+a}_k^{< a_i^{+b}_i^{<0PT}}$ and, of course, $b_i^{+b}_k^{\leq a_i^{+a}_k}$. After at most m interchanges of this kind, we obtain an optimal schedule with

$$a_1 = t_1, a_2 = t_2, \dots, a_m = t_m.$$

Now consider an arbitrary subscript k such that $1 \le k \le m$. Since t_{2m+1-k} is the k-th smallest of the m numbers b_1, b_2, \dots, b_m , there must exist a subscript i such that $1 \le i \le k$ and $t_{2m+1-k} \le b_i$. Hence

$$t_{k} + t_{2m+1-k} \le a_{k} + b_{1} \le a_{1} + b_{1} \le OPT.$$
 (*)

On the other hand, note that

$$t_k + t_{2m+1-k} \ge 2t_n > OPT - t_n$$

and so LIST DECREASING lets each P_k handle T_k and T_{2m+1-k} . But then (*) yields the desired result.

PROOF OF THEOREM 1.3. Consider a counterexample with n as small as possible. Still assuming $t_1 \geq t_2 \geq \cdots \geq t_n$, observe that T_n finishes last in the LIST DECREASING schedule. (Otherwise deletion of T_n from our list would leave LD unchanged and produce a counterexample with a smaller value of n.) Now Lemma 1.2 with $t=t_n$, and the assumption that we are working with a counterexample, combine into

$$\frac{4}{3} - \frac{1}{3m} < \frac{LD}{OPT} \leq 1 + \frac{m-1}{m} \cdot \frac{t_n}{OPT}$$

Hence $t_n > OPT/3$. But then Lemma 1.4 implies LD = OPT which is a contradiction.