. S

<o o

Notes on Heuristics
Winter 1978
V. Chvatal

1. Scheduling Independent Tasks

Let us consider a set of identical processors Pl’PE’ cee Pm and

a set 6f tasks Tl’TE’ e, Tn' Each task 'I'i has &n execution time ti
and requires only one processor. The processors operate in parallel and
none of them can execute more than one task at a vime; once it has begun

executing Ti’ it continues executing 1t until its completion time t, time

h
units later.

For example, if m=3, n=11 end (tl’tE’ vee ,tll) reads
2’l+,3)]+’2+,5,2Jl’1"’5)2 .
then a possible schedule might go as follows:

Pl processes Tl,T2,23,T5
Pé processes Th’TG’T9
EB progesses T%,Ta,Tlo,Tll

This schedule 1s represented by the diagram shown below.

Tl T2 ?5 T5

ol B W Y000

E)'lééﬁ'sé?é'salblilé
One of the possibly desirable goals 1s to get all the work done as

Soon as possible. In this sense, the schedule shown sbove is inferior
to that shown below.

B



Pl‘ TT T, T1o T5
| Py
P, T, T T, /A
L,
P3 T, T9 Tq T5 ///

sl

c 1 2 3 & 5 6 7 8 9 10 1
Even when there are only two processors, finding an optimal schedule ﬁay
be a very difficult problem. Hence it is important to have effiecient
algorithms which agproximate.optimal solutions with reasonsble accuracy.

The most stralghtforward of these heuristics is the LIST heuristic:
we conslder the tasks in the order in which they appear on our 1list Tl,..., Tn
and assign them the processors in such a way that, as soon as a processor
5ecomes idle, it 1s assigned@ the next svailsble task. When dbplied to our

exemple, LIST yields the (optimal) schedule shown below.

P T, T, T, T
Py T T, Ty T A
o 1 > 3 ¥y 5 6 7 8 9 10 1 12

However, there are nasty examples on which LIST does not perform that well.
The following figure shows the LIST schedule and the optimal schedule for
5:5,5,3,5,1,1,1,1,1,6.

7

11

o=

OF o3 Oy

10

WwlE{V P |~

Siu | =




More generally, there are examples with n=2m-1 where the finishing time
I of LIST equals 2m-1 but the optimal finishing time OPT is only m. Never-
theless, we shall prove that the ratio L/OP'I' cannot get any worse than that.

THEOREM 1.1. L<(2- %‘1) OPT

The theorem follows immediastely from the following lemma combined with the
observation that COPT > t.

LEMMA 1.2. If t is the execution time of a task which finishes last in LIST
schedule then '
L<opr 1+ £,

PROOF.

Since no processor is idle before time L-t, we have

n
(£ t) -t > n-t).

On the other hand,
OPT >

MLE

HiH

Combining these two lnequalities we obtain the desired result.

A slightly more sophisticate heuristilc is LIST DECREASING: first
order the tasks so that t'l > t2 2 e 2 tn and then spply LIST. An
exemple where LIST DECREASING performs relatively poorly is given by
m=56, n=13 and execution times
- 11,11,10,10,9,9,8,8,7,7,6,6,6.

The LIST DECREASING heuristic delivers a schedule with finishing time

Lb=23 vwhereas the optimal finishing time OPT is only 18.



1 1 13
2 12 /
3 9
4 10
5 7
: 8 //
1 10
2 9
3 8
L 7
5 3
1 12 13

More generally, there are examples with n=m+l, LD=hm-1 end OPT=3m
for all m. However, the restio LD/OPT cannot get any worse.

| b1
THEOREM lc L] IJD < OPT =z - = -
Before proving this theorem, let ua esteblish a simple lemma.
- LEMMA 1.k, If t)2 t, 2 ... >t >OPT/3 then LD = OPT.

FROOF. In the optimal schedule, each processor executes at most two tasks.
To simplify the formalism, we shall introduce 2m-n dummy tesks with

execution times zero. Then we may claim that each processor 1-"1 executes

precisely two tasks, wilth execution times a, end b 4" Without loss of

generality we masy assume that
alZaazaz’Zl.,.?_am
and that

l_ l, a2_>_b2, *wes 3 ammeo



-5-

Clearly, these inequalities imply a If a,=t, for all i=1,2,...,k-1

17t - i §
but ak<tk then necessarily tk—b for some i<k . Interchanging bi and a,
we obtain an optimal schedule againm since ai+ak<ai+bi§0PT and, of course,
b i+bk"a +a . After at most m interchanges of this kind, we obtain an
optimal schedule with

8, = tl’ 8, = t2, cee sy B = tm'

Now consider an arbitrary subseript k such that 1 < k < m. Since

t2m+l x 15 the k-th smallest of the m numbers bl b2, ’bm’ there
¢

mist exist a subsceript i such that 1 £1<kand t2m+l x < < b + Herice

*

tk+t2m+l_k5ak+bisai+b150PT. (*)

On the other hend s note that

t 2m+lk>2t >0PT-t

and so LIST DECREASING lets each P handle T and T2 mt 1ok But then (*)
ylelds the desired result.
;

FPROOF OF THEOREM l.3. Consider a counterexample with n as small as possible.
Still assuming t-l > t2 2 eee >t n? observe that T finishes last in the
LIST DECREASING schedule. (Otherwise deletion of T from our list would
leave LD unchenged and produce a counterexample with & smaller value of n.)
Now Lemma 1.3 with t—'tn » and the assumption that we are working with a
counterexample, combine lnto

L t

--- < LD < l+ml. "n
> 5m T om o~ = oBr °

Hence 1 > OPT/3. But then Lemma 1.t implies LD = OPT which is a
contraediction.



