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1. Scheduling Independent Tasks

Let us consider a set of identical processors Pl’PE’ cee Pm and

a set 6f tasks Tl’TE’ e, Tn' Each task 'I'i has &n execution time ti
and requires only one processor. The processors operate in parallel and
none of them can execute more than one task at a vime; once it has begun

executing Ti’ it continues executing 1t until its completion time t, time

h
units later.

For example, if m=3, n=11 end (tl’tE’ vee ,tll) reads
2’l+,3)]+’2+,5,2Jl’1"’5)2 .
then a possible schedule might go as follows:

Pl processes Tl,T2,23,T5
Pé processes Th’TG’T9
EB progesses T%,Ta,Tlo,Tll

This schedule 1s represented by the diagram shown below.

Tl T2 ?5 T5
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One of the possibly desirable goals 1s to get all the work done as

Soon as possible. In this sense, the schedule shown sbove is inferior
to that shown below.
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Even when there are only two processors, finding an optimal schedule ﬁay
be a very difficult problem. Hence it is important to have effiecient
algorithms which agproximate.optimal solutions with reasonsble accuracy.

The most stralghtforward of these heuristics is the LIST heuristic:
we conslder the tasks in the order in which they appear on our 1list Tl,..., Tn
and assign them the processors in such a way that, as soon as a processor
5ecomes idle, it 1s assigned@ the next svailsble task. When dbplied to our

exemple, LIST yields the (optimal) schedule shown below.

P T, T, T, T
Py T T, Ty T A
o 1 > 3 ¥y 5 6 7 8 9 10 1 12

However, there are nasty examples on which LIST does not perform that well.
The following figure shows the LIST schedule and the optimal schedule for
5:5,5,3,5,1,1,1,1,1,6.
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More generally, there are examples with n=2m-1 where the finishing time
I of LIST equals 2m-1 but the optimal finishing time OPT is only m. Never-
theless, we shall prove that the ratio L/OP'I' cannot get any worse than that.

THEOREM 1.1. L<(2- %‘1) OPT

The theorem follows immediastely from the following lemma combined with the
observation that COPT > t.

LEMMA 1.2. If t is the execution time of a task which finishes last in LIST
schedule then '
L<opr 1+ £,

PROOF.

Since no processor is idle before time L-t, we have

n
(£ t) -t > n-t).

On the other hand,
OPT >

MLE

HiH

Combining these two lnequalities we obtain the desired result.

A slightly more sophisticate heuristilc is LIST DECREASING: first
order the tasks so that t'l > t2 2 e 2 tn and then spply LIST. An
exemple where LIST DECREASING performs relatively poorly is given by
m=56, n=13 and execution times
- 11,11,10,10,9,9,8,8,7,7,6,6,6.

The LIST DECREASING heuristic delivers a schedule with finishing time

Lb=23 vwhereas the optimal finishing time OPT is only 18.
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More generally, there are examples with n=m+l, LD=hm-1 end OPT=3m
for all m. However, the restio LD/OPT cannot get any worse.

| b1
THEOREM lc L] IJD < OPT =z - = -
Before proving this theorem, let ua esteblish a simple lemma.
- LEMMA 1.k, If t)2 t, 2 ... >t >OPT/3 then LD = OPT.

FROOF. In the optimal schedule, each processor executes at most two tasks.
To simplify the formalism, we shall introduce 2m-n dummy tesks with

execution times zero. Then we may claim that each processor 1-"1 executes

precisely two tasks, wilth execution times a, end b 4" Without loss of

generality we masy assume that
alZaazaz’Zl.,.?_am
and that

l_ l, a2_>_b2, *wes 3 ammeo
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Clearly, these inequalities imply a If a,=t, for all i=1,2,...,k-1

17t - i §
but ak<tk then necessarily tk—b for some i<k . Interchanging bi and a,
we obtain an optimal schedule againm since ai+ak<ai+bi§0PT and, of course,
b i+bk"a +a . After at most m interchanges of this kind, we obtain an
optimal schedule with

8, = tl’ 8, = t2, cee sy B = tm'

Now consider an arbitrary subseript k such that 1 < k < m. Since

t2m+l x 15 the k-th smallest of the m numbers bl b2, ’bm’ there
¢

mist exist a subsceript i such that 1 £1<kand t2m+l x < < b + Herice

*

tk+t2m+l_k5ak+bisai+b150PT. (*)

On the other hend s note that

t 2m+lk>2t >0PT-t

and so LIST DECREASING lets each P handle T and T2 mt 1ok But then (*)
ylelds the desired result.
;

FPROOF OF THEOREM l.3. Consider a counterexample with n as small as possible.
Still assuming t-l > t2 2 eee >t n? observe that T finishes last in the
LIST DECREASING schedule. (Otherwise deletion of T from our list would
leave LD unchenged and produce a counterexample with & smaller value of n.)
Now Lemma 1.3 with t—'tn » and the assumption that we are working with a
counterexample, combine lnto

L t

--- < LD < l+ml. "n
> 5m T om o~ = oBr °

Hence 1 > OPT/3. But then Lemma 1.t implies LD = OPT which is a
contraediction.



