Case study II: Parsimony

e Principle of parsimony = find the simplest explana-
tion.

e In evolution - find the evolutionary history requiring
the least amount of total change.

e It is unlikely (but not impossible) that the same
feature evolved independently - common features
indicate common ancestry.

Example: One ‘“feature” could be which nucleotide
(A,C,G,T) is present at a particular position in the DNA.,

Question Given features present in existing population -
which features were present in extinct population? Can
we make guesses as to the content of the ancestral

sequences?

Parsimony on a fixed tree
Formalising the definition.

INPUT

e A rooted binary tree T = (V, E) with leaves labelled
by species.

e An assignment of states to the leaves of T'.

e A cost matrix M, where M]i, j] is the cost of chang-
ing from state ¢ to state ;.

We want to assign states to all of the vertices of T.
The cost of such an assignment is the sum of the costs

of the changes across each edge in the tree. We want
to minimize the cost.

Example

Looking for a recursion: first attempt

To optimize over the whole tree we optimize over the
subtrees. For each vertex v let f(v) be the minimum
cost of assigning states to the vertices in the subtree
rooted at v.

Suppose v has two children uw; and wu».

e Find a minimum assignment for the subtrees rooted
at w1 and wuo.

e Find a minimum assignment for subtree rooted at
v by choosing the element to put at v.

e Compute f(v).

Problem: doesn’'t always find minimum

Moral: Not every division into subproblems works.

Second attempt

For each vertex v and each state z, let f(v,z) denote
the minimum cost of an assignment to vertices in the
subtree rooted at v, subject to the condition that x is
assigned to v.

Recursion:

If v is a leaf then we have already assigned some state
x to v. Put f(v,z) =0 and f(v,y) = oo for all y # x.

Suppose that v has two children w1 and w». Then for
each x,

f(v,ac) — mln{f(ul,y)—l—M[az,y]}—l—mln{f(UQ, Z)+M[$,Z]}

Dynamic Programming Solution

For all vertices v and states x, set F[v,z] + oco.
Let vog be the root of T.
for all states = do
MinCost(v, x)
return the minimum of F[vg,z] over all x.

RN

MinCost(v,x)
if I'[v,z] # oo then
return F[v, x].
else
if v is a leaf then
if = is the state already assigned to v then
Flv,z] +— O
else
Flv,z] «— oo
else
let u1 and ux be the children of v.
F1 — min{MinCost(ui,y) + M|z, y]}
12. Fp «— min{MinCost(uz,z) + M[x, z]}
13. F[’U,ZE] <—F1—|—F2
14. return Flv,z].

CONOOA W=

==
= O

Recursive free version

The solution of the subproblem for (v,xz) depends on
the solution of (u;,y) for each child u; and each state y.

We want to traverse the vertices in post-order (the chil-
dren processed before the parents).

The algorithm then becomes:

MinCost2(T)
1. for all vertices of v in @ post-order traversal do
2. iIf v is a leaf then

3 If z is the state already assigned to v then

4 Flv,z] < O

5 else

6. Flv,x] «— oo

7 else

3 let u1 and us be the children of v.

9. Flv,z] — min{Fluy,y] + M[z,y]} + min{Fluz, 2] + M|z, 2]}
10.return minimum of F[vg,x]. [vg = root of T

Recovering a minimum cost assignment

As before, we use a recursive procedure. Let vg be
the root and suppose that xg minimizes F[vg, x] we call
FindMinAssign(vg, xg).

FindMinAssign(v,x)

1. Assign x to vertex v.

if v is a not a leaf then
Let w1 and up be the children of wv.
Find y that minimizes Flu1,y] + M|z, y]
Find z that minimizes Flus, z] + M|z, 2]
FindMinAssign(ui,y).
FindMinAssign(us, z).

NOoOGRWN

Example

Case study III - DNA sequence alignment

Input: two DNA sequences
AAACAGTTAACTTA
AACAGTCAGACTGA

An alignment involves inserting gaps to match up site
for site.

AAACAGTTA-ACTTA
AA-CAGTCAGACTGA

To score an alignment we examine each site in turn.:

e If both are equal, score +1
e If sites are different score -1

e If one site is a gap, score -2.

Finding a recursion

Input sequences are ai,an,...,a, and by, bo, ..., by.

For each pair (i,j) suchthat 1 <i<mand 1 <j <n we
consider the subproblem: “what is the maximum score
for an alignment of ai1,a2,...,a; and b1,bo,...,b;7"

For any alignment of a1,a2,...,a; and by1,b2,...,b; we can
have one of three situations:

e T he last column in the alignment is not a gap for
either of the sequences.

e There is a gap for the first but not the second
sequence.

e There is a gap for the second but not the first
sequence.

still looking for a recursion

Let f(7,7) denote the maximum score of an alignment
of a1,...,a; and by1,...,b;. For now, assume that : > O
and 5 > 0.

Suppose that we have such a maximum cost alignment
(i.e. it has cost f(7,7)).
e If the last column has no gaps then
— if a; =b; then f(i,j) = f(t—-1,j—-1)+1

e If the last column is a gap in the first sequence then

e If the last column is a gap in the second sequence

If i =45 =0 then f(i,7) = 0.
If >0 and j =0 then f(¢,5) = f(:—1,0) — 2.
If i=0 and 57 > 0 then f(¢,5) = f(0.j —1) — 2.

Dynamic programming algorithm

1. Initialise F[i, j] « —oo for all i, j.
2. Call Align(m,n).

Align(i,j)
1. If F[i,j] # —oo then
2. return F[i,j].
3. else
4., if ¢ =7 =0 then
5. Fli,j] < O
6. elseif : =0 and 53 > 0 then
7. Fi, j] « Align(i,j — 1) — 2
8. elseif:>0 and 3 =0 then
9. Fi, j] «— Align(i — 1,5) — 2
10. else
11. if a; = bj then
12. Fi, j] < max{Align(i— 1,7 —1) + 1,
Align(i — 1,j5) — 2, Align(i,j — 1) — 2}
13. else
14. Fli,j] — max{Align(i — 1,5 — 1) — 1,
Align(i — 1,j) — 2, Align(i,j — 1) — 2}
15. return Fi,j].

Recursion free version

To compute f(7,7) we needed to have computed

e f(i—1,7—1)

We can process the subproblems in order of a topolog-
ical sort using a simple loop:

Align?2
1. for ¢« from O to m do

2. for 5 from O to n do

3. if : =5 =0 then

5. Fli,7] < O

6. else if : =0 and 5 > 0 then

7. Fli,j] < F[i,j —1] — 2

8. else if : > 0 and 5 =0 then

0. Fli,j] «— F[i —1,7] — 2

10. else

11. if a; = bj then

12. Fli,j] —« max{F[i— 1,7 — 1]+ 1,
13. else

14. Fli,j] «— max{F[i — 1,5 — 1] — 1,

15.return F'[m,n].

