Initialise L[v] «— —1 for all v.

Construct the Pred tables for G.

Call LongPath(v) for each v.

Return the maximum of L[v] for ¢ =1,2,...,n.

AN

LongPath(v)
. If L[v] > 0 then
return L[v]
else
if Pred[v] is empty then
L[v] < 0
else
L[v] < 1 4+ max{LongPath(u) : u € Pred[v]}
return L[v].

XN AN

How to extract a solution

Suppose that L[v] contains the length of the longest
path ending in v. How to find the longest path?

Solution: we use a recursive procedure.

Compute L[v] for all v.

Find v* such that L[v*] is maximized.
Let P be an empty path.
FindLong(P,L,v*).

Output P.

o Whe

FindLong(P, L,v)

6. Add v to the beginning of P.

7. If v is not a source then

8. find u € Pred[v] such that L[v] = L[u] + 1
9. FindLong(P,L,u)

Problem: step 8 can take mroe time than necessary...

Storing information about optimal solutions

For each v, store a vertex u € Pred[v] that preceeds v in
a longest path.

LongPath?2(v)

1. If L[v] > 0 then
2. return L[v]
3. else

4. if Pred[v] is empty then
5. L[v] < 0
6 else

7 Find u* € Pred[v] that maximizes LongPath(u*).
8 w[v] «— u*

9 L[v] < 1 4+ LongPath(u*)

10. return L[v].

Then use the table 7 to construct the optimal (replacing
earlier procedure FindLong).

FindLong2(v)

6. Add v to the beginning of P.
7. If v is not a source then

8. wu <« w[v]

9. FindLong(P,L,u)

Takes time linear in the number of vertices.

How many optimal solutions are there?

We can also quickly compute the number of optimal
solutions (e.g. the number of longest paths).

Let m(v) denote the number of longest paths finishing
with vertex v.

If v is a source (no incoming edges) then m(v) = 1.
Otherwise, the longest path ending in v must have en-
tered v via one of the vertices u € Pred[v]. If this is the
case, then the length of the longest path to v must be
L[v] — 1. So....

m(v) = 3 m(w),
u€Pred[v]: L[u]=L[v]-1
that is, the sum of m(w) over all v € Pred[v] such that
L[v] = L[u] + 1.

Exercise: Come up with an algorithm that computes
m(v) for all v. Answers in tutorials.

CASE STUDY 1 - Matrix Chain Multiplication

See also Cormen chpt 16. (chpt 15 in the 2nd edition).

Let A and B be two matrices.

e The product AB is defined only if the number of
columns of A equals the number of rows of B.

e If A has dimensions px g and B has dimensions g X r
then AB has dimensions pxr, and it takes pgr scalar
multiplications to compute AB.

e Given three matrices A, B,C (with compatible di-
mensions)

((AB)C) = (A(BC))

e Even though (AB)C and A(BC), they can take
quite different times to compute.

e e.g. if Ais 100 x 10, B is 10 x 50, C' is 50 x 5
then computing (AB)C takes 100-10-50 + 100 -
50 -5 = 75000 operations while computing A(BC)
takes 10-50-5+4 10010 -5 = 7500 operations.

Matrix-chain muliplication problem

We are given matrices A1A>---A,.
Matrix A; has dimensions p;_1 X p;.

Problem: What is the minimum number of scalar mul-
tiplications needed to evaluate
A1A>A3--- A7

Subproblem:

For each 7,5 such that 1 <1 <5 <n:

What is the minimum number of scalar multiplications
needed to evaluate

AiAip1Aigo - A7

Note: the matrix A;A;41---A; has p,—1 rows and p;

columns.

Looking for the recursion

Let m[i, 7] denote the number of scalar multiplications
needed to evaluate A;A;41--- Aj.

If + = 7 then m][i,j] = 0 since we just have to get the
matrix A;.

If K> 11 and k < 5 then the minimum number of scalar
multiplications needed to evaluate

(AiAir1 .. Ap)(Agg1--- Aj)

IS
(the min. number needed to compute A;A;4+1... A;)
4 (the min. number needed to compute A;A;41...A;)
+(the operations needed to multiply the two ma-
trices)

That is,

In order to find the minimum, we choose the k that
Mminimizes this expression.

Recursion and algorithm

e If 1 = 5 then m]i, 5] = 0.

o If ¢+ < j then

We can evaluate this using memoization.

1. m[i,j] — —1 forall 1 <i<j<n.
2. Output MCR(1,n)

MCR(i,7).

3. if m[i,§] > 0 then
4. return mli, j]
5. else

6. if i = then
7 mli, 5] = 0.

38 else

9 mli, j] — min {MCR[i, k] + MCRIk + 1, 5] + pi-1pip;}

10. return m[i, j].

This takes O(n3) time.

Recursion-free version

The subproblem for (z,5) depends on subproblem (i, k)
and also on subproblem (k+1,5) for all i < k < 3.

Dependency graph looks like:

(1,1)(1,2) (1,n)

So a loop like:

for i — 1 ton
for j — 1ton
Compute mli, j]

won't work. Instead we need something like:

forl— 1ton
for all 2,5 such that j=141—-1
Compute mli, j]

Recursion free dynamic programming solution

MatrizChainOrder(p1,p2,...,Pn).
1. forl— 1 ton do

2. fori—1ton—-[+41do

3. je—1+4+1-1 [so [, 7] contains [elements]
4. if i = j then

5. mli, j] < O

6. else

7.

1<k<j

Multiplying the matrices

We have computed the minimum number of multipli-
cations required. How do we go about multiplying the
matrices.

We assume that there is a library function MatrizMultiply(A, B)
that multiplies A and B.

The following returns the product of A;A;+1...A;.

Multiply (2, 7)
if i — j then
return A;.
else
find k such that ml[i, j] = mli, k] + m[k + 1, 5] + pi—1pkp;.
Ap «— Multiply(z, k)
Ag «— Multiply(k+ 1, %)
return MatrizxMultiply(Ar, AR).

NoOOoh~WhHE

