Directed graphs

- A directed graph (digraph) is a pair (V, E) where V is a finite set of vertices and E the set of directed edges.
- Each edge in E is an ordered pair of vertices, denoted (u,v) (thats an edge from u to v).
- A directed path is a sequence of vertices $\langle v_1, v_2, \dots, v_k \rangle$ such that $(v_i, v_{i+1}) \in E$ for all $i = 1, 2, \dots, k-1$.
- A cycle is a directed path that starts and finishes with the same vertex and visits any vertex at most once.
- A vertex u is **reachable** from v if there is a directed path from u to v.
- A sink is a vertex with no edges going out (NB different from Cormen). A source is a vertex with no edges going in.

Directed acyclic graph

A directed acyclic graph (DAG) is a directed graph with no cycles.

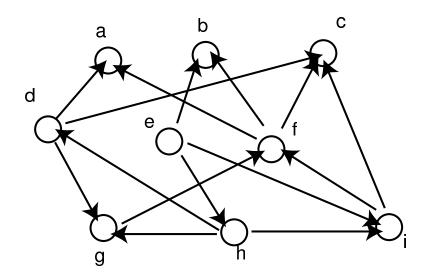
Lemma

Every DAG has a source (vertex with no incoming edges).

Proof

Choose a vertex a_0 . If a_0 is a source, we are done. Otherwise there is an edge (a_1,a_0) . Now consider a_1 . If a_1 is not a source then there is an edge (a_2,a_1) . Continue this process, noting that each time we examine a different vertex. Since the number of vertices is finite, we must eventually find a source.

Topological sort


A **topological sort** of a digraph is an ordering v_1, v_2, \ldots, v_n of the vertex such that if (v_i, v_j) is an edge then i < j.

We can use induction and the previous lemma to prove:

Lemma

Every DAG has a topological sort

Example:

