Faculty of Science

FINAL EXAMINATION

COMPUTER SCIENCE COMP 360

Algorithm Design Techniques

Leacock 210

Monday December 10, 2007, 2-5pm

Examiner: Prof. D. Avis

Associate Examiner: Prof. A. Vetta

Instructions

Calculators are not allowed

No cell phones, books, or notes.

This exam consists of 6 questions, and has 3 pages including this cover page.

Dictionaries are not allowed

Answer in EXAM BOOK

-2- COMP360

- 1. (10 pts)
- (a) Describe the stable marriage problem, and define what is meant by a stable matching
- (b) Describe briefly an efficient algorithm for finding a stable matching.
- (c) Consider a problem with 3 women A,B,C and 3 men a,b,c. The preference lists are:

This means, for example, that A prefers a to b to c. Find two **distinct** stable matchings.

2. (10 pts) A popular psychiatrist has n clients for a given day. For i = 1, ..., n, client i has a requested start time s_i , finish time f_i and is willing to pay a consultation fee of w_i for the period. Design a **polynomial time** algorithm that will allow the psychiatrist to choose the subset of clients that maximizes her total fee on that day. Derive the time complexity of your algorithm.

3. (10 pts)

- (a) Suppose you are given a directed graph with edge capacities, and a feasible flow between two given vertices s and t. Describe an algorithm that runs in linear time (in the input size) and verifies if the flow is the maximum flow between s and t. It should either give a certificate of optimality, or a flow that is larger than the given flow.
- (b) It is required to find an invigilator for each of a consecutive set of m exams, labelled e_1, \dots, e_m . There are n invigilators available, and for each invigilator there is a subset S_i of the exams that he/she could invigilate. No invigilator should invigilate more than three different exams. Show how to efficiently solve this problem by formulating it as a network flow problem. If for a given input there is no feasible assignment, what certificate of infeasibily could be given?

4. (10 pts)

- (a) Explain what is a linear program in standard form, and what is its dual. State the strong duality theorem.
- (b) Write down the dual of the following LP.

maximize
$$z = 5x_1 + 15x_2$$

 $s.t. 2x_1 - x_2 \le 2$
 $3x_1 + x_2 \le 5$
 $-2x_1 + x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$

(c) It has been claimed that $x_1 = 0$, $x_2 = 4$ is a primal optimal solution, and that $y_1 = 0$, $y_2 = 7$, $y_3 = 8$ is a dual optimal solution. Either prove this claim, or if it is false, use the information given to obtain good bounds on the optimum objective function value.

-3- COMP360

5. (10 points)

3-SCHED: You are given the processing times t_1, t_2, \dots, t_n of n jobs, and a deadline T. All data are integers. Each of the jobs must be scheduled on one of three identical machines. Each machine can process one job at a time. Is there a schedule so that all jobs finish before time T?

- (a) Define the class NP, and determine whether 3-SCHED is in NP.
- (b) Explain what is meant by a polynomial time reduction.
- (c) Reduce one of the following problems to 3-SCHED.
- 3-SAT, PARTITION, VERTEX COVER.

Give a description of the problem from the list that you have chosen, give the reduction, and prove it is correct.

(d) Describe an efficient approximation algorithm for the optimization version of 3-SCHED, i.e., find the smallest T such that all jobs are finished by time T. Your algorithm should obtain a bound on ratio of the approximate solution to the optimum solution that is at most 5/3. Give an example that illustrates the worst case behaviour of your algorithm.

6. (10 points)

In the max cut problem we are given an undirected graph G = (V, E) and a positive weight w(e) for each edge $e \in E$. For any partition the vertex set into subsets A and B we define the weight of the cut (A, B) to be the sum of the weights of the edges with one endpoint in A and one in B. The goal is to find the maximum weight cut.

Give either a local search algorithm or a greedy algorithm that finds a cut (A, B) which has weight at least half of the weight of the maximum weight cut. Prove that your algorithm delivers this performance guarantee.