Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

- Dynamic programming = planning over time
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Greed. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Areas

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, systems,

Some famous dynamic programming algorithms.

- Viterbi for hidden Markov models.
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Weighted interval scheduling problem.

- Job j starts at s_{j}, finishes at f_{j}, and has weight or value v_{j}.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $i<j$ such that $j o b i$ is compatible with j.
$E x: p(8)=5, p(7)=3, p(2)=0$.

Notation. $\operatorname{OPT}(\mathrm{j})=$ value of optimal solution to the problem consisting of job requests $1,2, \ldots, j$

- Case 1: OPT selects job j
- can't use incompatible jobs $\{p(j)+1, p(j)+2, \ldots, j-1\}$
- must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots, p(j)$
\checkmark optimal substructure
- Case 2: OPT does not select job j.
must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$
O P T(j)= \begin{cases}0 & \text { if } \mathrm{j}=0 \\ \max \left\{v_{j}+O P T(p(j)), O P T(j-1)\right\} & \text { otherwise }\end{cases}
$$

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

$p(1)=0, p(j)=j-2$

Brute force algorithm.

```
Input: n, s}\mp@subsup{\mathbf{s}}{1}{},\ldots,\mp@subsup{\mathbf{s}}{\textrm{n}}{},\mp@subsup{f}{1}{},\ldots,\mp@subsup{f}{\textrm{n}}{},\mp@subsup{\textrm{v}}{1}{},\ldots,\mp@subsup{\mathbf{v}}{\textrm{n}}{
```

Input: n, s}\mp@subsup{\mathbf{s}}{1}{},···,\mp@subsup{\mathbf{s}}{\textrm{n}}{},\mp@subsup{f}{1}{},···,\mp@subsup{f}{\textrm{n}}{},\mp@subsup{\textrm{v}}{1}{},···,\mp@subsup{\mathbf{v}}{\textrm{n}}{
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq···\leq\mp@subsup{f}{n}{}
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq···\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), .., p(n)
Compute p(1), p(2), .., p(n)
Compute-Opt(j) {
Compute-Opt(j) {
if (j = 0)
if (j = 0)
return 0
return 0
else
else
return max (v}\mp@subsup{v}{j}{}+\mathrm{ Compute-Opt(p(j)), Compute-Opt(j-1))
return max (v}\mp@subsup{v}{j}{}+\mathrm{ Compute-Opt(p(j)), Compute-Opt(j-1))
}

```
}
```

Memoization. Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, s
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{
Compute p(1), p(2), ..., p(n)
for j = 1 to n
    M[j] = empty }\leftarrow\mathrm{ global array
M[j] = 0
M-Compute-Opt(j) {
    if (M[j] is empty)
        M[j] = max (w w + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
    return M[j]
}
```

Claim. Memoized version of algorithm takes $O(n \log n)$ time

- Sort by finish time: $O(n \log n$).
- Computing $p(\cdot): O(n)$ after sorting by start time.
- M-Compute-Opt (j): each invocation takes O (1) time and either
- (i) returns an existing value $\mathrm{M}[j]$
- (ii) fills in one new entry $\mathrm{m}[j]$ and makes two recursive calls
- Progress measure $\Phi=\#$ nonempty entries of $m[]$.
- initially $\Phi=0$, throughout $\Phi \leq n$.
- (ii) increases Φ by $1 \Rightarrow$ at most $2 n$ recursive calls.
. Overall running time of m-Compute-Opt (n) is $O(n)$. .

Remark. $O(n)$ if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)
Find-Solution(j) {
    if (j = 0)
        output nothing
    else if ( }\mp@subsup{v}{j}{}+M[p(j)]>M[j-1]
        print j
        Find-Solution(p(j))
    else
        Find-Solution(j-1)
}
```

Automated memoization. Many functional programming languages (e.g., Lisp) have built-in support for memoization.
Q. Why not in imperative languages (e.g., Java)?

```
(defun F (n)
    (if
        (<= n 1)
        n
        n}(+(F(-n1))(F(-n2))))
```

 Lisp (efficient)
    ```
static int F(int n) {
    if ( }n<=1\mathrm{ ) return n
    else return F(n-1) +F(n-2);
}
```

Java (exponential)

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```
Input: n, si,\ldots,\mp@subsup{s}{n}{},\mp@subsup{f}{1}{},\ldots,\mp@subsup{f}{n}{},\mp@subsup{\textrm{v}}{1}{},\ldots,\mp@subsup{v}{\textrm{n}}{}
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
Compute p(1), p(2),\ldots,p(n)
Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
            M[j] = max (vj + M[p(j)], M[j-1])
```


6.3 Segmented Least Squares

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with
$x_{1}<x_{2}<\ldots<x_{n}$, find a sequence of lines that minimizes $f(x)$.
Q. What's a reasonable choice for $f(x)$ to balance accuracy and parsimony?
$\stackrel{\uparrow}{i}$

Least squares.

- Foundational problem in statistic and numerical analysis.
- Given n points in the plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- Find a line $y=a x+b$ that minimizes the sum of the squared error:

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}
$$

Solution. Calculus \Rightarrow min error is achieved when

$$
a=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}, \quad b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n}
$$

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with
- $x_{1}<x_{2}<\ldots<x_{n}$, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment - the number of lines L
- Tradeoff function: E + c L, for some constant c>0.

Dynamic Programming: Multiway Choice

Notation.

- OPT(j) = minimum cost for points $\mathrm{p}_{1}, \mathrm{p}_{\mathrm{i}+1}, \ldots, \mathrm{p}_{\mathrm{j}}$
- $e(i, j)=$ minimum sum of squares for points $p_{i}, p_{i+1}, \ldots, p_{j}$

To compute OPT(j):

- Last segment uses points $p_{i}, p_{i+1}, \ldots, p_{j}$ for some i.
- Cost $=e(i, j)+c+$ OPT(i-1).


```
OPT(j)={\mp@subsup{\operatorname{min}}{1\leqi\leqj}{{}{e(i,j)+c+OPT(i-1)} otherwise
```


Knapsack Problem

6.4 Knapsack Problem

```
INPUT: n, p
Segmented-Least-Squares() {
    M[0] = 0
        for j = 1 to n
            for i = 1 to j
                compute the least square error }\mp@subsup{e}{ij}{}\mathrm{ for
                the segment }\mp@subsup{p}{i}{},\ldots,\mp@subsup{p}{j}{
    for j = 1 to n
        M[j] = min
    return M[n]
}
```

Running time. $O\left(n^{3}\right)$. \& can be improved to $O\left(n^{2}\right)$ by pre-computing various statistics

- Bottleneck = computing e (i, j) for $O\left(n^{2}\right)$ pairs, $O(n)$ per pair using previous formula.

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_{i}>0$ kilograms and has value $v_{i}>0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: $\{3,4\}$ has value 40 .

| Item | Value | Weight |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 2 | 6 | 2 |
| 3 | 18 | 5 |
| 4 | 22 | 6 |
| 5 | 28 | 7 |

Greedy: repeatedly add item with maximum ratio v_{i} / w_{i}
Ex: $\{5,2,1\}$ achieves only value $=35 \Rightarrow$ greedy not optimal.

Def. OPT $(i)=\max$ profit subset of items $1, \ldots, i$.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$
- Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to reject other items
- without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, w
for w = 0 to w
    M[0, w] = 0
for i = 1 to n
    for w = 1 to w
            if ( }\mp@subsup{w}{i}{}>>w
            M[i, w] = M[i-1,w]
            else
            M[i, w] = max {M[i-1, w], vi
return M[n, W]
```

Def. OPT $(\mathrm{i}, \mathrm{w})=\max$ profit subset of items $1, \ldots, i$ with weight limit w.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$ using weight limit w
- Case 2: OPT selects item i.
- new weight limit = w - wi
- OPT selects best of $\{1,2, \ldots, i-1\}$ using this new weight limit
$O P T(i, w)= \begin{cases}0 & \text { if } \mathrm{i}=0 \\ O P T(i-1, w) & \text { if } \mathrm{w}_{\mathrm{i}}>\mathrm{w} \\ \max \{O P T(i-1, w), & \left.v_{i}+O P T\left(i-1, w-w_{i}\right)\right\} \\ \text { otherwise }\end{cases}$

Knapsack Algorithm

| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | ϕ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | \{ 1 \} | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $n+1$ | \{ 1,2 \} | 0 | 1 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| | $\{1,2,3\}$ | 0 | 1 | 6 | 7 | 7 | 18 | 19 | 24 | 25 | 25 | 25 | 25 |
| | $\{1,2,3,4\}$ | 0 | 1 | 6 | 7 | 7 | 18 | 22 | 24 | 28 | 29 | 29 | 40 |
| \checkmark | $\{1,2,3,4,5\}$ | 0 | 1 | 6 | 7 | 7 | 18 | 22 | 28 | 29 | 34 | 34 | 40 |

OPT: $\{4,3\}$
value $=22+18=40$

| Item | Value | Weight |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 2 | 6 | 2 |
| 3 | 18 | 5 |
| 4 | 22 | 6 |
| 5 | 28 | 7 |

Running time. $\Theta(n W)$.

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial
algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]

RNA. String $B=b_{1} b_{2} \ldots b_{n}$ over alphabet $\{A, C, G, U\}$.

Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs: $A-U, C-G$

6.5 RNA Secondary Structure

Examples.

base pair

ok

sharp turn

AGUUGGCCAU
crossing

Dynamic Programming Over Intervals

Notation. OPT $(\mathrm{i}, \mathrm{j})=$ maximum number of base pairs in a secondary structure of the substring $b_{i} b_{i+1} \ldots b_{j}$.

- Case 1. If $\mathrm{i} \geq \mathrm{j}-4$.
- OPT $(\mathrm{i}, \mathrm{j})=0$ by no-sharp turns condition.
- Case 2. Base b_{j} is not involved in a pair.
- $\operatorname{OPT}(i, j)=\operatorname{OPT}(i, j-1)$
- Case 3. Base b_{j} pairs with b_{t} for some $i \leq t<j-4$.
- non-crossing constraint decouples resulting sub-problems
$-\operatorname{OPT}(i, j)=1+\max _{+}\{\operatorname{OPT}(i, t-1)+\operatorname{OPT}(t+1, j-1)\}$

$$
\begin{aligned}
& \text { take max over } \dagger \text { such that } i \leq \dagger<j-4 \text { and } \\
& b_{+} \text {and } b_{j} \text { are Watson-Crick complements }
\end{aligned}
$$

Remark. Same core idea in CKY algorithm to parse context-free grammars.

First attempt. OPT $(\mathrm{j})=$ maximum number of base pairs in a secondary structure of the substring $b_{1} b_{2} \ldots b_{j}$.

Difficulty. Results in two sub-problems.

- Finding secondary structure in: $\mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{t}-1}$. \longleftarrow OPT(t-1)
- Finding secondary structure in: $b_{t+1} b_{t+2} \ldots b_{n-1}$
\leftarrow need more sub-problems

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

```
RNA ( }\mp@subsup{b}{1}{},\ldots,\mp@subsup{b}{n}{}) 
    for k = 5, 6, .., n-1
        for i = 1, 2, ..., n-k
            j = i + k
            Compute M[i, j]
```

 return \(\mathrm{M}[1, \mathrm{n}] \quad\) using recurrence
 \}

| 4 | 0 | 0 | 0 | |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 0 | 0 | | |
| | | | | |
| | 0 | | | |
| | | | | |
| | | | | 7 |
| | 6 | 7 | 8 | 9 |

j

Running time. $O\left(n^{3}\right)$.

Recipe.

- Characterize structure of problem.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic programming techniques.

- Binary choice: weighted interval scheduling
- Multi-way choice: segmented least squares. Ł Viterbi algori thm for HMM also uses
tradeoff between anars imony ynd occurray
- Adding a new variable: knapsack.
- Dynamic programming over intervals: RNA secondary structure.
- cky parsing algori thm for context-free
grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

How similar are two strings?

- ocurrance
- occurrence

6.6 Sequence Alignment

Applications.

- Basis for Unix diff.
- Speech recognition.
- Computational biology

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ; mismatch penalty $\alpha_{p q}$.
- Cost = sum of gap and mismatch penalties.

Goal: Given two strings $X=x_{1} x_{2} \ldots x_{m}$ and $Y=y_{1} y_{2} \ldots y_{n}$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs $x_{i}-y_{j}$ such that each item occurs in at most one pair and no crossings.

Def. The pair $x_{i}-y_{j}$ and $x_{i^{\prime}}-y_{j^{\prime}}$ cross if $i<i^{\prime}$, but $j>j^{\prime}$.

$$
\operatorname{cost}(M)=\underbrace{\sum_{\left(x_{i}, y_{j}\right) \in M} \alpha_{x_{i}, y_{j}}}_{\text {mismatch }}+\underbrace{\sum_{i: x_{i} \text { unmatched }} \delta+\sum_{j: y, \text { unmatched }} \delta}_{\text {gap }}
$$

Ex: Ctaccg vs. tacatg.
Sol: $M=x_{2}-y_{1}, x_{3}-y_{2}, x_{4}-y_{3}, x_{5}-y_{4}, x_{6}-y_{6}$.

Sequence Alignment: Algorithm

```
Sequence-Alignment (m, n, 榇 }\mp@subsup{x}{2}{}\ldots\mp@subsup{x}{m}{},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\ldots\mp@subsup{y}{n}{},\delta,\alpha)
    for i = 0 to m
        m[0, i] = i\delta
    or j = 0 to n
        M[j, O] = j\delta
    for i = 1 to m
            for j = 1 to n
            M[i, j] = min(\alpha[\mp@subsup{x}{i}{},\mp@subsup{y}{j}{}]+M[i-1, j-1]
                \delta +M[i-1, j]
                \delta +M[i, j-1])
    return M[m, n]
```

\}

Analysis. $\Theta(m n)$ time and space.
English words or sentences: $m, n \leq 10$.
Computational biology: $m=n=100,000$. 10 billions ops OK, but 10GB array?

Def. OPT $(i, j)=$ min cost of aligning strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.

- Case 1: OPT matches $x_{i}-y_{j}$.
- pay mismatch for $x_{i}-y_{j}+\min$ cost of aligning two strings $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$
- Case 2a: OPT leaves x_{i} unmatched.
- pay gap for x_{i} and min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$
- Case 2b: OPT leaves y_{j} unmatched.
- pay gap for y_{j} and min cost of aligning $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j-1}$

$$
\operatorname{OPT}(i, j)= \begin{cases}j \delta & \text { if } \mathrm{i}=0 \\
\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+O P T(i-1, j-1) \\
\delta+O P T(i-1, j) \\
\delta+O P T(i, j-1)
\end{array}\right. & \text { otherwise } \\
i \delta & \text { if } \mathrm{j}=0\end{cases}
$$

6.7 Sequence Alignment in Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in $O(m+n)$ space and $O(m n)$ time.

- Compute OPT(i, •) from OPT(i-1,•).
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in $O(m+n)$ space and $O(m n)$ time.

- Clever combination of divide-and-conquer and dynamic programming
- Inspired by idea of Savitch from complexity theory.

Sequence Alignment: Linear Space

Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Can compute $f(\cdot, j)$ for any j in $O(m n)$ time and $O(m+n)$ space.

Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Observation: $f(i, j)=\operatorname{OPT}(i, j)$.

Sequence Alignment: Linear Space

Edit distance graph.

- Let $g(i, j)$ be shortest path from (i, j) to (m, n).
- Can compute by reversing the edge orientations and inverting the roles of $(0,0)$ and (m, n)

Edit distance graph.

- Let $g(i, j)$ be shortest path from (i, j) to (m, n)
- Can compute $g(\cdot, j)$ for any j in $O(m n)$ time and $O(m+n)$ space.

Sequence Alignment: Linear Space

Observation 2. let q be an index that minimizes $f(q, n / 2)+g(q, n / 2)$. Then, the shortest path from $(0,0)$ to (m, n) uses $(q, n / 2)$.

Observation 1. The cost of the shortest path that uses (i, j) is $f(i, j)+g(i, j)$.

Sequence Alignment: Linear Space

Divide: find index q that minimizes $f(q, n / 2)+g(q, n / 2)$ using DP.

- Align x_{q} and $y_{n / 2}$.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let $T(m, n)=\max$ running time of algorithm on strings of length at most m and $n . T(m, n)=O(m n \log n)$.

```
T(m,n)\leq2T(m,n/2)+O(mn)=>T(m,n)=O(mn\operatorname{log}n)
```

Remark. Analysis is not tight because two sub-problems are of size $(q, n / 2)$ and $(m-q, n / 2)$. In next slide, we save $\log n$ factor.

Sequence Alignment: Running Time Analysis

Theorem. Let $T(m, n)=$ max running time of algorithm on strings of length m and $n . T(m, n)=O(m n)$

Pf. (by induction on n)

- $O(m n)$ time to compute $f(\cdot, n / 2)$ and $g(\cdot, n / 2)$ and find index q.
- $T(q, n / 2)+T(m-q, n / 2)$ time for two recursive calls.
. Choose constant c so that:

```
T(m,2)\leqcm
T(2,n) \leqcn
T(m,n)\leqcmn+T(q,n/2)+T(m-q,n/2)
```

- Base cases: $m=2$ or $n=2$.
- Inductive hypothesis: $T(m, n) \leq 2 \mathrm{cmn}$.

