Solution Assignment 4

Maxime Descoteaux

April 16, 2004

Question 1 (15 pts)

(10 pts)(a) Reduce 3-SAT to VERTEX COVER (VC)

We construct the graph in the following way:

- 1. For each literal x_i in each clause j, create a vertex t_{ij} and connect them with an edge. i.e. we get a triangle-like subgraphs for every clause.
- 2. For every literal x_i , create a vertex v_i and $\sim v_i$ with an edge between them.

- 3. For each vertex t_{ij} , create an edge going to its corresponding Figure 1: Example reduction of the v_i literal. Note that t_{ij} and v_i are two different vertex which 3-SAT clause $(x_1 + \sim x_2 + x_3)$ represent the same literal. The v_i vertices selected in the vertex cover constitute the truth assignment to 3-SAT.
- 4. Note that if N is the number of literals and M the number of clause, we have a total of 2N + 3M vertices and N + 3M edges in the graph.

Let the graph constructed in this transformation be G_{3-SAT} . Figure 1 is an example for a particular clause $(x_1 + \sim x_2 + x_3)$. Note also that this transformation can be done in polynomial time.

Claim: 3-SAT is satisfied iff G_{3-SAT} has a vertex cover of size N+2M

intuition: We know we need two vertices to cover a triangle and one vertex for each pair v_i , $\sim v_i$ => exactly N+2M needed to cover the graph. Hence, with this construction, we cannot have both v_i and \sim v_i in the vertex cover.

Must show that if 3-SAT is satisfied then we have a vertex cover of size N + 2M and also show that if there is a VC of size N + 2M in G_{3-SAT} then it satisfies 3-SAT.

Proof:

=>

If 3-SAT is satisfied, we have a truth assignment. We know that either $x_i = \text{TRUE}$ or $\sim x_i = \text{TRUE}$. So, if $x_i = \text{TRUE}$ we add v_i to the vertex cover VC and add $\sim v_i$ otherwise. Also, since each clause j has to return TRUE, we find the first TRUE literal in the clause. Let the other two literals in the clause be, x_p and x_q . We add the associated vertices t_{pj} and t_{qj} to VC.

Is VC a vertex cover of G_{3-SAT} ? Yes! Each triangle subgraph is covered by exactly two vertex and

each pair v_i , $\sim v_i$ is also covered by exactly one vertex selected from the truth assignment. Hence, VC is a vertex cover of size N + 2M.

<=

We go with the contrapositive. i.e if 3-SAT is NOT satisfied I claim there cannot be a VC of size N + 2M in G_{3-SAT} . This is because one of the triangle subgraph cannot be covered with only two vertex.

Why? If 3-SAT is not satisfied, there exist a clause j where each literal is false. WLOG, let the three FALSE literals be x_a, x_b, x_c . In order to cover all three v_i , $\sim v_i$ pairs with the least number of vertices possible, we need to have $\sim v_a$, $\sim v_b$, $\sim v_c$ in the vertex cover. Otherwise, the 3-SAT problem would be satisfied. Now, I claim we cannot cover the triangle subgraph part with only two vertex. No matter how you pick two vertex in the triangle (say t_{aj} and t_{bj}) the other edge between the t vertex and v vertex ($t_{cj}v_c$) will NOT be covered. This is because neither t_{cj} nor v_c are in the vertex cover. You would need all three vertex of the triangle to have a valid vertex cover. Therefore, there cannot be a vertex cover of size N+2M.

Illustrate the G_{3-SAT} graph construction for $(\bar{x}+y+\bar{z})\cdot(x+\bar{y}+z)\cdot(\bar{x}+\bar{y}+z)\cdot(\bar{x}+y+z)$

If we let $x = x_1, y = x_2, z = x_3$ to agree with our notation, a valid truth assignment is $x_1 = x_2 = x_3 = \text{TRUE}$.

- 1. We ADD v_1, v_2, v_3 in the vertex cover since x_1, x_2, x_3 are TRUE.
- 2. We go to close 1 (t_{i1} triangle) and pick first TRUE literal. This is y which corresponds to x_2 which corresponds to t_{21} , in our notation.
- 3. ADD other two literal, t_{11} and t_{31} , to vertex cover
- 4. Repeat step 2. and 3. for every clause. The resulting vertex cover is the set of all circled vertices. The vertex cover $\{v_1, v_2, v_3, t_{11}, t_{31}, t_{22}, t_{32}, t_{13}, t_{23}, t_{14}, t_{34}\}$ has size

$$N + 2M = 3 + 2 * 4 = 11$$

as expected.

Figure 2: Transformation graph for 3-SAT to VC reduction

(5 pts)(b) illustrate the reduction from 3-SAT to SS

We construct the table corresponding to

$$(\bar{x}+y+\bar{z})\cdot(x+\bar{y}+z)\cdot(\bar{x}+\bar{y}+z)\cdot(\bar{x}+y+z)$$

	v_1	v_1'	v_2	v_2'	v_3	v_3'	s_1	s_1'	s_2	s_2'	s_3	s_3'	s_4	s_4'	t
X	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1
у	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1
\mathbf{z}	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1
c_1	0	1	1	0	0	1	1	2	0	0	0	0	0	0	4
c_1	0	1 0	1 0	0	0	1 0	0	0	0	0 2	0	0	0	0	4
	0 1 0	1 0 1	1 0 0	0 1 1	0 1 1	1 0 0	1 0 0		0 1 0			-		0	<u> </u>

Subset Sum Instance:

 $S = \{1000100, 1001011, 101001, 100110, 10111, 11000, 1000, 2000, 100, 200, 10, 20, 1, 2\} \\ t = 1114444$

1. Truth assignment: x = TRUE, y = TRUE, z = TRUE. Easy to check that this satisfies 3-SAT.

Corresponding Subset Sum: (need columns $v_1, v_2, v_3, s_1, s'_1, s'_2, s_3, s'_3, s'_4$) $S' = \{1000100, 101001, 10111, 1000, 2000, 200, 10, 20, 2\}$ sum(S') = 1114444

2. Truth assignment: x = FALSE, y = FALSE, z = FALSE. Easy to check that this satisfies 3-SAT.

Corresponding Subset Sum: (need columns $v_1', v_2', v_3, s_1, s_1', s_2', s_3, s_4$ $S'' = \{1001011, 100110, 10111, 1000, 2000, 200, 10, 2\}$ sum(S'') = 1114444

Question 2: Prove that 3-PARTITION is NP-complete (15 pts)

3-PARTITION is in NP (5 pts)

- 3-PARTITION is a decision problem since the output is either "yes" or "no" if the instance can be partionned or not in three disjoint subsets of equal weight.
- Can the "yes" answer be verified with a certificate in poly-time? Yes!

certificate: subsets A_1, A_2, A_3 partionning the instance $\{a_1, ..., a_n\}$ into three disjoint subsets of sum N

- 1. check that $A_1 \cup A_2 \cup A_3 = \{a_1, ..., a_n\}$. Done in O(n).
- 2. check that $A_1 \cap A_2 \cap A_3 = \emptyset$. Done in $O(n^2)$ or better $O(n \log n)$.
- 3. check that $sum(A_1) = sum(A_2) = sum(A_3) = N$. Done in O(n).

Therefore, 3-PARTITION is in NP.

Can we reduce a known NP-complete problem to 3-PARTITION? (10 pts)

We transform Subset Sum (SS) to 3-PARTITION.

$SS \leq 3$ -PARTITION (5 pts)

Given instance of subset sum $A = \{a_1, \ldots, a_n\}$ and integer k. Suppose $t = \text{sum}(A) = a_1 + \cdots + a_n$ and assume for simplicity that $t \geq k$ (if not, I leave it to you to work out the little modifications). We have two case to consider:

case I: Let $a_{n+1} = t - 2k$ and $a_{n+2} = t - k$. There are both non-negative as $t > 2k \Longrightarrow t - 2k \ge 0 \Longrightarrow t - k > 0$. case II: Let $a_{n+1} = 2k - t$ and $a_{n+2} = k$. There are both non-negative as $t \le 2k \Longrightarrow 2k - t > 0$.

Let the new instance for 3-PARTITION be

$$S = \{a_1, \dots, a_n, a_{n+1}, a_{n+2}\}$$
 $N = a_{n+2}$

In any case, this is a valid instance of 3-PARTITION because S is a non-negative set of integers. I claim that $\exists A' \subseteq A$ with $sum(A') = k \iff \exists$ a 3-PARTITION A_1, A_2, A_3 of S with $sum(A_1) = sum(A_2) = sum(A_3) = N$.

Proof: (5pts)

(=>) Suppose we have $A' \subseteq A$ with sum(A') = k. Let the complement of A' be \bar{A}' . Thus, sum(A') = k, and $sum(\bar{A}') = t - k$.

case I:

$$A_1 = A' \cup \{a_{n+1}\}$$
 $A_2 = \bar{A}'$ $A_3 = \{a_{n+2}\}$

is a 3-PARTITION. It satisfies conditions 1, 2, 3 above. In particular, $sum(A_1) = k + (t - 2k) = sum(A_2) = t - k = sum(A_3) = t - k = a_{n+2}$.

case II:

$$A_1 = A'$$
 $A_2 = \bar{A}' \cup \{a_{n+1}\}$ $A_3 = \{a_{n+2}\}$

is a 3-PARTITION. It satisfies conditions 1, 2, 3 above. In particular, $sum(A_1) = k = sum(A_2) = (t-k) + (2k-t) = sum(A_3) = k = a_{n+2}$.

Therefore, in any case, 3-PARTITION is satisfied.

(<=) We go with the contrapositive. Suppose we have NO subset of A with sum k. Now, for a contradiction, suppose we have 3-PARTITION A_1, A_2, A_3 of S with equal weight a_{n+2} . In any case, as S is a set of non-negative integers, a_{n+2} , must be by itself in a subset (assuming none of $\{a_1, \ldots, a_n, a_{n+1}\}$ are zero). Thus, we need two subsets $A', A'' \subseteq \{a_1, \ldots, a_n, a_{n+1}\}$ with equal weight a_{n+2} . Note that either $a_{n+1} \in A'$ or $a_{n+1} \in A''$. Hence, in one case, we must have a subset of A with sum t-k and in the other case a subset of A with sum k. In any case, there exists a subset of $A = \{a_1, \ldots, a_n\}$ with sum(A) = k. CONTRADICTION! Therefore, if we have no subset of A with sum k then we have no 3-PARTITION of S with equal sum N.

Question 3 (10 pts)

Formulate 3-SAT as ILP

• For every literal x_i , we introduce an integer variable $y_i \in \mathbf{Z}$ and for every literal $\bar{x_i}$, we introduce an integer variable $\bar{y_i} \in \mathbf{Z}$

$$y_i = \begin{cases} 1 & \text{if } x_i = \text{TRUE} \\ 0 & \text{otherwise} \end{cases}$$
$$\bar{y_i} = \begin{cases} 1 & \text{if } \bar{x_i} = \text{TRUE} \\ 0 & \text{otherwise} \end{cases}$$

• For every clause, $(x_i + x_j + x_k)$, we introduce a constraint

$$y_i + y_j + y_k \ge 1$$

This ensures that every clause is satisfied.

• Introduce a constraint that makes sure that each variable y_i is either 0 or 1.

$$0 \le y_i \le 1 \qquad 0 \le \bar{y_i} \le 1$$

• We must make sure that y_i and \bar{y}_i are not both zero or not both 1.

$$y_i + \bar{y_i} = 1$$

• We have a dummy objective function

$$\max \sum_{orall i} y_i$$

Formulate VERTEX COVER as ILP

Given G = (V, E) and integer k

• $\forall v_i \in V$ introduce an integer variable $x_i \in \mathbf{Z}$

$$x_i = \begin{cases} 1 & \text{if } v_i \in \text{vertex cover} \\ 0 & \text{otherwise} \end{cases}$$

• $\forall e_{ij} \in E (e_{ij} \text{ is the edge connecting vertex } v_i, v_j \in V)$, we introduce a constraint

$$x_i + x_j \ge 1$$

This enforces that for every edge, we select at least one the two endpoint vertex.

- $\sum_{\forall i} x_i = k$, enforces the vertex cover to be of size k.
- $0 \le x_i \le 1$
- Ojective function: $\max \sum_{\forall i} x_i$

Formulate SUBSET SUM as ILP

We are given a set of non-negative integers $A = \{a_i, \ldots, a_n\}$ and integer k

• for every a_i , we introduce an integer variable $x_i \in \mathbf{Z}$.

$$x_i = \begin{cases} 1 & \text{if } a_i \in A' \subseteq A \text{ with } \text{sum}(A') = k \\ 0 & \text{otherwise} \end{cases}$$

- $\bullet \ \sum_{\forall i} a_i x_i = k$
- $x_i \geq 0$
- Objective function: $\max \sum_{\forall i} x_i$

Using lp_solve on question #1 example

It is simply a matter of creating input files with valid syntax and et voila! The files are called 3-SAT.lp, VC.lp and SS.lp. You can run them to get my output.

IMPORTANT: equality constraints must be put into standard linear program inequality form. i.e.

$$x_1 + \dots + x_n = t$$
 becomes $x_1 + \dots + x_n \le t$ AND $-x_1 - \dots - x_n \le -t$

Results:

3-SAT:
$$x = 1$$
, $y = 1$, $z = 1$, $\bar{x} = 0$, $\bar{y} = 0$, $\bar{z} = 0$

Vertex Cover: You can verify that it gives a valid vertex cover. The output is $VC = \{\sim v_1, \sim v_2, \sim v_3, t_{13}, t_{14}, t_{21}, t_{22}, t_{23}, t_{14}, t_$

Subset Sum: $S = \{1000100, 101001, 10111, 1000, 2000, 200, 10, 20, 2\}$ sum(S) = 1114444.