Solution Assignment 4

Maxime Descoteaux

April 16, 2004

Question 1 (15 pts)

(10 pts)(a) Reduce 3-SAT to VERTEX COVER (VC)
We construct the graph in the following way:

vl ~yl V2 ~v2 v3 ~v3
1. For each literal x; in each clause j, create a vertex t;; and
connect them with an edge. i.e. we get a triangle-like subgraphs
for every clause. £
2. For every literal z;, create a vertex v; and ~v; with an edge
between them. t1ll €31

3. For each vertex ¢;;, create an edge going to its corresponding Figure 1: Example reduction of the
v; literal. Note that ¢;; and v; are two different vertex which 3-SAT clause (z1+ ~x9 + 3)
represent the same literal. The v; vertices selected in the vertex
cover constitute the truth assignment to 3-SAT.

4. Note that if N is the number of literals and M the number of
clause, we have a total of 2N 4 3M vertices and N + 3M edges in the graph.

Let the graph constructed in this transformation be G3_ga7. Figure 1 is an example for a particular clause
(z1+ ~x2 + z3). Note also that this transformation can be done in polynomial time.

Claim: 3-SAT is satisfied iff G5_gs47 has a vertex cover of size N + 2M

intuition: We know we need two vertices to cover a triangle and one vertex for each pair v;, ~v;
=> exactlyN 4+ 2M needed to cover the graph. Hence, with this construction, we cannot have both v; and
~v; in the vertex cover.

Must show that if 3-SAT is satisfied then we have a vertex cover of size N + 2M and also show that
if there is a VC of size N + 2M in G3_ga1 then it satisfies 3-SAT.

Proof:
=>

If 3-SAT is satisfied, we have a truth assignment. We know that either z; = TRUE or ~x; = TRUE. So,
if z; = TRUE we add v; to the vertex cover VC and add ~v; otherwise. Also, since each clause j has to
return TRUE, we find the first TRUE literal in the clause. Let the other two literals in the clause be, x,
and z,. We add the associated vertices ?,; and t4; to VC.

Is VC a vertex cover of Gs_gsar? Yes! Each triangle subgraph is covered by exactly two vertex and

each pair v;, ~v; is also covered by exactly one vertex selected from the truth assignment. Hence, VC is a
vertex cover of size N + 2M.

<=

We go with the contrapositive. i.e if 3-SAT is NOT satisfied I claim there cannot be a VC of size N + 2M
in G3_gar. This is because one of the triangle subgraph cannot be covered with only two vertex.

Why? If 3-SAT is not satisfied, there exist a clause j where each literal is false. WLOG, let the three
FALSE literals be z4, zp, z.. In order to cover all three v;, ~v; pairs with the least number of vertices
possible, we need to have ~v,, ~vp, ~v, in the vertex cover. Otherwise, the 3-SAT problem would be
satisfied. Now, I claim we cannot cover the triangle subgraph part with only two vertex. No matter how
you pick two vertex in the triangle (say tq; and t;) the other edge between the ¢ vertex and v vertex
(tejve) will NOT be covered. This is because neither t.; nor v, are in the vertex cover. You would need all
three vertex of the triangle to have a valid vertex cover. Therefore, there cannot be a vertex cover of size
N +2M.

Illustrate the G3_gs4r graph construction for (z+y+2) - (z+y+2)- (x+y+2)-(T+y+2)

If we let £ = 21,y = x9,2 = x3 to agree with our notation, a valid
truth assignment is 1 = 2o = 3 = TRUE.

1. We ADD wj,v9,v3 in the vertex cover since z1,zs,z3 are
TRUE.

2. We go to close 1 (t;; triangle) and pick first TRUE literal. This
is y which corresponds to z which coresponds to t21, in our
notation.

3. ADD other two literal, ¢1; and t31, to vertex cover

4. Repeat step 2. and 3. for every clause. The resulting ver-
tex cover is the set of all circled vertices. The vertex cover

{Ula V2,03, tlla t31; t227 t327 t137 t237 t14; t34} has size

N+2M =3+2x4=11

Figure 2: Transformation graph for
as expected. 3-SAT to VC reduction

(5 pts)(b) illustrate the reduction from 3-SAT to SS

We construct the table corresponding to

Z4+y+2)-(z+7+2)-(Z+7+2)-(T+y+2)

vy | V] | v |vh | vs | vy | st | S| so|sh|s3|sh|salsy]|t
x|1}]1(0]0[0]0}O0]0J0]0]0j0]O0]|0]1
y/o0;,0(1;1/0{0H0)0}0}]0}0|00]0]1
z|0|0]J0]J0O]1]1}J0]0(0|0]0]0]0]O0]|1
c|0O}j1}1|]0]0}2y412(2/0,0,0,010|0]4
c|1l|0jO0O|j1T |10 O0O(0O|212T|20,010|0]4
c3| 0101|1004 O(O|O|O0O| 12 0|0]4
gl 0110120400000 ,01|2]4

Subset Sum Instance:
S = {1000100, 1001011, 101001, 100110, 10111, 11000, 1000, 2000, 100, 200, 10, 20,1, 2}
t = 1114444

1. Truth assignment: x = TRUE, y = TRUE, z = TRUE. Easy to check that this satisfies 3-SAT.

Corresponding Subset Sum: (need columns vy, ve, vs3, 81, 8}, 8h, S3, S5, S4)
S’ = {1000100, 101001, 10111, 1000, 2000, 200, 10, 20, 2}
sum(S') = 1114444

2. Truth assignment: x = FALSE, y = FALSE, z = FALSE. Easy to check that this satisfies 3-SAT.

Corresponding Subset Sum: (need columns v}, vh, v3, s1, 8}, 85, 83, 4
§" = {1001011, 100110, 10111, 1000, 2000, 200, 10, 2}
sum(S") = 1114444

Question 2: Prove that 3-PARTITION is NP-complete (15 pts)

3-PARTITION is in NP (5 pts)

e 3-PARTITION is a decision problem since the output is either “yes” or “no” if the instance can be
partionned or not in three disjoint subsets of equal weight.

e Can the “yes” answer be verified with a certificate in poly-time? Yes!

certificate: subsets A, Aa, A3 partionning the instance {ay,...,a,} into three disjoint subsets of sum
N

1. check that A; U Ay U A3 = {ay,...,an}. Done in O(n).
2. check that A; N Ay N A3 = (. Done in O(n?) or better O(nlogn).
3. check that sum(A;) = sum(Az2) = sum(As) = N. Done in O(n).

Therefore, 3-PARTITION is in NP.

Can we reduce a known NP-complete problem to 3-PARTITION? (10 pts)
We transform Subset Sum (SS) to 3-PARTITION.

SS < 3-PARTITION (5 pts)

Given instance of subset sum A = {a1,...,a,} and integer k. Suppose ¢t =sum(A) = a1 + --- + a, and
assume for simplicity that ¢ > & (if not, I leave it to you to work out the little modifications). We have
two case to consider:

case I: Let apy1 =t — 2k and ap42 = t — k. There are both non-negative as t > 2k —= t -2k > 0 =
t—k > 0. case II: Let ap4+1 = 2k —t and a2 = k. There are both non-negative as t < 2k —= 2k —1¢ > 0.

Let the new instance for 3-PARTITION be
S={a,...,0n,0n+1,0n+2} N = apyo

In any case, this is a valid instance of 3-PARTITION because S is a non-negative set of integers. I claim
that 3 A’ C A with sum(4’) =k <= 3 a 3-PARTITION A, Ay, A3 of S with sum(A4;) = sum(Ag) =
sum(Az) = N.

Proof: (5pts)

(=>) Suppose we have A’ C A with sum(A’) = k. Let the complement of A’ be A’. Thus, sum(A’) = k,
and sum(A’) =t — k.
case [:

A1 == A, U {an+1} A2 = A A3 = {an+2}

is a 3-PARTITION. It satisfies conditions 1, 2, 3 above. In particular, sum(A4;) = k + (¢ — 2k) = sum(Ay)
=t—k=sum(A4s) =t — k = ap4o-
case II:)

A = A Ay = A'U {an+1} Az = {an+2}
is a 3-PARTITION. It satisfies conditions 1, 2, 3 above. In particular, sum(A4;) = k£ = sum(A4s) =
(t—k)+ (2k — t) = sum(A3) =k = apyo.
Therefore, in any case, 3-PARTITION is satisfied.

(<=) We go with the contrapositive. Suppose we have NO subset of A with sum k. Now, for a con-
tradiction, suppose we have 3-PARTITION A;, Ay, A3 of S with equal weight a,42. In any case, as S is a
set of non-negative integers, a,i2, must be by itself in a subset (assuming none of {ai,...,an,an4+1} are
zero). Thus, we need two subsets A', A" C {a1,...,an,a,+1} with equal weight a,,o. Note that either
apt1 € A’ or ap1 € A”. Hence, in one case, we must have a subset of A with sum ¢ — k and in the other
case a subset of A with sum k. In any case, there exists a subset of A = {a1,...,a,} with sum(A) = k.
CONTRADICTION! Therefore, if we have no subset of A with sum k then we have no 3-PARTITION of
S with equal sum N.

Question 3 (10 pts)
Formulate 3-SAT as ILP

e For every literal z;. we introduce an integer variable y; € Z and for every literal z;,we introduce an
integer variable y; € Z
_ | 1 ifz; = TRUE
Yi { 0 otherwise

, 1 ifz; = TRUE
vi= { 0 otherwise
e For every clause, (z; + =; + xx), we introduce a constraint

Yityi+ye =1

This ensures that every clause is satisfied.
e Introduce a constraint that makes sure that each variable y; is either 0 or 1.
0<y; <1 0<y; <1
¢ We must make sure that y; and ¢; are not both zero or not both 1.
Yi 0 =1

e We have a dummy objective function

max Z Y;
Vi

Formulate VERTEX COVER as ILP
Given G = (V, E) and integer k
e Vu; € V introduce an integer variable x; € Z

— 1 ifv; € vertex cover
' 1 0 otherwise

Ve;;j € E (e;; is the edge connecting vertex v;,v; € V'), we introduce a constraint
T t+x;>1

This enforces that for every edge, we select at least one the the two endpoint vertex.

Z x; = k, enforces the vertex cover to be of size k.
Vi

e 0<z; <1

Ojective function: max sz
Vi

Formulate SUBSET SUM as ILP
We are given a set of non-negative integers A = {a;,...,a,} and integer k

e for every a;, we introduce an integer variable z; € Z.

| 1 ifa; € A" C Awith sum(A') =k
Ti= 0 0 otherwise

. E a;x; =k
Vi

e ;>0

e Objective function: max Z z;
Vi

Using Ip_solve on question #1 example

It is simply a matter of creating input files with valid syntax and et voila! The files are called 3-SAT.Ip,
VC.lp and SS.lIp. You can run them to get my output.
IMPORTANT: equality constraints must be put into standard linear program inequality form. i.e.

r1+---+xz, =t becomes z1+---+zx2, <t AND —z1—--—1z, < -t

Results:
3SAT:x=1,y=1,z=1,2=0,y=0,z2=0

Vertex Cover: You can verify that it gives a valid vertex cover. The output is VC = {~vy, ~ve, ~v3, t13, t14, t21, t22, t23, 1

Subset Sum: S = {1000100, 101001, 10111, 1000, 2000, 200, 10, 20, 2}
sum(S) = 1114444.

