
1)  This question is worth 15 out of 25 points.  I gave 2 points to everybody just for 
handing in the assignment.  Each of the 6 examples is worth 1.5 points (0.5 just for giving 
the correct true/false answer, and 1 point for the proof).  The proof in part (b) is worth 4 
points, two points for each direction. 
 
Here are some general remarks.  Many people went on to work with the old P3’ statement 
and not the revised one.  That caused them problems for the proof in part (b).  Also some 
people involved weights and scores and so on in their proofs of part (a).  It is important to 
understand that maximality of admissible subsets has nothing to do with maximizing 
those scores.  Please talk to one of the TAs if you are still unclear about this. 
 
(a) 
P3’: For every subset U of the base set S, every maximal admissible subset of U has the 
same cardinality. 
 
Example 1: Property P3’ does NOT hold. 
Counterexample:  

n=4, S={1, 2, 3, 4} 
b = 120 yen 
c1=20, c2=30, c3=50, c4=70 
 
Look at U=S.  Then consider A={3, 4} with cost c3+c4 = 50+70 = 120.  A is a 

maximal admissible subset of U since we cannot add another piece to it without 
exceeding the cost limit of 120 yen.  Consider B={1, 2, 3} with cost c1+c2+c3 = 
20+30+50 = 100.  For the same reason as above, B is also a maximal admissible subset of 
U, yet |B|≠|A|. 
 
Example 2: Property P3’ does NOT hold. 
Counterexample: consider the following graph with S={e1, e2, e3}: 

 
 
Look at U=S.  Then A={e1, e3} and B={e2} are both maximal admissible subsets of U, 
yet |A|≠|B|. 
 
Example 3: Property P3’ DOES hold. 
Proof: By contradiction.  Let S be a set of n people, k a positive integer, and let U be any 
subset of S.  If |U| ≤ k, the property holds since U itself is the only maximal admissible 
subset of U.  Assume |U| > k and let A and B be maximal admissible subsets of U, but 
with different cardinality, i.e. |A|≠|B|.  Without loss of generality I will assume that B is 
the larger of the two: |A|<|B|.  Since A and B are both admissible we must have |A| ≤ k 
and |B| ≤ k.  The last two statements can be combined to give |A| < |B| ≤ k and therefore 
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|A| is strictly smaller than k.  In this case we can add a person to A from U\A and it will 
still be an admissible subset, which contradicts our assumption that A was maximal. 
 
Example 4: Property P3’ DOES hold. 
Proof: Let S = {1, 2, …, n}, and let U be any subset of S.  If we consider the columns of 
the matrix as vectors in Rm, then finding a maximal admissible subset of U amounts to 
finding columns that form a basis for the subspace that the columns of U span.  From 
linear algebra we get that every linearly independent subset s of vectors of a subspace is 
part of some finite basis for the subspace.  In our case the linearly independent subsets of 
vectors are our admissible sets, and the bases are our maximal admissible subsets.  Two 
bases for the same subspace have the same number of elements. 
 
Example 5: Property P3’ does NOT hold. 
Counterexample: 
 

 
Let U = {e6, e7, e8}.  Let A = {e6, e7}.  It is admissible because it can be extended into a 
cycle of length 6 by adding some edges from S (e3, e4, e5, e1).  It is maximal over U 
because adding the remaining edge, e8, gives a set of edges that cannot be part of a TSP 
tour.  Consider B = {e8}.  It is admissible since it can be extended to give a cycle of 
length 6 (with edges e4, e3, e2, e1, e9).  However it is maximal over U because adding e6 
or e7 gives a structure that can’t be part of a TSP tour.  The cardinalities of A and B are 
different, therefore P3’ fails. 
 
Example 6: Property P3’ DOES hold. 
Proof: Let G=(V,E) be any graph with n vertices, and let U be any subset of E.  If the 
edges in U don’t form a cycle, then the property holds since U itself is the only maximal 
admissible subset of U.   
 
If U contains one or more cycles, let k be the number of connected components in U.  
Consider one of those connected components, call it ci, and let it have mi vertices.  If ci 
contains no cycle, then it is a connected acyclic graph, which is the definition of a tree, 
and therefore it must have exactly mi-1 edges.  If ci contains one or more cycles, we need 
to remove edges from it until we eliminate all cycles in it.  Since ci is connected but 
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cyclic, it must contains a tree, and it is possible to obtain this tree by removing some 
fixed number of edges.  The way to remove these edges may not be unique but the 
number of edges to remove is, since we must obtain a tree with exactly mi-1 vertices. 
 
So the connected components c1, c2, …, ck are reduced to trees with m1-1, m2-1, …, 
mk-1 edges.  The total m1+m2+…+mk – k = |U| - k gives the unique size of all maximal 
admissible subsets of U. 
 
(b) 
If a selection problem satisfies P1, P2 and P3, then it also satisfies P3'. 
Proof: 
Assume P3 holds but P3’ doesn’t, i.e. Y1 and Y2 are maximal admissible subsets of some 
A ⊆ S, with |Y1| ≥ |Y2| + 1.  By P3 there exists y ∈ Y1\Y2 such that Y2 ∪ {y} is 
admissible.  This contradicts the maximality of Y2. 
 
If a selection problem satisfies P1, P2 and P3', then it also satisfies P3. 
Proof: 
Assume P3’ holds but P3 doesn’t.  Let U and V be admissible subsets of S with |V| = 
|U|+1.  The exchange property doesn’t hold so there doesn’t exist e ∈ V\U such that U ∪ 
{e} is admissible.  Then U must be maximal in A = U ∪ V.  By P3’ the maximal 
admissible subsets of A have the same cardinality.  V is not necessarily maximal in A, 
but there exists W such that V ⊆ W and W is maximal in A.  Then U and W are both 
maximal in A but have different cardinality. 
 


