Approximation Algorithms

Chapter 11

Approximation Algorithms

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley All rights reserved.

Q. Suppose I need to solve an NP-hard problem. What should I do?

A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- . Solve problem in poly-time.
- Solve arbitrary instances of the problem.

ρ -approximation algorithm.

- . Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
- . Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is!

11.1 Load Balancing

Load Balancing

Input. m identical machines; n jobs, job j has processing time t_j.

- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The load of machine i is $L_i = \sum_{j \in J(i)} t_j$.

Def. The makespan is the maximum load on any machine $L = \max_{i} L_{i}$.

Load balancing. Assign each job to a machine to minimize makespan.

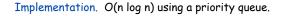
Load Balancing: List Scheduling

5

List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine whose load is smallest so far.

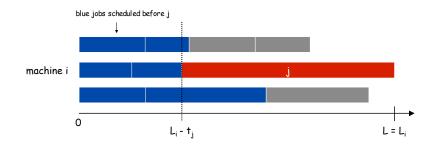
```
List-Scheduling (m, n, t<sub>1</sub>, t<sub>2</sub>,..., t<sub>n</sub>) {
for i = 1 to m {
L_i \leftarrow 0 \leftarrow load on machine i
J(i) \leftarrow \phi \leftarrow jobs assigned to machine i
}
for j = 1 to n {
i = argmin<sub>k</sub> L_k \leftarrow machine i has smallest load
<math>J(i) \leftarrow J(i) \cup \{j\} \leftarrow assign job j to machine i
L_i \leftarrow L_i + t_j \leftarrow update load of machine i
}
```



Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.

- Pf. Consider load L_i of bottleneck machine i.
- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is L_i - t_i ⇒ L_i - t_i ≤ L_k for all 1 ≤ k ≤ m.



Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- . Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan $L^* \ge \max_j t_j$. Pf. Some machine must process the most time-consuming job.

Lemma 2. The optimal makespan $L^* \ge \frac{1}{m} \sum_j t_j$. Pf.

- The total processing time is $\Sigma_j t_j$.
- One of m machines must do at least a 1/m fraction of total work. •

Load Balancing: List Scheduling Analysis

6

8

Theorem. Greedy algorithm is a 2-approximation.

- Pf. Consider load L_i of bottleneck machine i.
- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is L_i - t_i ⇒ L_i - t_i ≤ L_k for all 1 ≤ k ≤ m.
- Sum inequalities over all k and divide by m:

$$\begin{array}{rcl} L_i - t_j &\leq & \frac{1}{m} \sum_k L_k \\ & & = & \frac{1}{m} \sum_k t_k \\ & & \text{Lemma 1} & \rightarrow & \leq & L^* \end{array}$$

$$\begin{array}{rcl} \bullet & & & \text{Now} & L_i &= & \underbrace{(L_i - t_j)}_{\leq & L^*} & + & \underbrace{t_j}_{\leq & L^*} & \leq & 2L^*. \end{array}$$

Load Balancing: List Scheduling Analysis

- Q. Is our analysis tight?
- A. Essentially yes.

m = 10

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle
machine 3 idle
machine 4 idle
machine 5 idle
machine 6 idle
machine 7 idle
machine 8 idle
machine 9 idle
machine 10 idle

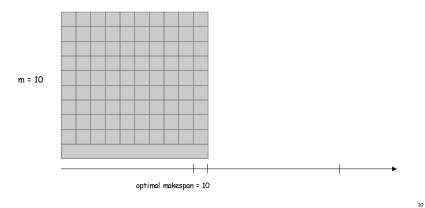
Load Balancing: List Scheduling Analysis

- Q. Is our analysis tight?
- A. Essentially yes.

9

11

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m



Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm.

```
LPT-List-Scheduling (m, n, t_1, t_2, ..., t_n) {

Sort jobs so that t_1 \ge t_2 \ge ... \ge t_n

for i = 1 to m {

L_i \leftarrow 0 \quad \leftarrow \quad \text{load on machine } i

J(i) \leftarrow \phi \quad \leftarrow \quad \text{jobs assigned to machine } i

}

for j = 1 to n {

i = argmin_k L_k \quad \leftarrow \quad \text{machine } i \text{ has smallest load}

J(i) \leftarrow J(i) \cup \{j\} \leftarrow \quad \text{assign job } j \text{ to machine } i

L_i \leftarrow L_i + t_j \quad \leftarrow \quad \text{update load of machine } i

}
```

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal. Pf. Each job put on its own machine. •

Lemma 3. If there are more than m jobs, $L^* \ge 2 t_{m+1}$. Pf.

- Consider first m+1 jobs t₁, ..., t_{m+1}.
- Since the t_i's are in descending order, each takes at least t_{m+1} time.
- There are m+1 jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs.

Theorem. LPT rule is a 3/2 approximation algorithm. Pf. Same basic approach as for list scheduling.

$$\begin{array}{rcl} L_i &=& \underbrace{(L_i-t_j)}_{\leq L^*} &+& \underbrace{t_j}_{\leq \frac{1}{2}L^*} &\leq \frac{3}{2}L^*. & \bullet \\ &\uparrow & & \uparrow \\ & & Lemma \ 3 \\ & (\mbox{ by observation, can assume number of jobs > m }) \end{array}$$

Load Balancing: LPT Rule

Q. Is our 3/2 analysis tight? A. No.

112 Center Selection

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation. Pf. More sophisticated analysis of same algorithm.

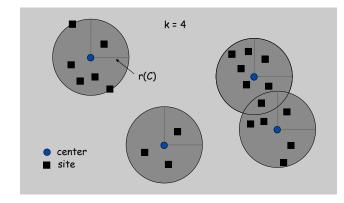
Q. Is Graham's 4/3 analysis tight? A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, ..., 2m-1 and one job of length m.

Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.



Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Notation.

13

15

- dist(x, y) = distance between x and y.
- dist(s_i, C) = min_{c = C} dist(s_i, c) = distance from s_i to closest center.
- r(C) = max, dist(s, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

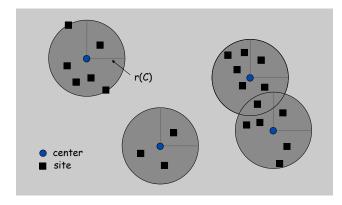
Distance function properties.

- dist(x, x) = 0 (identity) • dist(x, y) = dist(y, x) (symmetry) (triangle inequality)
- dist(x, y) \leq dist(x, z) + dist(z, y)

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the plane, dist(x, y) = Euclidean distance.

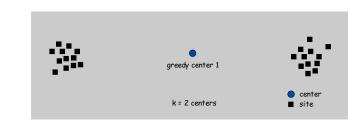
Remark: search can be infinite!



Greedy Algorithm: A False Start

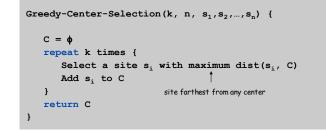
Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!



Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.



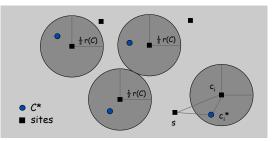
Observation. Upon termination all centers in C are pairwise at least r(C) apart.

Pf. By construction of algorithm.

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$. Pf. (by contradiction) Assume $r(C^*) < \frac{1}{2}r(C)$.

- For each site c_i in C, consider ball of radius $\frac{1}{2}r(C)$ around it.
- Exactly one ci* in each ball; let ci be the site paired with ci*.
- Consider any site s and its closest center c_i^* in C^* .
- dist(s, C) \leq dist(s, c_i) \leq dist(s, c_i*) + dist(c_i*, c_i) \leq 2r(C*).
- Thus $r(C) \le 2r(C^*)$. Δ -inequality $\le r(C^*)$ since c_i^* is closest center



19

17

Center Selection

Theorem. Let C^* be an optimal set of centers. Then $r(C) \leq 2r(C^*)$.

Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

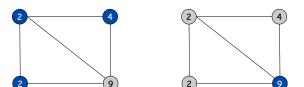
e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there no ρ -approximation for center-selection problem for any ρ < 2.

Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.



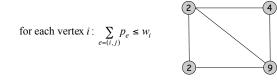
weight = 2 + 2 + 4

11.4 The Pricing Method: Vertex Cover

Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex i. Edge e pays price $p_e \ge 0$ to use vertex i.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.



Claim. For any vertex cover S and any fair prices $p_e: \sum_e p_e \leq w(S)$.

Proof.
$$\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in S} w_i = w(S).$$

each edge e covered by sum fairness inequalities

at least one node in S for each node in S

24

Pricing Method

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

```
Weighted-Vertex-Cover-Approx(G, w) {
  foreach e in E
    pe = 0
    while (∃ edge i-j such that neither i nor j are tight)
    select such an edge e
    increase pe without violating fairness
  }
  S ← set of all tight nodes
  return S
}
```

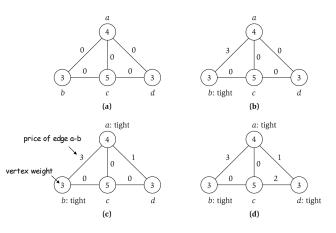


Figure 11.8

26

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation. Pf.

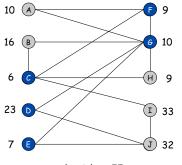
- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let S* be optimal vertex cover. We show $w(S) \leq 2w(S^*)$.

$$\begin{split} w(S) &= \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in V} \sum_{e=(i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*). \\ \uparrow & \uparrow & \uparrow & \uparrow \\ \text{all nodes in S are tight} & S \subseteq V, \\ \text{prices } \geq 0 & \text{each edge counted twice} & \text{fairness lemma} \end{split}$$

11.6 LP Rounding: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.



total weight = 55

29

31

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

Integer programming formulation.

Model inclusion of each vertex i using a 0/1 variable x_i.

 $x_i = \begin{cases} 0 & \text{if vertex } i \text{ is not in vertex cover} \\ 1 & \text{if vertex } i \text{ is in vertex cover} \end{cases}$

Vertex covers in 1-1 correspondence with 0/1 assignments: S = {i \in V : x_i = 1}

- Objective function: maximize $\Sigma_i w_i x_i$.
- Must take either i or j: $x_i + x_j \ge 1$.

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

$$(ILP) \min \sum_{i \in V} w_i x_i$$

s. t. $x_i + x_j \ge 1$ $(i, j) \in E$
 $x_i \in \{0, 1\}$ $i \in V$

Observation. If x^* is optimal solution to (ILP), then $S = \{i \in V : x^*_i = 1\}$ is a min weight vertex cover.

Integer Programming

INTEGER-PROGRAMMING. Given integers \boldsymbol{a}_{ij} and $\boldsymbol{b}_i,$ find integers \boldsymbol{x}_j that satisfy:

$$\begin{array}{cccc} \max & c^{t}x & & & \sum_{j=1}^{n} a_{ij}x_{j} \geq b_{i} & 1 \leq i \leq m \\ \text{s. t. } & Ax \geq b & & \\ & x & \text{integral} & & x_{j} \geq 0 & 1 \leq j \leq n \\ & & x_{j} & \text{integral} & 1 \leq j \leq n \end{array}$$

Observation. Vertex cover formulation proves that integer programming is NP-hard search problem.

Linear Programming

Linear programming. Max/min linear objective function subject to linear inequalities.

Input: integers c_j, b_i, a_{ij}.

• Output: real numbers x_i.

(P) max c'xs.t. $Ax \ge b$ $x \ge 0$ (P) max $\sum_{j=1}^{n} c_j x_j$ s.t. $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ $1 \le i \le m$

Linear. No x^2 , xy, $\arccos(x)$, x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice. Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

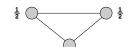
Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

 $(LP) \min \sum_{i \in V} w_i x_i$ s. t. $x_i + x_j \ge 1$ $(i, j) \in E$ $x_i \ge 0$ $i \in V$

Observation. Optimal value of (LP) is \leq optimal value of (ILP). Pf. LP has fewer constraints.

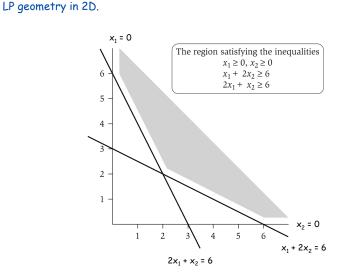
Note. LP is not equivalent to vertex cover.



÷

- Q. How can solving LP help us find a small vertex cover?
- A. Solve LP and round fractional values.

LP Feasible Region



Weighted Vertex Cover

Theorem. If x^* is optimal solution to (LP), then $S = \{i \in V : x^*_i \ge \frac{1}{2}\}$ is a vertex cover whose weight is at most twice the min possible weight.

- Pf. [S is a vertex cover]
- Consider an edge (i, j) ∈ E.
- Since $x_i^* + x_j^* \ge 1$, either $x_i^* \ge \frac{1}{2}$ or $x_j^* \ge \frac{1}{2} \Rightarrow (i, j)$ covered.
- Pf. [S has desired cost]
- . Let S* be optimal vertex cover. Then

$$\sum_{i \in S^*} w_i \geq \sum_{i \in S} w_i x_i^* \geq \frac{1}{2} \sum_{i \in S} w_i$$

$$\uparrow \qquad \uparrow$$

$$LP \text{ is a relaxation} \qquad x^*_i \geq \frac{1}{2}$$

35

33

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If P \neq NP, then no ρ -approximation for ρ < 1.3607, even with unit weights.

10 √5 - 21

Open research problem. Close the gap.

* 11.7 Load Balancing Reloaded

Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.

- Job j must run contiguously on an authorized machine in $M_i \subseteq M$.
- Job j has processing time t_i.
- Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The load of machine i is $L_i = \sum_{j \in J(i)} t_j$.

Def. The makespan is the maximum load on any machine = $\max_{i} L_{i}$.

Generalized load balancing. Assign each job to an authorized machine to minimize makespan.

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. x_{ii} = time machine i spends processing job j.

(IP) min	L			
s. t.	$\sum_{i} x_{ij}$	=	t_j	for all $j \in J$
	$\sum_{i}^{i} x_{ij}$	≤	L	for all $i \in M$
	x_{ij}			for all $j \in J$ and $i \in M_j$
	x_{ij}	=	0	for all $j \in J$ and $i \notin M_j$

LP relaxation.

37

39

 $\begin{array}{rcl} (LP) \mbox{ min } & L \\ {\rm s. t. } & \sum\limits_{i} x_{ij} &= t_{j} & \mbox{ for all } j \in J \\ & \sum\limits_{i} x_{ij} &\leq L & \mbox{ for all } i \in M \\ & x_{ij} &\geq 0 & \mbox{ for all } j \in J \mbox{ and } i \in M_{j} \\ & x_{ij} &= 0 & \mbox{ for all } j \in J \mbox{ and } i \notin M_{j} \end{array}$

Generalized Load Balancing: Lower Bounds

Lemma 1. Let L be the optimal value to the LP. Then, the optimal makespan $L^* \ge L$.

Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan $L^* \ge \max_j t_j$.

Pf. Some machine must process the most time-consuming job. •

Generalized Load Balancing: Structure of LP Solution

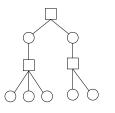
Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge from machine i to job j if $x_{ij} > 0$. Then G(x) is acyclic.

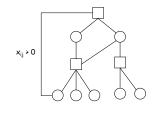
Pf. (deferred)

41

43

can transform x into another LP solution where G(x) is acyclic if LP solver doesn't return such an x





G(x) acyclic

machine

🔿 job

42

44

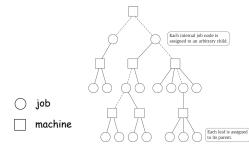
Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root forest G(x) at some arbitrary machine node r.

• If job j is a leaf node, assign j to its parent machine i.

. If job j is not a leaf node, assign j to one of its children.

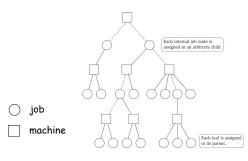
Lemma 4. Rounded solution only assigns jobs to authorized machines. Pf. If job j is assigned to machine i, then $x_{ij} > 0$. LP solution can only assign positive value to authorized machines.



Generalized Load Balancing: Analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then $x_{ij} = t_j$. Pf. Since i is a leaf, $x_{ij} = 0$ for all $j \neq parent(i)$. LP constraint guarantees $\Sigma_i x_{ij} = t_j$.

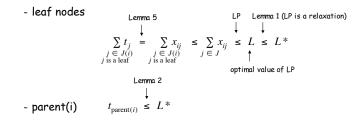
Lemma 6. At most one non-leaf job is assigned to a machine. Pf. The only possible non-leaf job assigned to machine i is parent(i).



Generalized Load Balancing: Analysis

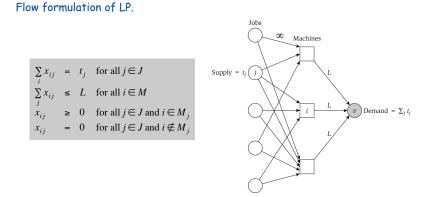
Theorem. Rounded solution is a 2-approximation. Pf.

- Let J(i) be the jobs assigned to machine i.
- By Lemma 6, the load L_i on machine i has two components:



Thus, the overall load L_i ≤ 2L*.

Generalized Load Balancing: Flow Formulation



Observation. Solution to feasible flow problem with value L are in oneto-one correspondence with LP solutions of value L.

46

48

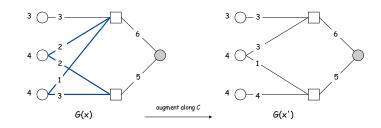
Generalized Load Balancing: Structure of Solution

45

47

Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an edge from machine i to job j if $x_{ij} > 0$. We can find another solution (x', L) such that G(x') is acyclic.

- Pf. Let C be a cycle in G(x).
- Augment flow along the cycle C. ← flow conservation maintained
- At least one edge from C is removed (and none are added).
- Repeat until G(x') is acyclic.



Conclusions

Running time. The bottleneck operation in our 2-approximation is solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes: given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]

- Job j takes t_{ii} time if processed on machine i.
- 2-approximation algorithm via LP rounding.
- No 3/2-approximation algorithm unless P = NP.

Polynomial Time Approximation Scheme

11.8 Knapsack Problem

PTAS. $(1 + \varepsilon)$ -approximation algorithm for any constant $\varepsilon > 0$.

- Load balancing. [Hochbaum-Shmoys 1987]
- Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i has value v_i > 0 and weighs w_i > 0. ← we'll assume w_i ≤ W
- Knapsack can carry weight up to W.
- Goal: fill knapsack so as to maximize total value.

Ex:	{ 3,	4 }	has	value	40.
-----	------	-----	-----	-------	-----

	Item	value	weight
	1	1	1
\A/ - 11	2	6	2
W = 11	3	18	5
	4	22	6
	5	28	7

T1 1/1 1/1/1

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, nonnegative weights w_i , nonnegative values v_i , a weight limit W, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} w_i \leq W$$

$$\sum_{i \in S} v_i \geq V$$

Claim. SUBSET-SUM \leq_{P} KNAPSACK.

Pf. Given instance $(u_1, ..., u_n, U)$ of SUBSET-SUM, create KNAPSACK instance:

$$\begin{aligned} v_i &= w_i = u_i \qquad \sum_{i \in S} u_i \leq U \\ V &= W = U \qquad \sum_{i \in S} u_i \geq U \end{aligned}$$

Knapsack Problem: Dynamic Programming 1

- Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.
- Case 1: OPT does not select item i.
 - OPT selects best of 1, ..., i-1 using up to weight limit w
- Case 2: OPT selects item i.
 - new weight limit = w w_i
 - OPT selects best of 1, ..., i-1 using up to weight limit w $w_{\rm i}$

	0		if $i = 0$
$OPT(i, w) = \langle v \rangle$	OPT(i-1, w)		if $w_i > w$
	$\max\{OPT(i-1,w),\$	$v_i + OPT(i-1, w-w_i)$	otherwise

Running time. O(n W).

- W = weight limit.
- Not polynomial in input size!

Knapsack Problem: Dynamic Programming II

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value exactly v.

• Case 1: OPT does not select item i.

- OPT selects best of 1, ..., i-1 that achieves exactly value v

- Case 2: OPT selects item i.
 - consumes weight w_i , new value needed = $v v_i$
 - OPT selects best of 1, ..., i-1 that achieves exactly value v

0		if $v = 0$
∞		if $i = 0, v > 0$
OPT(i-1, v)		if $v_i > v$
$\min \Big\{ OPT(i-1,v), $	$w_i + OPT(i-1, v-v_i) \}$	otherwise
	0 ∞ $OPT(i-1, v)$ min{ $OPT(i-1, v)$,	0 ∞ $OPT(i-1, v)$ $\min \left\{ OPT(i-1, v), w_i + OPT(i-1, v-v_i) \right\}$

V*≤nv_{max}

- Running time. $O(n V^*) = O(n^2 v_{max})$.
- V* = optimal value = maximum v such that $OPT(n, v) \leq W$.
- Not polynomial in input size!

Knapsack: FPTAS

Intuition for approximation algorithm.

- . Round all values up to lie in smaller range.
- Run dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

Item	Value	Weight
1	134,221	1
2	656,342	2
3	1,810,013	5
4	22,217,800	6
5	28,343,199	7
		W = 11

	Item	Value	Weight
•	1	2	1
	2	7	2
	3	19	5
	4	23	6
	5	29	7
			W = 11

original instance

rounded instance

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: \bar{v}_i

$$= \left[\frac{v_i}{\theta} \right] \theta, \quad \hat{v}_i = \left[\frac{v_i}{\theta} \right]$$

- v_{max} = largest value in original instance

- ε = precision parameter
- $-\theta$ = scaling factor = $\varepsilon v_{max} / n$

Observation. Optimal solution to problems with \overline{v} or \hat{v} are equivalent.

Intuition. \overline{v} close to v so optimal solution using \overline{v} is nearly optimal; \hat{v} small and integral so dynamic programming algorithm is fast.

Running time. $O(n^3 / \epsilon)$.

• Dynamic program II running time is $O(n^2 \hat{v}_{max})$, where

$$\hat{v}_{\max} = \left[\frac{v_{\max}}{\theta}\right] = \left[\frac{n}{\varepsilon}\right]$$

55

53

Knapsack: FPTAS

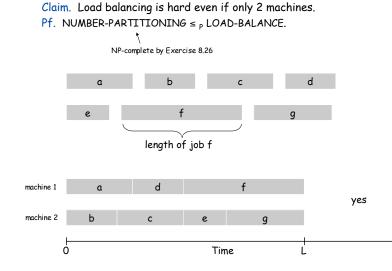
Knapsack FPTAS. Round up all values: $\bar{v}_i = \begin{bmatrix} v_i \\ \theta \end{bmatrix} \theta$

Theorem. If S is solution found by our algorithm and S* is any other feasible solution then $(1+\varepsilon)\sum_{i\in S} v_i \ge \sum_{i\in S^*} v_i$

Pf. Let S* be any feasible solution satisfying weight constraint.

$$\begin{split} \sum_{i \in S^*} v_i &\leq \sum_{i \in S^*} \overline{v}_i & \text{always round up} \\ &\leq \sum_{i \in S} \overline{v}_i & \text{solve rounded instance optimally} \\ &\leq \sum_{i \in S} (v_i + \theta) & \text{never round up by more than } \theta \\ &\leq \sum_{i \in S} v_i + n\theta & |S| \leq n \\ &\leq (1 + \varepsilon) \sum_{i \in S} v_i & n\theta = \varepsilon v_{\max}, v_{\max} \leq \sum_{i \in S} v_i \end{split}$$

Load Balancing on 2 Machines



Extra Slides

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no $\rho\text{-approximation}$ algorithm for metric k-center problem for any ρ < 2.

Pf. We show how we could use a $(2 - \epsilon)$ approximation algorithm for k-center to solve DOMINATING-SET in poly-time.

- Let G = (V, E), k be an instance of DOMINATING-SET. ← see Exercise 8.29
- Construct instance G' of k-center with sites V and distances
 d(u, v) = 2 if (u, v) ∈ E
 d(u, v) = 1 if (u, v) ∉ E
- Note that G' satisfies the triangle inequality.
- Claim: G has dominating set of size k iff there exists k centers C* with r(C*) = 1.
- Thus, if G has a dominating set of size k, a (2ε) -approximation algorithm on G' must find a solution C* with $r(C^*) = 1$ since it cannot use any edge of distance 2.