

Maximum Flow and Minimum Cut
Minimum Cut Problem

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.

- Data mining.
- Network reliability.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Distributed computing
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more . .

Flow network.

- Abstraction for material flowing through the edges.
- $G=(V, E)=$ directed graph, no parallel edges.
- Two distinguished nodes: $s=$ source,$t=$ sink.
- $c(e)=$ capacity of edge e .

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.
Def. The capacity of a cut (A, B) is: $\operatorname{cap}(A, B)=\sum_{e \text { out of } A} c(e)$

Minimum Cut Problem

Min s- \dagger cut problem. Find an s- \dagger cut of minimum capacity.

Def. An $s-t$ cut is a partition (A, B) of V with $s \in A$ and $t \in B$.
Def. The capacity of a cut (A, B) is: $\quad \operatorname{cap}(A, B)=\sum_{\text {e out of } A} c(e)$

Flows

Def. An $s-\dagger$ flow is a function that satisfies:

- For each $e \in \mathrm{E}: \quad 0 \leq f(e) \leq c(e)$
- For each $v \in \vee-\{s, \dagger\}: \sum_{e \text { in to } v} f(e)=\sum_{\text {eout of } v} f(e)$
(capacity)
(conservation)

Def. The value of a flow f is: $v(f)=\sum_{e \text { out of } s} f(e)$

Value $=4$

Def. An $s-\dagger$ flow is a function that satisfies:

- For each $e \in E: \quad 0 \leq f(e) \leq c(e)$
- For each $v \in \vee-\{s, \dagger\}: \quad \sum_{\text {en }} f(e)=\sum_{f} f(e)$
(capacity)
(conservation)
Def. The value of a flow f is: $v(f)=\sum_{\text {eout of } s} f(e)$.

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } \mathrm{A}} f(e)=v(f)
$$

Max flow problem. Find s-t flow of maximum value.

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any $s-\dagger$ cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$
\sum_{e \text { outof } A} f(e)-\sum_{e \text { in to } A} f(e)=v(f)
$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to A }} f(e)=v(f)
$$

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any $s-t$ cut. Then the value of the flow is at most the capacity of the cut.

$$
\text { Cut capacity }=30 \Rightarrow \text { Flow value } \leq 30
$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e)=v(f)
$$

Pf.

$$
v(f)=\sum_{e \text { out of } s} f(e)
$$

$$
\begin{aligned}
& \text { by flow conservation, all terms } \\
& \text { except } \mathrm{v}=s \text { are } 0
\end{aligned} \quad=\sum_{v \in A}\left(\sum_{e \text { out of } v} f(e)-\sum_{e \text { in to } \mathrm{v}} f(e)\right)
$$

$$
=\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } \mathrm{A}} f(e) .
$$

Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \leq \operatorname{cap}(A, B)$.
pf.

$$
\begin{aligned}
v(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e) \\
& \leq \sum_{e \text { out of } A} f(e) \\
& \leq \sum_{e \text { out of } A} c(e) \\
& =\operatorname{cap}(A, B) \quad .
\end{aligned}
$$

Corollary. Let f be any flow, and let (A, B) be any cut. If $v(f)=\operatorname{cap}(A, B)$, then f is a max flow and (A, B) is a min cut.

```
Value of flow = 28
Cut capacity = 28 F Flow value }\leq2
```


Towards a Max Flow Algorithm

Greedy algorithm.

- Start with $f(e)=0$ for all edge $e \in E$.
- Find an s-† path P where each edge has $f(e)<c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Greedy algorithm.

- Start with $f(e)=0$ for all edge $e \in E$.
- Find an s - \dagger path P where each edge has $f(e)<c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with $f(e)=0$ for all edge $e \in E$.
- Find an s - \dagger path P where each edge has $f(e)<c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.
locally optimality \nRightarrow global optimality

Original edge: $e=(u, v) \in E$.

- Flow $f(e)$, capacity $c(e)$.

Residual edge.

- "Undo" flow sent.
- $e=(u, v)$ and $e^{R}=(v, u)$.
- Residual capacity:

$$
c_{f}(e)= \begin{cases}c(e)-f(e) & \text { if } e \in E \\ f(e) & \text { if } e^{R} \in E\end{cases}
$$

Residual graph: $G_{f}=\left(V, E_{f}\right)$.

- Residual edges with positive residual capacity.
- $E_{f}=\{e: f(e)<c(e)\} \cup\left\{e^{R}: c(e)>0\right\}$.

Augmenting Path Algorithm

```
Augment(f, C, P) {
    b}\leftarrow\mathrm{ bottleneck(P)
    foreach e \in P {
        if (e ( E) f(e) \leftarrowf(e)+b forward edge
        else f(er)}\leftarrowf(e)-b\quadreverse edge
    }
    return f
}
```

```
Ford-Fulkerson(G, s, t, c) {
    foreach e \inE f(e) \leftarrow0
    \mp@subsup{G}{f}{}}\leftarrow\mathrm{ residual graph
    while (there exists augmenting path P) {
            f \leftarrowAugment(f, c, P)
            update GG
    }
    return f
```

\}

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing the TFAE:
(i) There exists a cut (A, B) such that $v(f)=\operatorname{cap}(A, B)$.
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.
(i) \Rightarrow (ii) This was the corollary to weak duality lemma.
(ii) \Rightarrow (iii) We show contrapositive.

- Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.
(iii) \Rightarrow (i)
- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of $A, s \in A$.
- By definition of $f, \dagger \notin A$.
$v(f)=\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } \mathrm{A}} f(e)$
$=\sum_{e \text { out of } A} c(e)$
$=\operatorname{cap}(A, B) \quad$ -

original network

Assumption. All capacities are integers between 1 and C.
Invariant. Every flow value $f(e)$ and every residual capacities $c_{f}(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v\left(f^{\star}\right) \leq n C$ iterations.
Pf. Each augmentation increase value by at least 1. -

Corollary. If $C=1$, Ford-Fulkerson runs in $O(m n)$ time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value $f(e)$ is an integer.
Pf. Since algorithm terminates, theorem follows from invariant.

Ford-Fulkerson: Exponential Number of Augmentations
Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

$$
m, n, \text { and } \log c
$$

A. No. If max capacity is C, then algorithm can take C iterations.

Use care when selecting augmenting paths.
. Some choices lead to exponential algorithms.

- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.

```
Scaling-Max-Flow(G, s, t, c) {
    foreach e GE f(e) \leftarrow0
    \Delta}\leftarrow\mathrm{ smallest power of 2 greater than or equal to C
    Gf}
    while ( }\Delta\geq1) 
            G}\mp@subsup{\textrm{f}}{\textrm{f}}{}(\Delta)\leftarrow\Delta\mathrm{ -residual graph
            while (there exists augmenting path P in G}\mp@subsup{G}{f}{}(\Delta)) 
            f \leftarrow augment(f, C, P)
            update G}\mp@subsup{G}{f}{}(\Delta
            }
    }
    return f
}
```

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ.
- Let $G_{f}(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ.

G_{f}

$G_{f}(100)$

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.

- By integrality invariant, when $\Delta=1 \Rightarrow G_{f}(\Delta)=G_{f}$.
- Upon termination of $\Delta=1$ phase, there are no augmenting paths. -

Lemma 1. The outer while loop repeats $1+\left\lceil\log _{2} C\right\rceil$ times.
Pf. Initially $C \leq \Delta<2 C$. Δ decreases by a factor of 2 each iteration. -
Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then the value of the maximum flow is at most $v(f)+m \Delta$. \leftarrow proof on next slide

Lemma 3. There are at most 2 m augmentations per scaling phase.

- Let f be the flow at the end of the previous scaling phase.
- $L 2 \Rightarrow v\left(f^{\star}\right) \leq v(f)+m(2 \Delta)$.
- Each augmentation in a Δ-phase increases $v(f)$ by at least Δ. .

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O\left(\mathrm{~m}^{2} \log C\right)$ time. -

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then value of the maximum flow is at most $v(f)+m \Delta$.
Pf. (almost identical to proof of max-flow min-cut theorem)

- We show that at the end of a Δ-phase, there exists a cut (A, B) such that $\operatorname{cap}(A, B) \leq v(f)+m \Delta$.
- Choose A to be the set of nodes reachable from s in $G_{f}(\Delta)$.
- By definition of $A, s \in A$.
- By definition of $f, \dagger \notin A$.
$v(f)=\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)$
$\geq \sum_{e \text { out of } A}(c(e)-\Delta)-\sum_{e \text { in to } A} \Delta$
$=\quad \sum c(e)-\sum \Delta-\sum \Delta$
$\sum_{e \text { out of } A}\left(e\right.$ out of $A \quad \sum_{e \text { in to } A}$
$\geq \operatorname{cap}(A, B)-m \Delta$

original network

