

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2} n$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n^{2}.
- Divide-and-conquer: $n \log n$.

Divide et impera.
Veni, vidi, vici.
Julius Caesar

Sorting

5.1 Mergesort

Sorting. Given n elements, rearrange in ascending order

Obvious sorting applications

- List files in a directory.
- Organize an MP3 library.
- List names in a phone book
- Display Google PageRank results.

Problems become easier once sorted.

- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.

Non-obvious sorting applications.

- Data compression
- Computer graphics.
- Interval scheduling
- Computational biology
- Minimum spanning tree
- Supply chain management.
- Simulate a system of particles.
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

divide $O(1)$
sort $2 T(n / 2)$
merge $O(n)$

A Useful Recurrence Relation

Def. $T(n)=$ number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\ \underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Solution. $T(n)=O\left(n \log _{2} n\right)$.

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace \leq with $=$.

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons
- Use temporary array.

A	G	H	I

Challenge for the bored. In-place merge. [Kronrud, 1969]
using only a constant amount of extra storage

Proof by Recursion Tree

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.

$$
\mathrm{T}(n)= \begin{cases}\begin{array}{ll}
0 & \text { if } n=1 \\
\underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }
\end{array}\end{cases}
$$

Pf. For $n>1$:

$$
\begin{array}{rll}
\frac{T(n)}{n} & =\frac{2 T(n / 2)}{n} & +1 \\
& =\frac{T(n / 2)}{n / 2} & +1 \\
& =\frac{T(n / 4)}{n / 4} & +1+1 \\
& \cdots & \\
& =\frac{T(n / n)}{n / n} & +\underbrace{1+\cdots+1}_{\log _{2} n} \\
& =\log _{2} n &
\end{array}
$$

assumes n is a power of 2
Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
$\stackrel{\uparrow}{\text { assumes } n \text { is a power of } 2}$

$$
\mathrm{T}(n)= \begin{cases}\begin{array}{ll}
0 & \text { if } n=1 \\
\underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }
\end{array}\end{cases}
$$

Pf. (by induction on n)

- Base case: $n=1$.
- Inductive hypothesis: $T(n)=n \log _{2} n$.
- Goal: show that $T(2 n)=2 n \log _{2}(2 n)$.

```
T(2n)=2T(n)+2n
    = 2n log}2n+2
    = 2n(\mp@subsup{\operatorname{log}}{2}{}(2n)-1)+2n
    = 2n log}2(2n
```

Analysis of Mergesort Recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n\lceil\lg n\rceil$.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\ \underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. (by induction on n)

- Base case: $n=1$.
- Define $n_{1}=\lfloor n / 2\rfloor, n_{2}=\lceil n / 2\rceil$.
- Induction step: assume true for $1,2, \ldots, n-1$.

```
T(n)\leqT(\mp@subsup{n}{1}{})+T(\mp@subsup{n}{2}{})+n
    \leq n}[\mp@code{lg}\mp@subsup{n}{1}{}]+\mp@subsup{n}{2}{}[\operatorname{lg}\mp@subsup{n}{2}{}]+
    s n}\mp@subsup{n}{1}{}[\operatorname{lg}\mp@subsup{n}{2}{}]+\mp@subsup{n}{2}{}\lceil\operatorname{lg}\mp@subsup{n}{2}{}]+
    = n\lceillg\mp@subsup{n}{2}{}\rceil+n
    \leqn(\lceillgn\rceil-1)+n
    = n\lceillgn\rceil
```


5.3 Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ... n.
- Your rank: $a_{1}, a_{2}, \ldots, a_{n}$.
- Songs i and j inverted if $i<j$, but $a_{i}>a_{j}$.

Inversions
3-2, 4-2

Brute force: check all $\Theta\left(n^{2}\right)$ pairs i and j.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

1	5	4	8	10	2	6	9	12	11	3	7	Divide: $O(1)$.
1	5	4	8	10	2	6	9	12	11	3	7	Conquer: $2 \mathrm{~T}(\mathrm{n} / 2)$
5 blue-blue inversions						8 green-green inversions						

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_{i} and a_{j} are in different halves.
- Merge two sorted halves into sorted whole.
to maintain sorted invarian

\section*{| 3 | 7 | 10 | 14 | 18 | 19 | | 11 | 16 | 17 | 23 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |}

13 blue-green inversions: $6+3+2+2+0+0$
Count: $O(n)$
$\begin{array}{lllllllllllllll}2 & 3 & 7 & 10 & 11 & 14 & 16 & 17 & 18 & 19 & 23 & 25 & \text { Merge: } O(n)\end{array}$

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_{i} and a_{j} are in different halves, and return sum of three quantities.

1	5	4	8	10	2	6	9	12	11	3	7	Divide: $O(1)$.

```
Total = 5+8+9=22.
```


Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
    if list L has one element
        return 0 and the list L
```

 Divide the list into two halves \(A\) and \(B\)
 (\(r_{A}, A\)) \(\leftarrow\) Sort-and-Count (A)
 (\(\left.r_{B}, B\right) \leftarrow\) Sort-and-Count (B)
 \((\mathrm{r}, \mathrm{L}) \leftarrow \operatorname{Merge-and}-\operatorname{Count}(\mathrm{A}, \mathrm{B})\)
 return \(r=r_{A}+r_{B}+r\) and the sorted list \(L\)
 \}
$T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)$

5.4 Closest Pair of Points

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same \times coordinate .

$$
\uparrow
$$

to make presentation cleaner

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure $n / 4$ points in each piece.

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. \leftarrow seems like $\theta\left(n^{2}\right)$
- Return best of 3 solutions.

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.

Closest Pair of Points
Find closest pair with one point in each side, assuming that distance $<\delta$.

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

Closest Pair of Points

Def. Let s_{i} be the point in the 2δ-strip, with the $i^{\text {th }}$ smallest y-coordinate.

Claim. If $|i-j| \geq 12$, then the distance between s_{i} and s_{j} is at least δ.
Pf.

- No two points lie in same $\frac{1}{2} \delta-$ by- $\frac{1}{2} \delta$ box.
- Two points at least 2 rows apart have distance $\geq 2\left(\frac{1}{2} \delta\right)$.

Fact. Still true if we replace 12 with 7.


```
Closest-Pair (p1, ..., prn) {
    Compute separation line L such that half the points
    are on one side and half on the other side
    \delta
    \delta
    \delta}=\operatorname{min}(\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{}
    Delete all points further than \delta from separation line L
    Sort remaining points by y-coordinate
    Scan points in y-order and compare distance between
    each point and next }11\mathrm{ neighbors. If any of these
    distances is less than \delta, update \delta.
    return \delta.
}
```

$O(n \log n)$
$2 T(n / 2)$

Running time.

$$
\mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
$$

Q. Can we achieve $O(n \log n)$?
A. Yes. Don't sort points in strip from scratch each time.

- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by \times coordinate.
- Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

5.5 Integer Multiplication

Integer Arithmetic

Add. Given two n-digit integers a and b, compute $a+b$.

- $O(n)$ bit operations.

Multiply. Given two n-digit integers a and b, compute $a \times b$.

- Brute force solution: $\Theta\left(n^{2}\right)$ bit operations.

1	1	1	1	1	1	0	1	
	1	1	0	1	0	1	0	1
+	0	1	1	1	1	1	0	1
1	0	1	0	1	0	0	1	0

To multiply two n-digit integers:

- Multiply four $\frac{1}{2} n$-digit integers.
- Add two $\frac{1}{2} n$-digit integers, and shift to obtain result

```
x = 2n/2}\cdot\mp@subsup{x}{1}{}+\mp@subsup{x}{0}{
y=}\mp@subsup{2}{}{n/2}\cdot\mp@subsup{y}{1}{}+\mp@subsup{y}{0}{
xy = (\mp@subsup{2}{}{n/2}\cdot\mp@subsup{x}{1}{}+\mp@subsup{x}{0}{})(\mp@subsup{2}{}{n/2}\cdot\mp@subsup{y}{1}{}+\mp@subsup{y}{0}{})=\mp@subsup{2}{}{n}\cdot\mp@subsup{x}{1}{}\mp@subsup{y}{1}{}+\mp@subsup{2}{}{n/2}\cdot(\mp@subsup{x}{1}{}\mp@subsup{y}{0}{}+\mp@subsup{x}{0}{}\mp@subsup{y}{1}{})+\mp@subsup{x}{0}{}\mp@subsup{y}{0}{}
```

```
T}(n)=\mp@subsup{\underbrace}{\mathrm{ recursive calls}}{4T(n/2)}+\mp@subsup{\underbrace}{\mathrm{ add, shift }}{\Theta(n)}=>\textrm{T}(n)=\Theta(\mp@subsup{n}{}{2}
    \uparrow
    sumes }n\mathrm{ is a power of }
```


Karatsuba: Recursion Tree

To multiply two n-digit integers:

- Add two $\frac{1}{2} n$ digit integers.
- Multiply three $\frac{1}{2} n$-digit integers.
- Add, subtract, and shift $\frac{1}{2} n$-digit integers to obtain result.

```
x= 2 n/2}\cdot\mp@subsup{x}{1}{}+\mp@subsup{x}{0}{
y=2 2n/2}\cdot\mp@subsup{y}{1}{}+\mp@subsup{y}{0}{
xy = 2n}\cdot\mp@subsup{2}{1}{}\mp@subsup{y}{1}{}+\mp@subsup{2}{}{n/2}\cdot(\mp@subsup{x}{1}{}\mp@subsup{y}{0}{}+\mp@subsup{x}{0}{}\mp@subsup{y}{1}{})+\mp@subsup{x}{0}{}\mp@subsup{y}{0}{
    = 2n}\cdot\mp@subsup{x}{1}{}\mp@subsup{y}{1}{}+\mp@subsup{2}{}{n/2}\cdot((\mp@subsup{x}{1}{}+\mp@subsup{x}{0}{\prime})(\mp@subsup{y}{1}{}+\mp@subsup{y}{0}{})-\mp@subsup{x}{1}{}\mp@subsup{y}{1}{}-\mp@subsup{x}{0}{}\mp@subsup{y}{0}{})+\mp@subsup{x}{0}{}\mp@subsup{y}{0}{
```

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O\left(n^{1.585}\right)$ bit operations.


```
# T(n)=O(n}\mp@subsup{}{\mp@subsup{\operatorname{log}}{2}{}3}{)}=O(\mp@subsup{n}{}{1.585}
```

Matrix multiplication. Given two n-by-n matrices A and B, compute $C=A B$.

Brute force. $\Theta\left(n^{3}\right)$ arithmetic operations.
Fundamental question. Can we improve upon brute force?

Matrix Multiplication: Key Idea

Key idea. multiply 2-by-2 block matrices with only 7 multiplications.
$\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right] \times\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$
$C_{11}=P_{5}+P_{4}-P_{2}+P_{6}$
$C_{12}=P_{1}+P_{2}$
$C_{21}=P_{3}+P_{4}$
$C_{22}=P_{5}+P_{1}-P_{3}-P_{7}$
P}=\mp@subsup{A}{11}{}\times(\mp@subsup{B}{12}{}-\mp@subsup{B}{22}{}
P}=\mp@subsup{A}{11}{}\times(\mp@subsup{B}{12}{}-\mp@subsup{B}{22}{}
P}=(\mp@subsup{A}{11}{}+\mp@subsup{A}{12}{})\times\mp@subsup{B}{22}{
P}=(\mp@subsup{A}{11}{}+\mp@subsup{A}{12}{})\times\mp@subsup{B}{22}{
P
P
P
P
P
P
P
P
P
P

Divide-and-conquer.

- Divide: partition A and B into $\frac{1}{2} n$-by- $\frac{1}{2} n$ blocks.
- Conquer: multiply $8 \frac{1}{2} n$-by $-\frac{1}{2} n$ recursively.
- Combine: add appropriate products using 4 matrix additions.
$\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right] \times\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$

$$
\begin{aligned}
& C_{11}=\left(A_{11} \times B_{11}\right)+\left(A_{12} \times B_{21}\right) \\
& C_{12}=\left(A_{11} \times B_{12}\right)+\left(A_{12} \times B_{22}\right) \\
& C_{21}=\left(A_{21} \times B_{11}\right)+\left(A_{22} \times B_{21}\right) \\
& C_{22}=\left(A_{21} \times B_{12}\right)+\left(A_{22} \times B_{22}\right)
\end{aligned}
$$

$$
\mathrm{T}(n)=\underbrace{8 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta\left(n^{2}\right)}_{\text {add, form submatrices }} \Rightarrow \mathrm{T}(n)=\Theta\left(n^{3}\right)
$$

Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)

- Divide: partition A and B into $\frac{1}{2} n$-by- $\frac{1}{2} n$ blocks.
- Compute: $14 \frac{1}{2} n$-by- $\frac{1}{2} n$ matrices via 10 matrix additions.
- Conquer: multiply $7 \frac{1}{2} n$-by- $\frac{1}{2} n$ matrices recursively.
- Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.

- Assume n is a power of 2 .
- $T(n)=\#$ arithmetic operations.

```
T}(n)=\mp@subsup{\underbrace}{}{7T(n/2)}+\mp@subsup{\underbrace}{\mathrm{ add,subract }}{\Theta(\mp@subsup{n}{}{2})}=>\textrm{T}(n)=\Theta(\mp@subsup{n}{}{\mp@subsup{\operatorname{log}}{2}{}7})=O(\mp@subsup{n}{}{2.81}
```

```
T}(n)=\mp@subsup{\underbrace}{}{7T(n/2)}+\mp@subsup{\underbrace}{\mathrm{ add,subract }}{\Theta(\mp@subsup{n}{}{2})}=>\textrm{T}(n)=\Theta(\mp@subsup{n}{}{\mp@subsup{\operatorname{log}}{2}{}7})=O(\mp@subsup{n}{}{2.81}
```

- 7 multiplications.
- $18=10+8$ additions (or subtractions).

Implementation issues

- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around $n=128$.

Common misperception: "Strassen is only a theoretical curiosity."

- Advanced Computation Group at Apple Computer reports $8 x$ speedup on $G 4$ Velocity Engine when $n \sim 2,500$.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" $A x=b$, determinant, eigenvalues, and other matrix ops.

Fast Matrix Multiplication in Theory

Best known. $O\left(n^{2.376}\right)$ [Coppersmith-Winograd, 1987.]
Conjecture. $O\left(n^{2+\varepsilon}\right)$ for any $\varepsilon>0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.
Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]
$\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)$
Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971] $\quad \Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)$
Q. Two 3-by-3 matrices with only 21 scalar multiplications?
A. Also impossible.
$\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)$
Q. Two 70 -by- 70 matrices with only 143,640 scalar multiplications?
A. Yes! [Pan, 1980]

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Decimal wars.

- December, 1979: $O\left(n^{2.521813}\right)$.
- January, 1980: $O\left(n^{2.521801}\right)$.

