
Computational Intractability 2010/6/17

Lecture 9
Professor: David Avis Scribe:Daichi Paku, rev. DA 2013/6/27

1 Single machine scheduling with precedence con-

straints

1 4

2

3

65 7

: job must be completedi
before can start. (no cycles)

j

j

i j

j : job

1.1 Problem

Input: a precedence graph with n jobs, and each job j has processing time pj.

Several possible objective:

(i) makespan: minimum length schedule. → This is easy, by topological sort.

(ii) minimum sum of completion times, possibly weighted.

min
n∑

j=1

wjcj

(
cj : completion time of job j.
wj : weight of job j.

)

This is NP-hard, and we discuss this problem in this lecture.

9 - 1

Feasible schedule: just a permutation of 1, 2, · · ·n consistent with the given
graph.

p5 p2 p3 p6 p4 p7p1

t= 1 2 …

c1 c5 c2 c6c3 c4 c7

l

In this example, c1 = p1, c2 = p1 + p5, c3 = p1 + p5 + p2, · · · , c7 = l, where
l =

∑n
j=1 pj.

1.2 Smith’s rule

Suppose there are no precedence constraints, we can use Smith’s rule.
For example, p1 = 2, p2 = 4, p3 = 3. We can gain the optimal solution by

scheduling the jobs in nondecreasing order of pj.

p1 p3 p2

Then, this is optimal.
If we have weights, w1 = 1, w2 = 10, w3 = 1, then we schedule the jobs in

nondecreasing order of the ratios pj/wj.

p2 p1 p3

This is optimal.

1.3 Formulation

Decision variables

xjt =

{
1 if job j starts at time t
0 otherwise

(
j = 1, 2, · · · , n
t = 1, 2, · · · , l

)

9 - 2

Constraints

1. Each job must start sometime.

l∑
t=1

xjt = 1 (j = 1, 2, · · ·n) (1)

2. At each time exactly only one job is runnning.

For example, with n = 3, p1 = 2, p2 = 4, p3 = 3:

t = 1 2

1

2

3

: if job starts here, it is running at time s

sjobs

876543

Exactly one job must start in the shaded area, so,

x15 + x16 + x23 + x24 + x25 + x26 + x34 + x35 + x36 = 1.

Another example.

1

2

3

t = 1
(b)

sjobs

2 3 4 5 6 7 8

In this case,
x11 + x12 + x21 + x22 + x31 + x32 = 1.

Generally.

n∑
j=1

s∑
t=max(1,s+1−pj)

xjt = 1 (s = 1, 2, · · · l) (2)

9 - 3

3. Precedence constraints.

Example. (pi = 3, pj = 4, i→ j)

i

j

jobs

t = 1 2 3 4 5 6 7 8

: not started yet.i j

s

If job i has not started in time 1, 2, · · · , s, job j cannot start in time 1, 2, · · · , s+
pi.

s+pi∑
t=1

xjt ≤
s∑

v=1

xiv

(
s = 1, 2, · · · l − pi − pj
for each (i→ j)

)
(3)

4. (Release time: job j cannot start before time rj)

xjs = 0 (s = 1, 2, · · · , rj − 1) (4)

Objective function
If job j starts at time t, that is if xjt = 1, then j will finish at cj = t + pj.
So,

min
n∑

j=1

wjcj =
n∑

j=1

wj

[l∑
t=1

(t + pj)xjt

]
.

1.4 Second formulation

Decision variables

xij =

{
1 if job i precedes job j in the schedule
0 otherwise

(
for all jobs i, j distinguished

)
For example:

p2 p3 p1 p4 −→
(

x23 = 1, x21 = 1, x24 = 1,
x31 = 1, x34 = 1, x14 = 1, else xij = 0

)
For convenience we will add additional ‘variables’ xjj = 1, j = 1, 2, ..., n.

9 - 4

Constraints

1. Antireflexive. It must be that either job i is before job j, or j is before i in
the scheduling, then

xij + xji = 1 (for all i, j) (5)

2. Transitivity. We allow no cycles. That means:

(a) If xij = 1 and xjk = 1 then xki = 0.

(b) If xjk = 1 and xki = 1 then xij = 0.

(c) If xki = 1 and xij = 1 then xjk = 0.

ki j

and we can write these as the single constraint:

xij + xjk + xki ≤ 2 (for all i, j, k distinguished) (6)

Now, we can eliminate half of the variables by using (5).

xji = 1− xij (j > i)

Then (6) is,

xij + xjk − xik ≤ 1
−xij − xjk + xik ≤ 0

(
for all i, j, k
i < j < k

)
(7)

3. Precedence constraints.

Actually easy.

xij = 1 (for each (i→ j)) (8)

Objective function
For example.

p4 p2 p3 p1 p5 −→
(

c3 = p2 + p3 + p4
= p1x13 + p2x23 + p3x33 + p4x43 + p5x53

)
Generally.

min
n∑

j=1

wjcj =
n∑

j=1

wj

n∑
i=1

pixij (9)

Again we can eliminate half of the variables using (5).

9 - 5

Question: Can we include release times rj for each job j in this model?
This looks tricky. Since release time may cause idle time, the current objective
function is not correct. Nevertheless, Nemhauser and Savelsbergh [2] showed it
could be done as follows. Assume the jobs are labelled so that 0 ≤ r1 ≤ r2... ≤ rn.

• For simplicity, introduce new constant variables xjj = 1 for each job j.

• Introduce lower bounds on completion time cj for each job j as follows:

cj ≥ rixij +
∑

k<i,k 6=j

pk(xik + xkj − 1) +
∑

k≥i,k 6=j

pkxkj + pj 1 ≤ i, j ≤ n (10)

• Use the objective function min
∑n

j=1wjcj

The correctness of the lower bound on cj can be seen as follows. Let i be any job
that is processed before j, ie. xij = 1. Clearly job i cannot start before ri. To this
we can add the following to get a lower bound on cj:

• the processing times of all jobs k < i (which by assumption have release time
at most ri) which go after job i and before job j. Observe that if i preceeds j
then the term xik + xkj − 1 is one if k is scheduled between i and j and is zero
otherwise.

• the processing times of all jobs k ≥ i (which by assumption have release time
at or after ri) which go before job j, ie. xkj = 1.

• the processing time of job j.

To see the correctness of the objective function, consider an optimum solution to
the problem and let xij be set according to this solution. We need to see that cj
as specified by the bounds (10) is the correct value for the completion time of job
j, j = 1, 2, ..., n. This means that it should satisfy at least one inequality as an
equation, and this equation should give the correct value of cj. In the optimum
solution, the jobs are scheduled in consective blocks that contain no idle time. The
blocks are separated by idle time. Let B be the block containing job j. If j is the
first job in B then necessarily j starts at rj and (10) is an equation giving the correct
completion time rj +pj since the two summations are empty. Otherwise let i 6= j be
the first job in the block B. As there is no idle time in B, j will start immediately
after the sum of the processing times of all jobs that precede it and are either i or
follow i in the schedule. For jobs with k ≥ i we require only xkj = 1 since they
could not be scheduled before ri. For jobs with k < i we also require xik = 1, for
otherwise they would be scheduled in another block. Therefore (10) is satisfied as
an equation for this value or i and j and gives the correct completion time for job j.

As a final note, in (10) we could eliminate the second summation entirely by
incorporating all terms in the first summation. We get the inequalities:

cj ≥ rixij +
n∑

k=1

pk(xik + xkj − 1) 1 ≤ i, j ≤ n (11)

9 - 6

where again we assume xjj = 1, j = 1, 2, ..., n. However, the formulation (10) gives
a stronger linear programming relaxation.

References

[1] A.B. Keha, K. Khowala. J.W. Fowler, “Mixed integer programming for-
mulations for single machine scheduling problems”,Computers & Ind. Eng.
56(2009)357-367.

[2] G. L. Nemhauser and M.W.P. Savelsbergh, “A cutting plane algorithm for the
single machine scheduling problem with release times,” NATO ASI serries F:
Computer and Systems Sciences 82(1992)63-84.

9 - 7

