Computational Intractability 2010/6/17

Lecture 9
Professor: David Avis Scribe:Daichi Paku, rev. DA 2013/6/27

1 Single machine scheduling with precedence con-
straints

e @:jobj
(D) (4)
3)

- job i must be completed
e e G before j can start. (no cycles)

1.1 Problem

Input: a precedence graph with n jobs, and each job j has processing time p;.
Several possible objective:
(i) makespan: minimum length schedule. — This is easy, by topological sort.
(ii) minimum sum of completion times, possibly weighted.

N c; : completion time of job j.
min >, w;c; (w; : weight of job j.

Jj=1

This is NP-hard, and we discuss this problem in this lecture.

Feasible schedule:

just a permutation of 1,2,---n consistent with the given
graph.

t=1 2

Pr | Ps P2

G G & G G G G

In this example, ¢; = p1,¢a = p1 + ps,c3 = p1 + 5 + pa2,---,¢r = [, where
[= Z?:lpj‘

1.2 Smith’s rule

Suppose there are no precedence constraints, we can use Smith’s rule.

For example, p; = 2,p, = 4,p3 = 3. We can gain the optimal solution by
scheduling the jobs in nondecreasing order of p;.

T — I
Pl | p3| | rl)z |
Then, this is optimal.
If we have weights, w; = 1,ws = 10,w3 = 1, then we schedule the jobs in
nondecreasing order of the ratios p;/w;
I T 1
| FI)Z | Fl)l | p3|

This is optimal.

1.3 Formulation

Decision variables

0 otherwise

1 if job j starts at time ¢ Ji
Tyt = ¢

Constraints

1. Each job must start sometime.

2. At each time exactly only one job is runnning.
For example, with n = 3,p1 = 2,ps = 4,p3 = 3:
D . if job starts here, it isrunning at time's

job: S

I w N

1 2 3 45 6 7 8

Exactly one job must start in the shaded area, so,

T15 + T + Tog + Tog + Tos + Toe + XTaa + T35 + T36 = 1.

Another example.

job: S
1
2
3
t=1 2 3 4 5 6 7 8
(b)
In this case,
T11 -+ T12 + T21 + T2 + T31 + T3 = 1.
Generally.
n S

Z Z :L‘jtzl (8:1727l) (2)

J=1 t=max(1,s+1—p;)

9-3

3. Precedence constraints.

Example. (p; =3,p; =4, — j)

D : not started yet.

job: S
i
j
t=1 2 3 4 5 6 7 8

If job 7 has not started in time 1,2, - - - | s, job 7 cannot start in time 1,2, ---, s+
pi.
S$+pi s
s = 1727l_p2_p
SV | S 3
R for each (i — j)

4. (Release time: job j cannot start before time r;)

rjs=0 (s=1,2,---,r;, —1) (4)

Objective function
If job j starts at time ¢, that is if x;; = 1, then j will finish at ¢; =t + p,.
So,

n l

min Z w;cj = Zi: w [Z(t + pj):l?jt} :

j=1 t=1

1.4 Second formulation

Decision variables

I { 1 if job 4 precedes job jin the schedule
i

0 otherwise <f0r all jobs 4, j dlStnglllShed)

For example:

To3 = 1, w91 = 1, w94 = 1,
T3] = 1,1’34: 1,513'14: 1, else Tij =0
For convenience we will add additional ‘variables’ z;; =1, j =1,2,...,n.

’Pz‘Ps‘Pl\m‘ —

Constraints

1. Antireflexive. It must be that either job 7 is before job j, or j is before ¢ in
the scheduling, then

zij+ x5 =1 (for all 4, j) (5)

2. Transitivity. We allow no cycles. That means:

(a) If 2;; =1 and xj;, = 1 then z; = 0. 0 0 0

(b) If xj, = 1 and z; = 1 then z;; = 0.

(c) If z4; =1 and x;; = 1 then zj;, = 0.

and we can write these as the single constraint:

Tij + ik +xp <2 (for all 4, j, k distinguished) (6)

Now, we can eliminate half of the variables by using (5).

Then (6) is,
Tij + Tjk — Tik S 1 for all i,j, k (7)
—T; — Tk + Tik < 0 i<j<l€
3. Precedence constraints.
Actually easy.
x;; =1 (for each (i — j)) (8)

Objective function
For example.

= P2+ p3s+ps >

C3
o lpe o [les | — (= P1713 + P2T23 + P3T33 + Palaz + P53

Generally.

min Z wjic; = Z w;j Zpil’ij (9)
j=1 =1

J=1

Again we can eliminate half of the variables using (5).

9-5

Question: Can we include release times r; for each job j in this model?

This looks tricky. Since release time may cause idle time, the current objective
function is not correct. Nevertheless, Nemhauser and Savelsbergh [2] showed it
could be done as follows. Assume the jobs are labelled so that 0 < r; < ry... < rp,.

e For simplicity, introduce new constant variables x;; = 1 for each job j.
e Introduce lower bounds on completion time c; for each job j as follows:

¢ >rimi+ Y pel@wtag— 1)+ D peti +p; 1<4,5 <n (10)
k<i,k#j k>i,k#j

e Use the objective function min Z?Zl w;c;

The correctness of the lower bound on ¢; can be seen as follows. Let ¢ be any job
that is processed before j, ie. x;; = 1. Clearly job ¢ cannot start before r;. To this
we can add the following to get a lower bound on ¢;:

e the processing times of all jobs k& < i (which by assumption have release time
at most ;) which go after job i and before job j. Observe that if ¢ preceeds j
then the term x;, +xx; — 1 is one if k is scheduled between 7 and j and is zero
otherwise.

e the processing times of all jobs k£ > i (which by assumption have release time
at or after r;) which go before job j, ie. x); = 1.

e the processing time of job j.

To see the correctness of the objective function, consider an optimum solution to
the problem and let x;; be set according to this solution. We need to see that c;
as specified by the bounds (10) is the correct value for the completion time of job
j, j = 1,2,...,n. This means that it should satisfy at least one inequality as an
equation, and this equation should give the correct value of ¢;. In the optimum
solution, the jobs are scheduled in consective blocks that contain no idle time. The
blocks are separated by idle time. Let B be the block containing job j. If j is the
first job in B then necessarily j starts at r; and (10) is an equation giving the correct
completion time r; 4 p; since the two summations are empty. Otherwise let i # j be
the first job in the block B. As there is no idle time in B, j will start immediately
after the sum of the processing times of all jobs that precede it and are either i or
follow ¢ in the schedule. For jobs with & > ¢ we require only z3; = 1 since they
could not be scheduled before r;. For jobs with k < ¢ we also require x;;, = 1, for
otherwise they would be scheduled in another block. Therefore (10) is satisfied as
an equation for this value or ¢ and j and gives the correct completion time for job j.
As a final note, in (10) we could eliminate the second summation entirely by
incorporating all terms in the first summation. We get the inequalities:

¢; > 1 + Y pe(Ti + z — 1) 1<i,5<n (11)
k=1

9-6

where again we assume z;; =1, j = 1,2, ...,n. However, the formulation (10) gives
a stronger linear programming relaxation.

References

[1] A.B. Keha, K. Khowala. J.W. Fowler, “Mixed integer programming for-

mulations for single machine scheduling problems” Computers & Ind. Eng.
56(2009)357-367.

[2] G. L. Nemhauser and M.W.P. Savelsbergh, “A cutting plane algorithm for the
single machine scheduling problem with release times,” NATO ASI serries F:
Computer and Systems Sciences 82(1992)63-84.

