
Computational Intractability 2010/5/20, Revised 2011/6/8 DA

Lecture 6

Professor: David Avis Scribe: Lin Chang-Hong

We know how to solve linear programs and prove solutions are correct. How can we
use this to solve integer programs? The first approach is to try solving it as an LP. In this
lecture we consider a multi-period scheduling problem called the Uncapacitated Lot Size
(ULS) problem.

1 ULS problem with no fixed costs

In this problem we have n periods and a demand at each period. The problem is to
schedule the production at each of n periods to meet the demand of that period, and
possibly leave some extra inventory for the periods to come. There is a given production
cost per unit, and a holding cost for the inventory. For simplicity, we will assume the
holding cost is $1/unit per time period. A flow-chart for the problem with n = 3 periods
is given in Figure 1.

Symbols:

1. n : periods

2. di: demand at period i

3. pi: cost of producing 1 unit in period i

4. xi: amount produced in period i

5. si : amount of inventory at the end of period i.

Although we are interested only in integer solutions (imagine we are producing air-
planes) we can will formulate the problem in Figure 1 as a linear program called a LP-
relaxation:

min : z = 3x1 + 4x2 + 3x3 + s1 + s2 + s3 (1)

x1 = 6 + s1

x2 = 7− s1 + s2

x3 = 4− s2 + s3

xi, si ≥ 0, i = 1, 2, 3.

The input file for lp solve is suls3.lp. The solution by lp solve is x1 = 13, x3 = 4 with
z = 58. Since we have an integer solution, we are done. We were lucky, or were we? If we
change the input data, do we always get an integer solution?

In general we may ask when does an LP-relaxation of an ILP have an integer solution?
This is a difficult question in general, as it often depends on the objective function. In
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Figure 2, for some objective functions we get an integer solution, but for other objective
functions we will not. One thing we can say is that an LP has an integer solution for every
objective function if and only if all vertices of the feasible region are integer.

• Facts:

1. An optimum LP solution can always be found at a vertex (Simplex method gives
it)

2. If any vertex v is fractional, there is always some objective function optimizing here
uniquely.

Proof: Consider any vertex v and write down its dictionary (see Figure 3). Assuming
we have a maximization problem, we can replace the current objective row with

w = 0−
∑
j∈N

xj N =cobasis for v.

We can rewrite w by substituting for any slack variable in N using the initial dictio-
nary which defines the slacks. We now have w in terms of original decision variables, and
this function uniquely optimizes at vertex v. This completes the proof.

In order to check if all vertices are integer, we can use vertex enumeration to generate
all vertices of a polyhedron Ax ≤ b. There are several programs, one is lrs (others are cdd,
porta,...) The input is called an H-representation (halfspace or inequality representation)
and the output is called a V-representation (vertices and rays).

The input format for lrs is [b−A], and equations are specified by the ’linearity’ com-
mand. The lrs input file suls3.ine for our LP is:

• H-representation:

linearity 3 1 2 3
vars b x1 x2 x3 s1 s2 s3

6 −1 0 0 1 0 0
7 0 −1 0 −1 1 0
4 0 0 −1 0 −1 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
...

...
...

...
...

...
...

0 0 0 0 0 0 1

The linearity command says there are three equations, in rows 1,2, and 3. The remain-
ing inequalities are non-negativity constraints

The output after running lrs will be a V-representation(Vertices and Rays) of the
polyhedron (see Figure 5).

The format is:
1 x1 x2 · · · xn−1 vertex(x1, x2, · · ·,xn−1)
0 y1 y2 · · · yn−1 ray(y1, y2, · · ·, yn−1)
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For our example, the output consists of 4 vertices and 4 rays:

• V-representation:

x1 x2 x3 s1 s2 s3

1 6 7 4 0 0 0

0 0 0 1 0 0 1

1 13 0 4 7 0 0

0 0 0 1 0 0 1

1 6 11 0 0 4 0

0 0 1 0 0 1 1

1 17 0 0 11 4 0

0 1 0 0 1 1 1

We observe that all vertices are integers. Therefore, regardless of the objective function
we will always get an integer solutions to the LP. This can be proven formally for this
simple version of the ULS problem.

2 ULS problem with fixed costs

Whenever xi > 0, we add fixed cost fi. If you produce anything at all in period i, you
must pay fixed cost fi.

Let

yi =

{
1 produce in period i

0 otherwise
(2)

We need to link xi with yi. Let M be any upper bound on xi. The linking equation
is xi ≤ Myi. This means that if xi is positive, then yi = 1. Note that y1 = 1, x1 = 0 is
feasible but it is not going to be optimum since the fixed costs are positive (ie. y1 = 0 is
also feasible at lower cost.)

We have the upper bounds x1 ≤ 17(total demand), x2 ≤ 11, x3 ≤ 4, and the new
inequalities are:

x1 ≤ 17y1

x2 ≤ 11y2

x3 ≤ 4y3

(3)

Suppose f1 = 12, f2 = 10, f3 = 10. The objective function now becomes

min : 3x1 + 4x2 + 3x3 + s1 + s2 + s3 + 12y1 + 10y2 + 12y3 (4)
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The new input file is luls3.lp. If we now solve this ULS problem as an LP we find that we
get an optimum solution:

x1 = 13, x3 = 4, s1 = 7, y1 = 13/17, y3 = 1, z = 77 3/17

which is not integer! If we round up y1 to one then we get z = 82. This is not optimum
as we can verify by adding the integer constraint, as in file uls3.lp. We now obtain the
integer optimum solution:

x1 = 17, s1 = 14, s2 = 4, y1 = 1, z = 78 (5)

which involves only producing in period 1 then paying storage costs for periods 2 and 3.
Indeed, this problem has many fractional vertices, as you will discover if you run lrs on
the corresponding H-representation in file luls3.ine.

3 LP-relaxations for an Integer Program

In general integer programs have many formulations as linear programs. The property
we would like is that the only feasible integer solutions to the LP-formulation are feasible
integer solutions to our original problem. These formulations are called LP-relaxations
(see Figure 6).

Definition 1. Let X={feasible integer solutions to the problem} and P = {x : Ax ≤ b}
be a polyhedron. P is an LP-relaxation for X if X = P ∩ Zn, where Zn are the integer
vectors or length n.

If we have an integer optimum solution to an LP-relaxation, then we are sure that it
is the optimum integer solution of the original problem. We call the LP-relaxation and
ideal formulation whenever all of its vertices are integer. In this case the LP solution is
always the integer optimum solution.

4 Another formulation for the ULS problem with fixed costs

We introduce new decision variables. For each pair of periods i ≤ j we let wij denote
the production at period i that satisfies demand in period j. In this model we do not
need variables for the inventory between periods. The cost of inventory will be included
in the coefficient cij of wij in the objective. Figure 4 shows the revised flowchart. The
cost coefficients are given by

cii = pi, cit = pi + si + si+1 + ... + st−1 i < t ≤ n.

Our new LP formulation uls3a.lp is as follows:

min : 3w11 + 4w12 + 5w13 + 4w22 + 5w23 + 3w33 + 12y1 + 10y2 + 12y3
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w11 = 6, w12 + w22 = 7, w13 + w23 + w33 = 4

w11 ≤ 6y1, w12 ≤ 7y1, w13 ≤ 4y1

w22 ≤ 7y2, w23 ≤ 4y2, w33 ≤ 4y3

y1 ≤ 1, y2 ≤ 1, y3 ≤ 1

This LP turns out to give the optimum integer solution (5) we obtained before.
Lucky? Not really! This turns out to be a perfect formulation for the ULS problem

with fixed costs. This can be verified by running lrs on the input file uls3a.ine. The
feasible region has only integer vertices, so we can solve it with the simplex method. In
fact this formulation of the ULS problem always has only integer vertices if the input
demands are integers. This was proved by Wolsey in ”Uncapacitated Lot-Sizing Problems
with Start-Up Costs”, Operations Research (1988) 37, No. 5, pp. 741-747.
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