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Lecture 10

Professor: David Avis

In this lecture we consider how to generate classes of cutting planes for specific integer
programming problems, especially those with binary variables. We use the knapsack
problem as an illustration. First we generate an ideal formulation for a small problem and
then investigate and generalize the output obtained so that it can be applied to larger
problems. The material on cover inequalities is derived from Ch. 9 of Wolsey [1], to where
the reader is referred for a more detailed description.

1 Computing ideal formulations for binary integer programs

The ideal formulation for a binary integer program can be found (for small problems) by
using software for transforming an H-representation to a V-representation and vice versa,
using programs such as cdd, PORTA, or Irs. We use Irs [2] in these notes. Suppose we have
an LP-relaxation P = {x € R" | Az <b, 0 <z < 1}. We denote this H-representation of
P as H(P).

e Compute the V-representation V(P) of H(P)

e Delete any fractional vertices from V(P) getting IV (P)

e Compute the H-representation I H(P) from IV (P)

ITH(P) is the ideal formulation for the integer solutions in P.
A knapsack problem is a binary ILP with a single constraint consisting of only positive
integers. The constraint region is given by

n
KP={zeR"| Y ajz; <bz;€{0,1},j=1,..,n}
j=1

We assume without loss of generality that a1 > a2 > ... > ay.
An LP relaxation H(P) of KP is formed by replacing the binary constraints with
upper and lower bounds on the variables. Consider, for example,

H(P) = {x € R® | 921 + 8x9 + 623 4+ 624 + 525 < 14, 0 < z < 1}



The input format for H-representations in Irs is [b — A], and the Irs input file 3i.ine for
H(P) is:

H-representation

begin
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The output V-representation, V(P), consists of 31 vertices, 13 of which are binary. We
construct a V-representation, IV (P) (%i_int.ext) from these 13 binary variables, where
column one is always 1 and indicates a vertex:

V-representation

begin

13 6 rational
1 0 0 0 0 O
11 0 0 0 O
1 0 1 0 O O
1 0 01 0 O
1 01 1 0 O
1 0 0 0 1 O
1 0 1 0 1 O
1 0 0 1 1 O
1 0 0 0 0 1
11 0 0 0 1
1 01 0 O 1
1 0 0 1 0 1
1 0 0 0 1 1

end

Running Irs on this input we obtain the ideal formulation, I H(P) (3i_int.ine), for KP
where we have added line numbers for later reference:

H-representation
begin

11 6 rational

: 01 0 0 0 O
0 1 0 0 O
-1 -1-1-1-1
0 0 0 0-1
0 01 0 O
-1 0 0-1 0
0 0 0 0 1
-2-1-1-1 0
-1-1 0 0 O
0 0 0 1 0
-1 0-1 0 O
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2 Analyzing the output

We first observe that only lines 1,2,4,5,7,10 of I H(P) appear in H(P). These correspond
to the 5 constraints z; > 0 and the single upper bound x5 < 1.

2.1 Cover inequalities

Lines 6,9,11 of IH(P) correspond to the inequalities
1+ w4 <1 1 +r2 <1 1+ 23 <1

These are stronger than the upper bound inequalities zo < 1, z3 < 1, x4 < 1 which is
why these do not appear in IH(P). They indicate that at most one of a subset of two
items can be chosen, and are examples of cover inequalities.
Consider a general knapsack constraint > ;" | ajz; < b, where all a; > 0. Let S C
{1,2,...,n} be a subset such that
Z aj > b

jes
Then we obtain the cover inequality
Z Zj < ’S| —1.
jes
2.2 Extended cover inequalities

The examples in the last subsection have |S| = 2. Consider the case S = {3,4,5}. Since
a3+ a4 + a5 > 14 we obtain the cover inequality x3 + x4+ x5 < 2. However this inequality
does not appear in IH(P). Instead in line 3 we find the stronger inequality

1+ xo + 23+ 14 + 15 < 2.

This is an extended cover inequality, which we now define in general.
Consider a general knapsack constraint » . ; ajz; < b and cover inequality defined by
S. Let k£ be the minimum index in S. If £ > 1 we define the extended cover inequality

from S as
k—1
Do+ w<[S| -1, (1)
j=1

JES
Since we assumed that a1 > as > ... > a, this is clearly valid and stronger than the
original cover inequality. Inequality 3 of IH(P) displayed above is the extended cover
inequality derived from S = {3,4,5}.
2.3 Strengthened extended cover inequalities

We have now analyzed all constraints of I H(P) except the constraint on line 8:

201 + a0+ 23+ 14 < 2. (2)



Since the coefficient of z; is 2 it cannot be an extended cover inequality. Nevertheless we
can observe that xo + 3+ x4 < 2 is a cover inequality and hence x1 + xo + x3 + 24 < 2 is
an extended cover inequality. However (2) is stronger than this.

If we consider the coefficients a1 = 11,a92 = 8,a3 = a4 = 6 we can observe that if
x1 = 1 then we must have xo = x3 = z4 = 0. However if 1 = 0 then we just have the
original cover inequality. This is what (2) and non-negativity of the variables implies. It
is called a strengthened extended cover inequality.

Again consider a general knapsack constraint > ; a;xz; < b and extended cover in-
equality (1). We attempt to strengthen it by finding the largest integer ¢; > 1 such
that

k—1
01:171+ij+2$]'§|5|—1. (3)
§=2 jes
is a valid inequality, where the first summation is empty if k¥ = 2. Validity is immediate
for the case when x1 = 0. For the case 1 = 1 we need to find the largest integer ¢; such

that

k—1

ij—i—ijS\S\—l—cl (4)
Jj=2 jes

is valid. This is achieved by solving the knapsack problem

k—1
*— . .
z —maa:g a?]—i-g x;
Jj=2

JES
n
s.t. Zajmj <b-—-m
i=2
T € {0, 1}

and setting ¢; = |S| — 1 — z*. In our example we would obtain z* = 0 and hence ¢; = 2.
Observe that finding ¢ involves solving an NP-hard problem! However in practice these
problems may be rather small and easy to solve.

The procedure described in this section can be iterated for each variable added to
extend a cover inequality. We illustrate on the larger example:

11331 + 6332 + 6$3 + 5$4 + 5$5 + 4956 + x7 < 14

We set S = {3,4,5,6} giving the cover inequality x3+ x4+ x5+ 6 < 3. We extend this by
first considering x2 and finding its maximum coefficient co as described above. We solve

Z¥ =max x3+ x4+ T5+ Tg
s.t. 6x3+dxry + 525 +41 <14 —6=28
zj € {0,1}

by inspection obtaining z* = 1. This gives coefficient co = 3 — 2* = 2. We obtain the
strengthened extended cover inequality 2xo + 3 + 4 + x5 + 26 < 3.



Next we consider x1 and find its coefficient ¢;. For this we solve the knapsack problem

2" =max 2x9 + x3+ x4 + x5 + Tg
s.t. 6x9 4+ 6x3 4+ brg + s +4xrg <14 —-11=3
zj € {0,1}

by inspection obtaining z* = 0, and hence ¢; = 3 — 0 = 3. We obtain the strengthened
extended cover inequality

3r1+ 2z + 23+ 24 + 25 + 26 < 3.

Note that the order that the variables are considered in computing the strenghtened
inequalities may influence the final inequality obtained (see Exercise 2). However it can be
shown (see [1], Ch. 9) that the procedure described here applied to any cover inequality
always results in a facet of the knapsack polytope.

3 Exercises

1. Take the knapsack inequality 11z; + 6x2 + 623 + 5x4 + dxs + 4xg + x7 < 14 with all
variables binary valued and compute its ideal formulation using the method of Section 1.
For each inequality in the ideal formulation that is not in the original formulation, show
how it can be derived using the methods described in Section 2.

2. Find an example where different strengthened extended cover inequalities are obtained
depending on the order the the variables are considered for strengthening.
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