
Computational Intractability 2013/7/10

Lecture 10

Professor: David Avis

In this lecture we consider how to generate classes of cutting planes for specific integer
programming problems, especially those with binary variables. We use the knapsack
problem as an illustration. First we generate an ideal formulation for a small problem and
then investigate and generalize the output obtained so that it can be applied to larger
problems. The material on cover inequalities is derived from Ch. 9 of Wolsey [1], to where
the reader is referred for a more detailed description.

1 Computing ideal formulations for binary integer programs

The ideal formulation for a binary integer program can be found (for small problems) by
using software for transforming an H-representation to a V-representation and vice versa,
using programs such as cdd, PORTA, or lrs. We use lrs [2] in these notes. Suppose we have
an LP-relaxation P = {x ∈ Rn | Ax ≤ b, 0 ≤ x ≤ 1}. We denote this H-representation of
P as H(P ).

• Compute the V-representation V (P ) of H(P )

• Delete any fractional vertices from V (P ) getting IV (P )

• Compute the H-representation IH(P ) from IV (P )

IH(P ) is the ideal formulation for the integer solutions in P .
A knapsack problem is a binary ILP with a single constraint consisting of only positive

integers. The constraint region is given by

KP = {x ∈ Rn |
n∑

j=1

ajxj ≤ b, xj ∈ {0, 1}, j = 1, ..., n}

We assume without loss of generality that a1 ≥ a2 ≥ ... ≥ an.
An LP relaxation H(P ) of KP is formed by replacing the binary constraints with

upper and lower bounds on the variables. Consider, for example,

H(P ) = {x ∈ R5 | 9x1 + 8x2 + 6x3 + 6x4 + 5x5 ≤ 14, 0 ≤ x ≤ 1}
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The input format for H-representations in lrs is [b−A], and the lrs input file 3i.ine for
H(P ) is:

H-representation

begin

11 6 rational

14 -9 -8 -6 -6 -5

1 -1 0 0 0 0

1 0 -1 0 0 0

1 0 0 -1 0 0

1 0 0 0 -1 0

1 0 0 0 0 -1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

end

The output V-representation, V (P ), consists of 31 vertices, 13 of which are binary. We
construct a V-representation, IV (P ) (3i int.ext) from these 13 binary variables, where
column one is always 1 and indicates a vertex:

V-representation

begin

13 6 rational

1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 1 1 0 0

1 0 0 0 1 0

1 0 1 0 1 0

1 0 0 1 1 0

1 0 0 0 0 1

1 1 0 0 0 1

1 0 1 0 0 1

1 0 0 1 0 1

1 0 0 0 1 1

end

Running lrs on this input we obtain the ideal formulation, IH(P ) (3i int.ine), for KP
where we have added line numbers for later reference:

H-representation

begin

11 6 rational

1: 0 1 0 0 0 0

2: 0 0 1 0 0 0

3: 2 -1 -1 -1 -1 -1

4: 1 0 0 0 0 -1

5: 0 0 0 1 0 0

6: 1 -1 0 0 -1 0

7: 0 0 0 0 0 1

8: 2 -2 -1 -1 -1 0

9: 1 -1 -1 0 0 0

10: 0 0 0 0 1 0

11: 1 -1 0 -1 0 0

end
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2 Analyzing the output

We first observe that only lines 1,2,4,5,7,10 of IH(P ) appear in H(P ). These correspond
to the 5 constraints xj ≥ 0 and the single upper bound x5 ≤ 1.

2.1 Cover inequalities

Lines 6,9,11 of IH(P ) correspond to the inequalities

x1 + x4 ≤ 1 x1 + x2 ≤ 1 x1 + x3 ≤ 1.

These are stronger than the upper bound inequalities x2 ≤ 1, x3 ≤ 1, x4 ≤ 1 which is
why these do not appear in IH(P ). They indicate that at most one of a subset of two
items can be chosen, and are examples of cover inequalities.

Consider a general knapsack constraint
∑n

i=1 ajxj ≤ b, where all aj > 0. Let S ⊆
{1, 2, ..., n} be a subset such that ∑

j∈S
aj > b

Then we obtain the cover inequality∑
j∈S

xj ≤ |S| − 1.

2.2 Extended cover inequalities

The examples in the last subsection have |S| = 2. Consider the case S = {3, 4, 5}. Since
a3+a4+a5 > 14 we obtain the cover inequality x3+x4+x5 ≤ 2. However this inequality
does not appear in IH(P ). Instead in line 3 we find the stronger inequality

x1 + x2 + x3 + x4 + x5 ≤ 2.

This is an extended cover inequality, which we now define in general.
Consider a general knapsack constraint

∑n
i=1 ajxj ≤ b and cover inequality defined by

S. Let k be the minimum index in S. If k > 1 we define the extended cover inequality
from S as

k−1∑
j=1

xj +
∑
j∈S

xj ≤ |S| − 1. (1)

Since we assumed that a1 ≥ a2 ≥ ... ≥ an this is clearly valid and stronger than the
original cover inequality. Inequality 3 of IH(P ) displayed above is the extended cover
inequality derived from S = {3, 4, 5}.

2.3 Strengthened extended cover inequalities

We have now analyzed all constraints of IH(P ) except the constraint on line 8:

2x1 + x2 + x3 + x4 ≤ 2. (2)
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Since the coefficient of x1 is 2 it cannot be an extended cover inequality. Nevertheless we
can observe that x2 + x3 + x4 ≤ 2 is a cover inequality and hence x1 + x2 + x3 + x4 ≤ 2 is
an extended cover inequality. However (2) is stronger than this.

If we consider the coefficients a1 = 11, a2 = 8, a3 = a4 = 6 we can observe that if
x1 = 1 then we must have x2 = x3 = x4 = 0. However if x1 = 0 then we just have the
original cover inequality. This is what (2) and non-negativity of the variables implies. It
is called a strengthened extended cover inequality.

Again consider a general knapsack constraint
∑n

i=1 ajxj ≤ b and extended cover in-
equality (1). We attempt to strengthen it by finding the largest integer c1 ≥ 1 such
that

c1x1 +

k−1∑
j=2

xj +
∑
j∈S

xj ≤ |S| − 1. (3)

is a valid inequality, where the first summation is empty if k = 2. Validity is immediate
for the case when x1 = 0. For the case x1 = 1 we need to find the largest integer c1 such
that

k−1∑
j=2

xj +
∑
j∈S

xj ≤ |S| − 1− c1 (4)

is valid. This is achieved by solving the knapsack problem

z∗ = max

k−1∑
j=2

xj +
∑
j∈S

xj

s.t.

n∑
i=2

ajxj ≤ b− a1

xj ∈ {0, 1}

and setting c1 = |S| − 1 − z∗. In our example we would obtain z∗ = 0 and hence c1 = 2.
Observe that finding c1 involves solving an NP-hard problem! However in practice these
problems may be rather small and easy to solve.

The procedure described in this section can be iterated for each variable added to
extend a cover inequality. We illustrate on the larger example:

11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 14

We set S = {3, 4, 5, 6} giving the cover inequality x3+x4+x5+x6 ≤ 3. We extend this by
first considering x2 and finding its maximum coefficient c2 as described above. We solve

z∗ = max x3 + x4 + x5 + x6

s.t. 6x3 + 5x4 + 5x5 + 4x6 ≤ 14− 6 = 8

xj ∈ {0, 1}

by inspection obtaining z∗ = 1. This gives coefficient c2 = 3 − z∗ = 2. We obtain the
strengthened extended cover inequality 2x2 + x3 + x4 + x5 + x6 ≤ 3.
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Next we consider x1 and find its coefficient c1. For this we solve the knapsack problem

z∗ = max 2x2 + x3 + x4 + x5 + x6

s.t. 6x2 + 6x3 + 5x4 + 5x5 + 4x6 ≤ 14− 11 = 3

xj ∈ {0, 1}

by inspection obtaining z∗ = 0, and hence c1 = 3 − 0 = 3. We obtain the strengthened
extended cover inequality

3x1 + 2x2 + x3 + x4 + x5 + x6 ≤ 3.

Note that the order that the variables are considered in computing the strenghtened
inequalities may influence the final inequality obtained (see Exercise 2). However it can be
shown (see [1], Ch. 9) that the procedure described here applied to any cover inequality
always results in a facet of the knapsack polytope.

3 Exercises

1. Take the knapsack inequality 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 14 with all
variables binary valued and compute its ideal formulation using the method of Section 1.
For each inequality in the ideal formulation that is not in the original formulation, show
how it can be derived using the methods described in Section 2.

2. Find an example where different strengthened extended cover inequalities are obtained
depending on the order the the variables are considered for strengthening.
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