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Abstract

This thesis contains new results on the subject of polygonal structure reconfiguration.

Specifically, the types of structures considered here are polygons, polygonal chains,

triangulations, and polyhedral surfaces. A sequence of vertices (points), successively

joined by straight edges, is a polygonal chain. If the sequence is cyclic, then the object

is a polygon. A planar triangulation is a set of vertices with a maximal number of

non-crossing straight edges joining them. A polyhedral surface is a three-dimensional

structure consisting of flat polygonal faces that are joined by common edges.

For each of these structures there exist several methods of reconfiguration. Any

such method must provide a well-defined way of transforming one instance of a struc-

ture to any other. Several types of reconfigurations are reviewed in the introduction,

which is followed by new results. We begin with efficient algorithms for comparing

monotone chains. Next, we prove that flat chains with unit-length edges and an-

gles within a wide range always admit reconfigurations, under the dihedral model

of motion. In this model, angles and edge lengths are preserved. For the universal

model, where only edge lengths are preserved, several types of hexagons that cannot

be reconfigured are exhibited. New bounds are provided for the number of opera-

tions required to reconfigure between triangulations, using “point moves” and “edge

flips”. Finally, unfolding motions are proven to always be possible for specific slices

of polyhedra.
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Résumé

Cette thèse présente de nouveaux résultats dans le domaine de la reconfiguration

de structures polygonales. En particulier, les polygones, châınes polygonales, tri-

angulations, et surfaces polyédrales seront considérées ici. Une séquence des points

(sommets) successivement connectés par des segments de droites (arêtes), est une

châıne polygonale. Si la séquence est cyclique, l’objet est un polygone. Une trian-

gulation planaire est un ensemble de sommets connectés par un nombre maximal

d’arêtes dont les intérieurs sont mutuellement disjoints. Une surface polyédrale est

une structure tridimensionnelle composée de faces polygonales planaires connectées

par des arêtes communes.

Pour chacune de ces structures, plusieurs méthodes de reconfiguration existent.

Une méthode spécifie comment transformer une instance d’une structure en une

autre. Un survol des types de reconfigurations est présenté dans l’introduction, et les

chapitres suivants prsentent de nouveaux résultats. Il est démontré dans cette thèse

que les châınes plates avec des arétes de longeur unitaire et certaines contraintes sur

les angles admettent des reconfigurations dans le modèle diédral. Dans ce modèle, des

angles et les longueurs d’arête sont préservés. Dans le modèle universel, pur lequel

seules les longueurs d’arête sont préservées, plusieurs types d’hexagones qui ne peu-

vent pas être reconfigurés sont preséntés. De nouvelles bornes sont prouvées sur le

nombre d’opérations nécessaires pour transformer une triangulation à une autre en

utilisant les mouvements des points et les basculements d’arêtes. Finalement, il est

montré comment certaines tranches de polyèdre peuvent toujours être dépliées.
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Chapter 1

Introduction

Consider the puzzle described here and illustrated in Figure 1.1: You are given two

drawings of the same polygonal chain, A and B. This means that both A and B

have the same sequence of fixed edge lengths. In both drawings no edge crosses over

another. You are free to move A around and change any angle between neighbour-

ing edges, as long as no crossings are introduced. Can you move A into the same

configuration as B?

A B

Figure 1.1: A puzzle: can you move A to B without crossing edges?

This thesis is a collection of problems such as the above, with their solutions.

Simply put, the main problem considered here is this. Given a polygonal object

and a set of operations that reconfigure it, can the object be transformed to a new

1



Chapter 1. Introduction 2

specified configuration?

The term “polygonal object” is used to categorize several structures. The charac-

teristic that makes objects polygonal is the presence of certain common elements such

as vertices and straight edges. Precise definitions of each structure to be considered

are deferred for now.

Most operations that we1 consider produce only local changes to objects, which

means that to reconfigure between two arbitrary polygonal objects we may need

a sequence of operations. Regardless of the set of reconfiguring operations that is

selected, we can ask the same types of questions: Can a given object be reconfigured

into a specified “target” configuration? Can we prove that all configurations of an

object are reachable from one another? What can we say about the time complexity

of answering these questions for a specific given object, and what about algorithms

that calculate the necessary motions?

Motivation

Why study polygonal reconfigurations at all? The reason that first comes to mind

is for pure mathematical beauty. Any reader who has ever been interested in solv-

ing a mathematical puzzle will most likely spend more than just a few moments

contemplating the general problems described in the following chapters. The simple

geometric nature of these problems makes them accessible to nearly everyone. At

the very least, the problem formulations ought to be clear and intuitive. After all,

most objects that we encounter in life can be abstracted or approximated by lines

and points. And, the objects that tend to catch our attention are those that move

about, or in other words, reconfigure.

Having nearly included the entire class of moving objects on the face of this earth

within the scope of this thesis, perhaps it is appropriate to mention a few examples

1By “we” I usually mean my coauthors and myself.
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that are more specific. Where do we really find objects made of lines and dots that

change shape? A quick answer is, everywhere in computer simulations that model our

kinetic world. It is often difficult or impossible to manipulate exact descriptions of

real-life objects. When using the discrete-minded computer, a standard method is to

approximate reality with polygonal chains, triangular meshes and so on. For example,

it is common knowledge among video-gamers that the racing cars, space-ships and

alien invaders are typically displayed and represented as polyhedral surfaces. The

illusion becomes increasingly better as the number of points (or polyhedral faces)

used in the approximation is increased. So, a fancy car really ends up being a surface

made of a few thousand triangles. If you expect this car not to look unscratched after

a severe collision, then you are expecting it to be reconfigured.

Moving on to more noble areas of motivation than computer games, we can imagine

that a polyhedral car (Fig. 1.2) might also be found in simulations that have to do with

design or safety. But to change areas entirely, consider the field of molecular chemistry.

Polymers and DNA are typical molecules that have long backbone structures. The

image of atoms (points) joined by chemical bonds (edges) leaps to mind (Fig. 1.3).

Many studies in this field involve reconfigurations of molecular shape and position.

Figure 1.2: A polygonal mesh covering the blueprint of a car.
(courtesy of Lars “GRID” Martensson from www.3dluvr.com/grid)
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Figure 1.3: Fluorochrome polymer.
(from http://microgravity.grc.nasa.gov/grcbio/SRF.html)

Or what about the exciting world of robots? If you have ever witnessed the use of

robotic arms in automated factory productions, no doubt you will have been impressed

at how fast and accurately several multi-linked arms must coordinate. Whether these

robotic arms are represented as simple chains or as polyhedral surfaces, collision-

avoidance is a natural issue to study geometrically.

Further on in this thesis, you will see that links have been made between polygonal

reconfigurations and even more surprising topics, such as musical comparison and

retrieval, manufacturing sheet metal, counting random walks, and even locating a

river shore on a foggy night!

Interesting links may be found everywhere, but we should maintain a bit of real-

ism. Even though the world may be abstracted by polygonal surfaces, this does not

directly imply that all problems can be easily modeled and solved via this approxi-

mation. Mathematicians and computer scientists are still tormented by the simplest

problems (in appearance, but not in solution). The results presented in this thesis

are typically about special cases of well-known open problems in the field of compu-

tational geometry, but no patent applications will be filled out, and it is unlikely that

these theorems will be used by major game-developing, pharmaceutical or robotics
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companies any time soon. However, as has been proven on several occasions, such

problems often end up finding direct purpose in the most unlikely places.

The computational model used

The primary concern in many of the problems studied here is whether a reconfigu-

ration can be completed, and as such the only necessary background is a sense of

“geometric space”. On the other hand, in some applications, time and storage space

are essential, and for these we must define a model of computation.

When describing the asymptotic computational complexity of algorithms and prob-

lems with respect to the size of input n, the “universally accepted” notation of Knuth

will be used (see [Knu76, PS85]). Thus for some function fn and for large enough n,

we say that O(fn) is at most a constant multiple of fn, Ω(fn) is at least a constant

multiple of fn, and Θ(fn) is both O(fn) and Ω(fn). Upper bounds for the time and

space used by algorithms will be in the real RAM model of computation (see [PS85]).

According to this model, only arithmetic operations (+,−,×, /) and comparisons are

allowed for real numbers of infinite precision. Occasionally this is extended to include

certain functions such as trigonometric, exponential, k-th root, etc. Each arithmetic

operation costs one unit of time. The same applies for storing and retrieving each real

number, where the storage of a number also requires a unit of space. Lower bounds for

the worst case complexity of algorithms or problems are in the algebraic decision tree

model (see [PS85]). A (binary) algebraic decision tree represents the set of possible

sequences of operations made by a RAM algorithm, where the root of the tree repre-

sents the first operation performed and each leaf represents a possible output. Any

path from the root to a leaf in the tree also represents the time for a specific sequence

of operations. The worst-case performance of an algorithm is specified by the longest

path from the root to some leaf. Obtaining lower bounds for the time complexity

of problems essentially involves determining the path-length size that an algebraic
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decision tree must have for the tree to be able to produce the desired output for any

possible input. For example, it can be shown that any algebraic decision tree which is

capable of sorting n real numbers based on comparisons alone must have a path with

length Ω(n log n), and therefore any RAM algorithm restricted to comparisons must

take Ω(n log n) time in the worst case to sort n real numbers (see [CLRS01]). For a

discussion on the connection between the RAM and algebraic decision tree models,

see [PS80].

According to the above, if an algorithm takes O(fn) time to solve a problem and

there is an instance of the problem known to require Ω(fn) time, then the algorithm

is worst-case optimal. If exactly k operations are always sufficient to perform a task,

then k is an upper bound. If this is sometimes necessary, i.e. if there also exists an

example/instance where k operations are required, then we say that the upper bound

is tight.

In general, algorithms are considered “efficient” if their run-time can be upper-

bounded by a polynomial expression in terms of n, in the asymptotic notation given

above. Of course, efficiency is a relative concept. In most cases we are not exactly

happy with just any polynomial run-time.

Finally, the class of NP-hard problems should be mentioned, since these turn up at

various points later on. Let the input size of a problem be the number of bits needed

to encode it. For example, a vertex with some extremely large coordinate position

is not just an input of size one (for rational numbers, a logarithmic number of bits

suffices though). Consider the class of problems that can be solved in polynomial time

by a deterministic algorithm (class P ). This is a subset of a broader class which also

includes problems whose solutions can be verified in polynomial time but for which

no polynomial algorithm is known (class NP 2 ). Informally, a problem is NP-hard

if a deterministic polynomial algorithm for it would also imply the existence of such

2NP stands for “non-deterministic polynomial” since a solution could be produced and verified
in polynomial time by a non-deterministic algorithm that guesses the correct solution.
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an algorithm for all problems in NP . In other words, every instance of a problem

in NP can be transformed in polynomial time to an NP -hard problem. There are

thousands of NP-hard problems, and by now it seems unlikely that anybody will find

a polynomial-time algorithm to solve one of them.

PSPACE-hard problems are even more impractical, since it is only known that

they can be solved with a polynomial amount of space, using an unlimited amount of

time. No more detail on these matters is given here, since mention of these classes is

mainly restricted to background material of this thesis. A standard reference is the

text by Garey and Johnson [GJ79].

Elementary geometric objects and notation

In general, definitions are given when needed throughout the text. Only a few con-

cepts are mentioned here, since they are used repeatedly in this thesis.

The symbol R
d denotes d-dimensional space. Two consecutive symbols in the form

xy represent either a segment from point x to point y, or a line that passes through

both points (though edges and lines are sometimes denoted by a single symbol when

the vertices are not important). The case will be clear from context. When applicable,

it is understood that the “direction” of a segment or line is from x to y. This allows

us to clearly define when a point is to the left or right of a segment. The point p is to

the left of the segment xy if we make a left turn moving from x to y and then to p.

A polygonal chain is a sequence of edges, joined consecutively at endpoints, as the

one shown in Figure 1.1. A cyclic chain is a polygon. In R
2, polygons divide the plane

into an interior and an exterior region. It is common to consider the interior region

as part of the polygon, but this will not be done here unless specifically mentioned

or implied by context. We say that a polygon or chain is simple if no edges intersect,

with the obvious exception of common endpoints for neighbouring edges.

A polygon is convex if any two points on its boundary can be connected by a
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segment through the interior that does not cross any polygon edges. If we assign a

clockwise direction to the boundary of a convex polygon, then all turns are to the

right. If the polygon is non-convex, any left turn occurs at a reflex vertex. The convex

hull of a set of points in the plane is the minimum-area convex polygon enclosing the

points. Informally, imagine shrinking a rubber band around the points, or running

around them as fast as possible. The convex hull of a polygon can be obtained visually

by considering only its vertices. A pocket of a simple non-convex polygon is a sub-

chain that is strictly in the interior of the convex hull, except for its endpoints that

are hull vertices. The lid of a pocket is the hull segment between the two endpoints.

Note that a pocket is often defined as the polygon enclosed by the chain and lid

mentioned in the preceding. These concepts are illustrated in Figure 1.4.

Figure 1.4: Left: A convex polygon that is the hull of a point set. Right: a non-convex
polygon with highlighted pocket and lid.

A chain is monotone with respect to a direction if any line orthogonal to that

direction intersects the chain at most once. A monotone polygon can be decomposed

into two monotone chains. A polygon is star-shaped if there exists an interior region

(the kernel) from which every boundary point is visible. In other words a segment from

the kernel to any boundary point does not intersect the boundary (see Figure 1.5).

Polygons and chains are just special instances of geometric graphs. A geometric

graph is a set of non-crossing edges embedded on a set of vertices. A tree is a

connected graph with no cycles. The triangulation of a given point set is a graph

with a maximum number of edges inserted between the points (see Figure 1.6).
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K

Figure 1.5: Left: a monotone polygon. Right: A star-shaped polygon. The kernel K
is also shown.

Figure 1.6: From left to right: a geometric graph; a tree; a triangulation.

Configuration space and canonical forms

The configuration space of an object is simply the set of valid configurations into which

it can be positioned. For example, a planar chain’s configuration could be specified by

the (x, y) coordinates of each vertex. Any given configuration of a two-edge chain is

a point in 6-dimensional space (with coordinates x1, y1, x2, y2, x3, y3). It is easy to see

that not all 6-tuples of such coordinates correspond to a valid configuration of a chain

with specified edge lengths. Reconfiguring between two configurations of an object

is equivalent to moving along some path from one point to another in configuration

space. Any two valid points in this space, that are connected by a valid path, exist in

one component of space. In this case we say that the represented configurations are

connected.

A brief note on the importance of canonical configurations is now given. A canon-

ical configuration (or canonical form) is an intermediate between the source and

target objects of a reconfiguration. Typically it has a very simple shape. For exam-
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ple, straight chains or convex polygons often serve as canonical forms. Once such a

canonical form is adopted, a solution to a reconfiguration problem can be obtained

by proving that both the source and target can be reconfigured to canonical form.

One of these motions can be inverted to complete the original reconfiguration. Think

of having to prove that a route exists between any two locations that are next to a

road. This can be done by proving that all roads lead to Rome.

In general, if an object cannot reach a desired canonical configuration, we say that

it is locked (e.g. a chain that cannot be straightened).

Contributions of this thesis

The main contributions of this thesis are detailed in Chapters (3-7). The polygonal

objects considered in Chapter 3 are planar monotone chains. They are moved only

with translations, so that any two of them can be compared by superimposing them

as best as possible. In Chapter 4, planar triangulations are considered. The question

is whether any two triangulations are connected by reconfigurations consisting of

two types of operations: edge flips and point moves. In Chapter 5, polygons in R
3

are the object of interest, and the same general question is asked. This time the

universal model of motion is considered, which is one of the least restrictive methods

of reconfiguration. In this model, the two edges at any vertex are allowed to move to

any relative position, as long as no edge intersections occur and edge lengths remain

fixed. In Chapter 6 we continue with chains and dihedral motions. These motions

are exactly what is allowed in the standard chemistry “ball-and-stick” tool-kit: edge

lengths and angles between edges must remain fixed. Finally, Chapter 7 deals with

unfolding motions for polyhedral surfaces. Here, the edges between polyhedral faces

behave as hinges and each face must remain rigid.
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How to read the rest of this thesis

Chapter 2 contains a review of several types of reconfigurations, including those men-

tioned above. It is recommended (but not necessary for a reader familiar with the

reconfiguration models) to read this before proceeding to the following chapters (3-7)

which focus on new results. These chapters may be read in any order, as they are

self-contained and include necessary definitions and essential references.



Chapter 2

Review of Polygonal

Reconfigurations

This chapter contains a review of several types of reconfigurations. Most of the focus

is placed on those reconfigurations that are relevant to the new contributions of this

thesis. It should be mentioned that, recently, extensive survey papers on linkages,

folding and unfolding have been published (e.g. [ST02, Tou99a, Tou99b, DOar]). Also

recent are two doctoral theses that are considered masterpieces, at least by those in the

field [Sos01, Dem01]. Therefore including an exhaustive survey here not only serves

little purpose, but would make it impossible to avoid copying the work of others.

The references provided here are selected highlights, and/or work that I personally

found interesting. Unavoidably, there is a large amount of overlap with the papers

mentioned in the preceding. For the sake of keeping the bibliography uncluttered,

only journal publications are referenced whenever possible. These tend to be more

accessible and detailed than any preliminary versions which may have appeared at

conference proceedings or as technical reports.

12
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2.1 Triangulations

2.1.1 Concepts and algorithms

A geometric near-triangulation consists of a set of points, pairs of which are joined

by straight edges, so that no two edges intersect at their interiors and no more edges

can be added. In other words it is a maximal plane geometric graph. As a result, the

convex hull of the point set is subdivided into triangular faces. The region outside

of the hull is known as the outer face. If the outer face is incident to only three

vertices (i.e. the hull is defined by three vertices), then the object is plainly called a

triangulation. In the literature this term is often used to include near-triangulations

as well. This will be done here too, though in Chapter 4 the distinction will be

necessary.

An edge flip on a triangulation is simply the deletion of an edge, followed by the

insertion of another edge such that the resulting graph remains a triangulation (see

Figure 2.1). This can only be done when the edge to be deleted is the base of two

triangles whose union is a convex quadrilateral.

Figure 2.1: An edge flip.

The origins of the edge flip appear to be in the work of Wagner [Wag36], who was

investigating the four-colour theorem for planar graphs. However, this was done in the
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combinatorial setting (meaning that edges are not required to be straight). Wagner

proved that a finite sequence of combinatorial edge flips always suffices to reconfigure

a triangulation on n points so that it becomes isomorphic to any other triangula-

tion on n possibly different points. Komuro [Kom97] showed that in fact O(n) edge

flips suffice. Gao, Urrutia and Wang [GUW01] showed that in the case of labelled

triangulations O(n logn) flips suffice. Bose et al. [BCG+03] showed that O(log n) si-

multaneous edge flips suffice and are sometimes necessary. Dewdney [Dew73] appears

to be the first to have extended this research to other surfaces, by proving Wagner’s

results on torus graphs. See two recent papers by Cortes et al. [CGMN02, CGH+03]

for complete coverage of flips on non-planar surfaces.

Notice that there are valid edge flips (and triangulations) in the combinatorial

setting that are no longer valid in the geometric setting, as can be seen in Figure 2.2.

Thus the results mentioned directly above do not necessarily hold in the geometric

setting.

Figure 2.2: Left: initial triangulation. Middle: invalid geometric flip. Right: valid
combinatorial flip.

Lawson [Law72] proved that a finite number of edge flips suffices to reconfigure

between geometric triangulations on the same point set. In a subsequent paper that

is often cited as the first proof of this theorem [Law77], Lawson showed that any

triangulation can be converted to the Delaunay triangulation by special flips that
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locally improve Delaunay constraints1. This is done for the purpose of obtaining nice

3D surface interpolations. Clearly the Delaunay triangulation serves as a canonical

configuration, and thus the theorem is implied again.

Fortune [For93] showed that O(n2) special edge flips suffice to reconfigure a trian-

gulation to the Delaunay triangulation and that the bound is tight. For general edge

flips there was still hope for a sub-quadratic bound until Hurtado, Noy and Urru-

tia [HNU99] showed that Ω(n2) flips are sometimes necessary. They also proved that

O(kn) flips suffice, where k is the number of convex layers in the point set. Another

interesting result of theirs is that O(n + r2) flips suffice to reconfigure a triangulated

polygon with n vertices, r of which are reflex. In addition it is shown that roughly

(n − 4)/2 edges can be flipped at any time.

Hanke, Ottman and Schuierer [HOS96] showed that the number of intersections

between two triangulations is an upper bound on the number of edge flips needed

to reconfigure between them. The authors also note that extremely little is known

about the complexity of computing the exact number of edge flips necessary for re-

configuration between two specific triangulations.

Galtier et al. [GHN+03] showed that O(n) simultaneous edge flips are always

sufficient and sometimes necessary. Their results also hold for triangulated polygons.

It is interesting that (n − 4)/6 edges can be flipped in parallel.

Note the discrepancy between the combinatorial and the geometric settings, which

was implied earlier. In the combinatorial setting, from a given triangulation on n

points, it is possible to reach every triangulation that can be formed on any n ver-

tices (isomorphically, as mentioned). So, essentially it is possible to enumerate all

different combinatorial triangulations that can be formed with n points, using the

flip operation. On the other hand, in the geometric setting it will not be possible to

embed all n-point triangulations on a given point set. For example, in the point set

1In the Delaunay triangulation the circumscribing circle of any triangle contains no points.
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shown on the left in Figure 2.3, the white vertices are connected as a K4 (complete

graph on 4 vertices). This is not possible on the point set on the right.

Figure 2.3: Discrepancy between combinatorial and geometric setting.

It is this discrepancy that sparked the work of Abellanas et al. [ABG+04], who

introduced the point move in the context of reconfiguring triangulations. A point move

is the modification of the coordinates of one vertex such that, after the modification,

the graph remains a geometric triangulation (see Figure 2.4).

x

x

Vertex x is moved

Figure 2.4: Illustration of a valid point move.

Abellanas et al. showed that with O(n2) edge flips and O(n) point moves, any

geometric triangulation on n points can be transformed to any other geometric tri-

angulation on n possibly different points. However, the number of convex hull points

must be equal because it determines the number of edges in a triangulation. For

triangulations with labelled points, a quadratic number of flips and moves are used.
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It should be mentioned that in this work all points were restricted to be positioned on

a 5n x 5n grid. These results can be viewed as a “geometric equivalent” to Wagner’s

result. In Chapter 4 we show that the total number of operations can be reduced to

O(n log n) even for labelled triangulations, if the points are not restricted to be on a

grid.

2.1.2 Motivation and further comments

In several applications, such as terrain data interpolation, a triangulation is sought

which has an optimum quality with respect to some parameters (as was the case in

Lawson’s work). Often there is no direct method to compute the optimum triangu-

lation, and standard techniques such as iterative search or simulated annealing are

used to find it. These techniques rely on a method for local improvement, such as

the edge flip [AKTvD00, DLR90, BHYJ88].

As with many geometric structures, there is much interest in enumerating trian-

gulations. The total number of triangulations is only known for all n up to 20 or so.

The edge flip is useful for generating new triangulations as a local search function in

exhaustive search algorithms, such as the reverse-search of Avis and Fukuda [AF96].

For convex point sets, there is an isomorphism between the edge flip and the rotation

operation on binary trees. For more information on this topic, which is immediately

related to enumerating triangulations, see [HN99].

In graphics applications, one problem is how to morph polygons or triangulations.

Floater and Gotsman [FG99] (see also [SG00]), study how to do this by moving

vertices on non-linear continuous paths. This could be approximated by piecewise-

linear paths generated by point moves. As the authors mention, even edge flips have

been used for this task.

An interesting conjecture, supported by very convincing experimental results, is

that any two planar n-point sets with the same number of hull points can be trian-
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gulated in a topologically equivalent manner [AAHK03]2. Thus, if point moves are

undesirable (but unavoidable), for triangulations on different point sets it would be

possible to use flips on each to reach the common topological form, and then try to

use a small constant number of moves per point to complete the reconfiguration.

A different technique of reconfiguring triangulations is implicit in the work of El-

Gindy and Toussaint [ET85], who gave efficient algorithms to insert and delete edges.

This is done by altogether reconstructing the neighbourhood of an inserted/deleted

edge, which means that many edges might be affected in one move. Reconfiguration

between two arbitrary triangulations has not been studied in this context.

The generalizations (and difficulties) of flipping in higher dimensions are discussed

in [ES96, AAH02a] and references therein.

Finally, flip operations have also been defined on pseudo-triangulations. A pseudo-

triangle is a polygon with exactly three convex vertices and an arbitrary number of

reflex vertices in between. These objects have found many uses in computational ge-

ometry, rigidity theory and motion planning (such as polygon convexification, covered

in section 2.3.2). These issues are discussed in [Str04].

2.2 Flips and flipturns

2.2.1 Flips

In 1935, Erdős [Erd35] proposed the following reconfiguration for simple planar poly-

gons: perform a simultaneous reflection of all pockets about their corresponding

lids, and repeat this for each new polygon obtained in this way. Erdős conjectured

that a convex polygon will be obtained after a finite number of iterations. In 1939,

Nagy [Nag39] demonstrated that simultaneous reflections may lead to a non-simple

polygon, thus creating an undefined situation, since pockets are only defined on sim-

2also see this paper for more references to morphing.
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ple polygons. Instead, he modified the problem to reflect one pocket at a time, and

proved the conjecture. Each step is called a flip (see Figure 2.5).

Figure 2.5: A flip: one pocket is reflected about its lid.

Since the solution by Nagy, this problem has been rediscovered and resolved several

times (at least once every decade!). An account of the complete history is given

in [Grü95, Tou99b]. Among the main contributions are the following. In 1973, Joss

and Shannon first proved that a quadrilateral can be constructed which requires k

flips to convexify, for any chosen integer k. Thus the number of necessary flips is

not a function of the number of polygonal edges. This proof was unpublished for a

long time and appears in [Grü95]. Grunbaum and Zaks [GZ01] proved that a finite

number of flips will also convexify a self-crossing polygon (note that the definition of

a pocket must be adjusted to do this). Toussaint [Tou99b] showed that if we are also

allowed to keep a pocket fixed and flip the remaining polygon, then polygons can be

convexified in a finite number of flips using O(n) time per flip. In 1973, Sallee [Sal73]

proved that every non-convex continuous curve in R
d has a “chord-stretched” version

with the same length, where the distance between any two points has not decreased.

To do this, he first proved the result for polygons. In concluding remarks, he proposed

the flip operation as a short intuitive alternate proof, stating that a countable number

of flips suffice to convexify. He also mentioned that this idea was known to Choquet,

from 1945 [Cho45]. The final stretched curve (or polygon) is planar and convex.
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In 1993, Wegner [Weg93] considered the converse problem. He defined the deflation

of a polygon, which is obtained by reverse-flips, and conjectured that any polygon can

be completely deflated with a finite number of deflations. A polygon is deflated when

it cannot be the result of a flip operation on some other polygon. Perhaps contrary

to first intuition, Fevens et al. [FHM+01] showed that there exist polygons with

infinite sequences of deflations. They also showed that convexification is not always

possible using mouth-flips. In this operation, flips are permitted only on adjacent

edges meeting at a reflex vertex, even if the two edges do not define a pocket.

2.2.2 Flipturns

Along with their work on flips, Joss and Shannon invented a similar operation called

the flipturn (see [Grü95]). Flipturns are sometimes called “inversions” in the physics

literature. In this operation, a pocket is rotated by π and re-attached (see Figure 2.6).

Figure 2.6: A flipturn: one pocket is rotated by π.

Joss and Shannon proved that any simple polygon can be convexified with at

most (n− 1)! flipturns: after each flipturn the cyclic permutation of edges is changed

and the polygon’s area strictly increases. Thus no permutation is revisited. They

also conjectured that n2

4
flipturns suffice to convexify any polygon. Indeed, Ahn et

al. [ABC+00] came close by showing that any polygon will become convex after at
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most n(n − 3)/2 flipturns. Note that there are two ways to interpret the “required

number of flipturns for convexification”. One may use carefully chosen flipturns, or

instead arbitrarily (or poorly) chosen flipturns. Thus the result in [ABC+00] applies

to arbitrary choices. On the other hand, Biedl [Bie00] produced a polygon which

requires at least (n−2)2

4
poorly chosen flipturns to convexify. However, the same poly-

gon can be convexified with O(n) well chosen flipturns. The gap between linear and

quadratic for well-chosen flipturns still remains. Note that the result of Ahn et al.

actually includes the number of different edge slopes as a parameter. The bound

given above is for the worst case of n distinct slopes. For orthogonal polygons the

upper bound is actually n
2
− 2 and is tight. To twist matters a bit more, Ahn et al.

allow hull edges that are adjacent and collinear to pocket lids to be included in flip-

turns. As Aichholzer et al. [ACD+02] pointed out, such degenerate conditions make

all the difference, when we are concerned with the precise number of operations and

not just asymptotics. They gave distinct results for different degeneracies and for

“standard” conditions. All upper bounds for shortest and longest flipturn sequences

for convexification of orthogonal polygons are linear and, to within a small constant

factor, tight. The authors also gave quadratic bounds for all interpretations of flip-

turns, thus strengthening the results in [ABC+00]. In addition, they provided the first

non-trivial algorithms for computing convexifying sequences and gave NP-hardness

results for finding shortest or longest sequences.

Finally, Grunbaum and Zaks [GZ01] proved that a finite number of flipturns will

also convexify any self-crossing polygon.

2.2.3 Restrictions and extensions

In [ABD+02], we considered a few extensions and similar operations to the flipturn.

A reversal is similar to the flipturn, except that the rotated sub-chain need not be

a pocket. A transposition exchanges the positions of two sub-chains. Edge swaps



Chapter 2. Review of Polygonal Reconfigurations 22

are reversals on sub-chains of size 2 (the analog to mouth-flips), and in single-edge

transpositions one of the two exchanged sub-chains is a single edge and the other

is empty (see Figures 2.7 and 2.8). Each of these operations is just a permutation

of the edge list of a polygon or polygonal chain, and was inspired from sequence-

permuting problems from the bioinformatics literature (see references in [ABD+02]).

Similarly, the definition of a signed polygon arose. In such a polygon each edge is

given a direction (or parity), and this is affected by reversals. This parity affects the

complexity results for integer permutations as well as polygonal permutations.

B

A

B’

A’

Figure 2.7: Transposing two edges A and B.

(a)                                                                                                      (b)

B

B
A

A

Figure 2.8: (a) An edge swap. (b) A single-edge transposition.

Little is known about permuting polygons, other than the results mentioned on

flipturns. One interesting result is that if the longest edge of a polygon has unit length,



Chapter 2. Review of Polygonal Reconfigurations 23

then the polygon may be permuted to fit into a circle of radius
√

5 [GY79] (allowing

crossings). In [ABD+02] we showed that the two “local” operations, edge swaps and

single-edge transpositions, are not sufficient to achieve any reconfiguration. Further-

more, determining whether a signed polygon can be permuted by transpositions so

that its shape is rotated by π or so that it becomes a mirror image takes Θ(n log n)

time. NP-hardness results were given for using transpositions to fit a polygon inside a

given rectangle, strip, or circle. Also, convexifying a star-shaped polygon with edge-

swaps while maintaining star-shapedness can be done with O(n2) moves, and in the

worst case this bound is tight. This last result was rediscovered by Ballinger [Bal03],

who gave precise constants.

These studies of polygonal permutations were somewhat of an inspiration for Chan

et al. [CGLQ03], who used simple properties of transpositions in an unexpected appli-

cation: computing the optimal trajectory of a blind search, that starts at an unknown

location in a river of known width, and that is guaranteed to find the river shore. So,

as promised in Chapter 1, there is a connection between polygonal reconfigurations

and foggy nights on rivers.

2.2.4 Motivation

The convexifying flip and flipturn operations have been applied mostly to generating

random self-avoiding walks, though this is done mainly for lattice polygons with unit-

length edges. Physicists, chemists and knot-theorists have been interested in random

walks for some time now. These walks can be used to simulate polymer backbones,

and help to predict various properties in statistical mechanics (see [DORS88]). Also,

for the purposes of simulating physical knots, there is interest in enumerating knotted

random walks with n steps (or equivalently, finding the probability that such a walk

is knotted).

Standard methods for generating random self-avoiding walks on lattices iteratively
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choose a random new step and check if this causes an intersection. Such methods suffer

from “attrition”: if a random n-step walk crosses itself before n steps are completed,

then it must be discarded, since backtracking creates a biased distribution. Even

worse is the situation for closed walks; not only must there be no crossing, but the

random walk must return to its starting point after exactly n steps. Otherwise it is

useless.

To replace these methods, a brand new approach using pivots was invented. Most

credit for this is given to Lal [Lal69] (see also [MS88]), who worked on the triangular

lattice and allowed consecutive edges to turn only as if they were embedded on the

hexagonal lattice. The pivot operation reflects the sub-chain between some edge e

and an endpoint about the line through e. Thus, starting from a valid self-avoiding

walk, one can randomly select an edge and apply a pivot, hoping to obtain a new

walk. How often this succeeds in producing a new non-crossing chain, and how many

iterations should be performed to minimize correlation are matters of intense study,

but one thing is certain: the method works much better than previous techniques.

Lal’s definition works well on the triangular/hexagonal lattice but there is a prob-

lem when it comes to the square, cubic, or hypercubic lattice. This is the lack of

ergodicity, which means that not all random walks can be obtained by repeated uses

of the pivot on some starting walk (and its successors). For example, a straight chain

cannot be transformed at all. This certainly invalidates the technique as a true ran-

dom generator. To fix this, Madras and Sokal [MS88] proposed to define the pivot

on vertices instead of on edges. They also augmented the operation by allowing 90◦

rotations. This makes the pivot ergodic and the statisticians happy. Finally, they

also generalized the pivot by including diagonal reflections, i.e. reversals.

Inspired by the work in [MS88], Dubins et al. [DORS88] worked on the self-avoiding

closed walk, or simple orthogonal polygon. The lack of endpoints means that the pivot

operations are now more restricted. Essentially, we can only use generalized flipturns
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(reversals), and only in some cases, flips. In other words, starting from a closed walk,

the main method of generating a new one is to select two non-adjacent vertices and

rotate one of the chains by π. Dubins et al. proved ergodicity by showing that any

orthogonal polygon can be reconfigured to a rectangle with 2n− 6 flipturns (a bound

improved by Ahn et al., as described earlier). It is a trivial matter to reconfigure

between rectangles. Similar simple bounds were given for straightening n-step walks.

MacDonald et al. [MJHS85] had similar results to those of Madras and Sokal.

They also described the “reptation” method of Wall and Mandel, where a chain is

reconfigured by removing the last edge and placing it at the front. This is quite

similar to the “single-edge transposition” defined in [ABD+02].

Janse van Rensburg, Whittington and Madras [JWM90] proved that the pivot

algorithm for polygons is ergodic on the face-centred cubic lattice. As one step, they

showed that a polygon that has a convex projection can be flattened. These polygons

with special projections and which are used as canonical configurations are revisited

in Section 2.3.

Millett [Mil94] considered equilateral polygons in 3D for the purposes of geometric

knot theory. Seeking a method to generate random knots, he rediscovered a variant

of the flip operation. Two vertices are randomly selected, and one chain between

them is rotated by a random angle about the line through the two vertices. To prove

ergodicity, Millett demonstrated that a canonical configuration can be reached by first

making a knot planar and star-shaped, and then convexifying it within the plane. The

second step was done using mouth-flips, and it was shown that a finite number sufficed.

Notice that since the polygons are equilateral, mouth-flips are identical to edge-swaps

in this case. Thus, as Toussaint [Tou99b] pointed out, the arguments of Joss and

Shannon apply, so (n − 1)! operations suffice to complete the second step. In fact,

a better bound is O(n2) from the results of [ABD+02]. Millet’s technique was used

in [DEJ97]. However, Toussaint also found that the first stage of Millett’s ergodicity
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proof does not always terminate successfully, and proposed a simple remedy.

2.3 Universal motions of linkages

A linkage is a geometric graph with flexible joints. The universal model of motion is

easy to visualize: as long as edge lengths and connectivity are preserved, every edge

is allowed to move freely.

2.3.1 Early studies of general linkages

One of the earliest proofs known for linkages of n edges is that of Cauchy, from

1813 [Cau13]. Cauchy wanted to prove that if all the joints of a convex chain are

opened (instantaneously) by some amount, then the distance between the endpoints

increases (this is a generalization of Euclid’s basic lemma for n = 2). Cauchy’s lemma

was part of a proof on the rigidity of convex polyhedra. Though the lemma does

hold, the induction proof used had an error. This was noticed and corrected nearly a

century later, by Steinitz (see [SR76]). Hence the lemma is found as a combination

of these two names in the literature. The clearest and shortest proof is considered to

be that of Schoenberg and Zaremba in [AZ99] (originally found in [SZ67]).

In Cauchy’s “arm lemma”, the smaller angle at each vertex is increased, but not

beyond π. In other words if the chain makes only right turns, it still does in the final

configuration. In fact, it is true that the distance between the endpoints of a chain

increases as long as the minimum angle made at each joint is increased, regardless of

what types of turns are made in the final configuration. This extension to Cauchy’s

lemma was formalized by O’Rourke [O’R01].

General planar linkages have been widely studied in the last couple of centuries,

with immediate application to transferring mechanical motion. Edge-crossings were

not an issue of concern, since many mechanical systems can be constructed on closely
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packed parallel planes to avoid any problems (think of the steam-powered train).

Among the most well-known general linkages are those by Peaucellier, Watt, and

Kempe. Peaucellier’s linkage converts circular motion to straight line motion (before-

hand, this had been finely approximated by Watt), and Kempe’s constructions are

theoretically possible to trace any polynomial curve. As is commonly said, “there

exists a linkage that can sign your name”. Further information and references are

provided in [ST02, DOar]. For many small values of k, one can find a whole field of

study for the k-bar (cyclic) linkage. For example, see [Tou03] for more details on the

4-bar linkage, its applications and uses within other geometry problems. The first

algorithmic approach to linkage problems in the field of Computer Science appears

to be that of Hopcroft, Joseph and Whitesides [HJW84], who studied the complexity

of determining whether a designated joint can reach a given position. The work of

Lenhart and Whitesides [LW95], or of Kapovich and Millson [KM95] is more directly

related to the issues in this thesis. Independently they proved that all the configura-

tions of an n-bar linkage are connected if, and only if, the second and third longest

edges are each longer than the sum of the rest. Otherwise, there are exactly two con-

nected components, which are symmetric (think of reflecting a triangle). See [KM95]

for references to other geometers who were aware of this, though their publications

are not widely available. An additional contribution in [LW95] is an algorithm to

compute the reconfiguration between two polygons using O(n) line-tracking motions.

Each such motion moves one vertex along a straight line, while adjacent vertices act

as elbows. The authors also discuss the literature in the field of motion planning,

where linkages must reconfigure in the presence of obstacles. Whitesides [Whi01] sur-

veys various linkage reconfiguration problems that have been considered in the past

few decades, including polygonal reconfiguration within restricted spaces.

Amazingly, it is known that chains, trees and polygons in dimension 4 and above

cannot lock [CO01]. It seems that we live in the most interesting dimension.
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2.3.2 Non-crossing linkages in the plane

Aichholzer et al. [ADE+01] showed how to reconfigure between two convex polygons

using a linear number of simple moves without resorting to a canonical configuration.

A simple move is one that affects only a constant number of vertices. The over-

all motion given is also “smooth” in the sense that each angle varies monotonically

throughout. Biedl et al. [BDL+99] gave an algorithm that runs in O(n2) time to

produce a sequence of O(n2) simple moves that convexify any planar monotone poly-

gon. Everett et al. [ELR+98] gave an O(n2) time algorithm to compute O(n) complex

motions (i.e. each motion affects all joints) that convexify a star-shaped polygon.

Biedl et al. [BDD+02] showed that some n-link trees can have configurations in

2Ω(n) distinct components of space. In an exploration of some rather advanced tech-

niques, Connelly, Demaine and Rote [CDR02a] found that there exist locked trees

with only one vertex of degree three.

One of the most important results of this entire section is that of Connelly, Demaine

and Rote [CDR02b]: every simple polygon can be convexified and every simple chain

can be straightened (this solves the puzzle in Figure 1.1). The result came after

many efforts and a continuously shifting consensus on whether locked chains would

be found or not (see their paper for more details). The key to the proof is the

existence of a local infinitesimal motion (at any time), during which no vertices move

closer together. Tools from many disciplines were used, including rigidity theory.

The proof does not lend itself to analysis of algorithmic complexity. Following this

result, Streinu [Str00] showed that in fact O(n3) motions suffice to convexify a simple

chain3 . Each motion has one degree of freedom, but takes an exponential amount of

time to compute. The latest and most efficient algorithm for this problem computes

a sequence of linear motions, the number of which is polynomially bounded by the

3A quadratic bound is given in the paper but it is an oversight, as pointed out by Streinu (personal
communication).
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size of the chain (n) and the ratio of maximum edge length to minimum separation

(r) [CDIO04]. Specifically, the bound is O(n79r26). Luckily, each motion can be

computed in quadratic time.

As should become apparent in the following section, planar polygons are useful as

canonical configurations for three-dimensional linkages. In this context, the restriction

to keep a polygon planar during reconfiguration is unnecessary. On the other hand, it

makes sense if a planar configuration represents the projection of a three-dimensional

polygon. Another use for planar reconfigurations is in graphics (see the discussion on

polygon morphing at the end of this chapter).

2.3.3 Non-crossing linkages in R
3

Biedl et al. [BDD+01] proved the existence of locked chains, with as few as five edges.

They also proved that if an open chain has a simple orthogonal projection onto some

plane, it can be straightened with O(n) simple moves (note that the projection re-

quirement can be determined in O(n4) time [BGRT99]). Their results were extended

to chains embedded on convex surfaces. Cantarella and Johnston [CJ98] indepen-

dently came up with the same locked chain. There is also a simple criterion to decide

whether a chain with five edges can lock: it is only possible if the first and last edge

lengths (separately) are longer than the sum of the middle three.

Alt et al. [AKRW04] proved that it is PSPACE-hard to decide whether two config-

urations of a chain are connected. Yet, the complexity of deciding whether a chain can

be straightened is unknown. The interlocking of multiple short linkages was studied

by Demaine et al. [DLOS03].

For polygons in 3D that happen to be planar, the flip operation can be clearly

visualized as a method of convexifying which follows the rules of the universal model,

as long as it is interpreted as a continuous rotation of a pocket about its lid. Recall

that the number of moves is unbounded if the polygon is to remain planar after every



Chapter 2. Review of Polygonal Reconfigurations 30

flip. Aichholzer et al. [ADE+01] worked on a pivot method to reconfigure between two

planar convex polygons, generalizing the ideas of Millett [Mil94]. Each pivot affects

only two angles, yet even in the case of convex polygons, an unbounded number

of operations may be needed. Biedl et al. [BDD+01] gave an algorithm using O(n)

simple moves. Aronov, Goodman and Pollack [AGP99] provided their own proof for

this and remarked that their algorithm also works for crossing polygons.

The results above merely use the third dimension as a means of convexifying planar

polygons. But most interest is in fully 3-dimensional polygons. We must immediately

make an important observation for these objects: in R3, polygons may be knotted.

Thus reconfiguration questions only make sense within each knot class (i.e. within

each connected component).

Randell [Ran94] examined the minimum number of edges necessary to form simple

geometric knots. For example, he proved that the figure-eight knot requires at least

seven edges. Only the trefoil knot may be drawn with six edges. With fewer than

six edges, no knot can be drawn, other than the trivial knot (or unknot) which is

continuously deformable to a loop. Randell recognizes independent discoveries of

this lemma by Kuiper (unpublished) and by Millet [Mil94]. Millett (also recognizing

collaboration with Orellana), showed that equilateral hexagonal unknots belong in one

component. Principal references for these concepts are [Ran88b, Ran88a]. Millet’s

work was used in [DEJ97], as part of a simulated-annealing method of searching for the

minimum of a knot-energy function. This minimum represents a “nice” configuration

for a particular knot type.

A natural question to ask is whether all configurations of a polygon are connected,

provided they are of the same knot type. By topological arguments alone, it is clear

that this is not true for some knot types that have mirrored (chiral) configurations,

such as the trefoil. The trefoil has left and right handed versions which are topologi-

cally different.
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Calvo [Cal01] showed that even if edge lengths can vary, hexagonal trefoils are

found in four components (two left-handed and two right-handed), as long as edges

are given an orientation and one vertex is considered to be a special “root”. He also

showed that equilateral hexagonal trefoils exist in four separate components.

In addition to their locked chain example mentioned earlier, Cantarella and John-

ston [CJ98] showed that there exist two stuck hexagonal unknots for a set of specific

edge lengths. The two examples are left and right hand versions of the same shape,

and are illustrated in Chapter 5. Thus hexagonal unknots were shown to exist in three

separate components. Cantarella and Johnston also proved that if the edge lengths

were allowed to vary in a reconfiguration, then the separate components would merge.

A stuck unknot (with 10 edges) was also found by Biedl et al. [BDD+01] by doubling

the edges of their locked chain. The property of fixed edge lengths, and in particular

the ratio of lengths, is critical in these problems.

Toussaint [Tou01] found two more classes of unknots, beyond those of Cantarella

and Johnston. They are illustrated in Chapter 5, where it is shown that there exist

hexagonal unknots with nine separate components.

All these results extend to knots with an arbitrary number of edges, because in

each example there is a short edge which can be broken into smaller ones without

affecting the proofs. Cantarella and Johnston suspect that the number of stuck

unknots expands geometrically as a function of n, but no bound is known. They

also suspect that all equilateral unknots are in one component. This interesting

problem has not yet been resolved.

Knowing that polygons in R
3 can lock, all we can hope for is to classify as generally

as possible the types of polygons that are not locked. Calvo et al. [CKM+01] proved

that if a polygon has a simple projection on some plane, then it can be convexified.

In fact their algorithm to do this takes O(n) time if the projection is convex. As they

point out, the remaining time complexity of their algorithm depends on how fast a
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simple planar polygon can be convexified, since their proof depends on the result of

Connelly, Demaine and Rote [CDR02b].

Mathematicians and physicists have been interested in knots as early as the 1860’s.

An informal account of this, as well as a discussion of the connections between

knots and DNA is given in [FK97]. Sumners and Whittington [SW88] discuss the

importance of knots in polymer chains, and use the self-avoiding walk method de-

scribed earlier to study the probability of knottedness. Finally, according to Biedl

et al. [BDD+01], knot reconfigurations are also useful in the contexts of mechanical

design, robotics, animation, rigidity theory and algebraic geometry.

2.4 Dihedral motions of linkages

If we extend the universal model by restricting angles to be fixed, we obtain the

dihedral model of motion. The resemblance of this model to the “ball and stick”

molecular model, used in introductory chemistry classes, is straightforward. A basic

dihedral motion is defined on a selected edge. The entire linkage on one side of

the selected edge is rotated rigidly about the axis of the edge (see Figure 2.9). This

maintains all angles fixed. Notice that some of the pivot operations mentioned earlier,

resembling flips on chains or orthogonal polygons, are specialized dihedral motions.

e e e

Figure 2.9: Three snapshots of a dihedral motion about edge e.

Analytic studies of the dihedral model were carried out in the chemistry commu-
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nity as early as the 1930’s and 40’s, by Eyring, Benoit and Taylor, each of them

independently (see [Sos01, ST02] for details and a general survey). Since then the

model has been used to generate random conformations of molecules and compute

average properties of polymer chains (e.g. [SG72, FH76, FHK+96]).

Algorithmically, there is not much to speak of prior to recent results by Michael

Soss and colleagues. For example, Soss and Toussaint [ST01] developed a quadratic

time algorithm to determine if the dihedral rotation about one edge results in edge-

crossings. The lower bound given is Ω(n log n), and this was nearly matched in

the special case where the rotation is a full revolution. Soss, Erickson and Over-

mars [EOS03] showed that pre-processing a dihedral chain hardly helps for com-

puting such rotation queries. Specifically, either the preprocessing time or n such

queries almost certainly require Ω(n2) time4. As for general reconfigurations, Soss

and Toussaint [ST01] showed that deciding whether a chain can be flattened is NP-

hard [Sos01]. All of the above appear in the recent doctoral thesis by Soss [Sos01].

He proved additional NP-hardness results for computing maximum endpoint distance

and determining whether chiral (mirror image) reconfigurations are possible. Finally,

multiple interlocked short chains were illustrated.

Recently, Demaine, Langerman and O’Rourke [DLO03] considered non-acute chains

that can be “produced” through the apex of a cone. Minor details left aside, a chain

is defined to be producible up to an edge e, if it can avoid self-intersection outside

of the cone, while e is still inside and being pushed out through the apex. Edges

beyond e are not considered, as they are not yet produced. The cone angle limits

the allowable range of each fixed dihedral angle in a straightforward way. For chains

satisfying the limiting range, it is shown that they are producible if and only if they

can be flattened.

A main open problem left from [Sos01] is that of determining whether all flat

4This bound can be broken only if the same happens for a large class of problems for which no
sub-quadratic time algorithm is known.
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configurations of dihedral chains are connected. Many problems regarding flat-state

connectivity were solved in [ADD+02, ADM+02], by imposing additional restrictions

to polygons, chains and trees. These are stated in Chapter 6. Also in that chapter is

a detailed proof that chains with unit-length edges, and with angles within the range

(60◦, 150◦) are flat-state connected.

2.5 Folding and unfolding polyhedral surfaces

A polyhedron is an object with a boundary consisting of flat polygonal surfaces, also

known as faces. Every edge on the boundary of a face also belongs to the boundary of

another face. Faces do not intersect other than at common edges or vertices. Apart

from endpoints, every edge belongs to exactly two faces. Finally, there is a path along

the surface between any two points.

Note the subtle point, that each polygonal face is regarded to be a rigid surface (at

least in this thesis). Assume that the interior of each face is constructed of a material

that cannot be deformed. If this were not the case, we would be dealing with a

3-dimensional linkage. For a great introduction to polyhedra, including a history of

their appearance and use since ancient times, see the book by Cromwell [Cro97].

The description given above for polyhedra resembles that of simple polygons, if we

replace “faces” with “edges”, and “edges” with “vertices”. However things become a

little more complicated in the case of polyhedra, since they can topologically resemble

a sphere, doughnut (torus), or other classes of surfaces. Unless mentioned otherwise,

it will be assumed that a polyhedron resembles a sphere and is convex. The definition

of convexity is directly analogous to that for polygons.

In 1813, Augustin Cauchy proved that polyhedra are rigid objects [Cau13, AZ99] 5.

Cauchy’s theorem in fact states that if two convex polyhedra are combinatorially

equivalent and all corresponding faces are congruent, then the two polyhedra are

5Recall that Cauchy’s “arm lemma” was incorrectly proven as part of this rigidity theorem.
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congruent. Thus, once we specify the combinatorial arrangement and exact shape of

each face, there is only one configuration that the polyhedron can have. This theorem

does not hold if non-convexity is allowed. One can construct a cube, replacing the top

face with a pyramid which could either form a “roof” or a “dent”, thus creating two

different (but combinatorially equivalent) polyhedra. For a long time it remained open

whether there exist flexible non-convex polyhedra. There was evidence to support the

conjecture that none exist. However, Connelly [Con78] discovered a counterexample.

Cromwell [Cro97] summarizes the history that led to this discovery. An amusing

detail is quoted here:

“At a 1975 topology conference in Cornell University, Connelly heard that another

mathematician, working in a different area of mathematics, had been working on the

same problem and had found a flexible polyhedron. Disheartened by the news, but

curious to find out more, Connelly traced the rumour back to its source. Eventually

he discovered that it referred to himself!”

Given the rigidity of convex polyhedra and the relatively rigid nature of non-convex

polyhedra, it may seem that few reconfiguration questions can be asked here. On the

contrary, a classic open problem is whether every convex polyhedron can be cut along

some of its edges and “unfolded” to a planar polygon without overlap. Apparently,

this problem dates back to the 16th century, being implicit in the work of Albrecht

Dürer [Dür77] (see [Cro97]). The problem was stated again in modern times in [She75]

(see also [O’R00]). An example of an edge-unfolded cube is shown in Figure 2.10.

According to O’Rourke [O’R00], almost all random unfoldings of random polyhe-

dra overlap, yet it is difficult to construct such examples manually. It is still widely

conjectured that for every convex polyhedron there exists an appropriate set of edges

to cut. For non-convex polyhedra, it is easy to construct examples that cannot be

edge-unfolded (take a large cube with a smaller cube sticking out of one face). In fact,

even if we require all faces to be convex (or even triangular), Bern et al. [BDE+03]
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Figure 2.10: Edge-unfolding a cube. Bold edges are cut.

constructed examples of “ununfoldable” non-convex polyhedra.

On the other hand, if cuts are allowed to be made through faces, it is known that

every convex polyhedron can be unfolded. For example, star unfolding has been used

since the late 80’s in methods for finding geodesic paths on polyhedra (see [AAOS97]).

A star unfolding is obtained by finding a point that has n unique shortest paths to the

polyhedron vertices, and cutting these paths. Clearly, since every vertex is affected

by a cut, this allows the polyhedron to unfold. Aronov and O’Rourke [AO92] proved

that star unfoldings do not overlap. The source unfolding, also known to not overlap,

involves the set of points with more than one shortest path to a common source

(see [AAOS97, DOar] for more details). Biedl et al. [BDD+98] showed that some

classes of orthogonal non-convex polyhedra may be unfolded by cutting across faces.

More closely related to edge unfolding is the vertex unfolding problem. This is just

a weaker formulation, where cuts are still made on polyhedral edges but the regions

of the resulting planar polygon are allowed to be connected through vertices. For

example, it is allowed to cut all edges of a polyhedral face, as long as one vertex

remains attached to a neighbouring face. It is known that all triangulated polyhedra,

convex or non-convex, can be vertex-unfolded [DEE+02]. For non-triangular faces,

the problem is still open.

The opposite problem to those discussed so far is that of folding a polygon into
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a polyhedron. Suppose that each edge must match up and be glued to only one

other edge. Even if interior creases are not pre-specified (i.e. diagonals that will end

up becoming polyhedral edges) there is a quadratic time and space algorithm that

decides if a given polygon can fold, by Lubiw and O’Rourke [LO96]. They used an

existence theorem by Aleksandrov, who gave simple sufficient conditions to fold a

polygon (ignoring the edge matching requirement). The number of possible foldings

and unfoldings between polygons and polyhedra is examined in [DDLO02].

Returning to the original classic problem of edge-unfolding polyhedra, consider

this related definition and problem posed in the late 90’s6 . Define a band to be

the surface of a convex polyhedron, enclosed between two parallel planes and not

containing vertices of the polyhedron. Can every band be unfolded by cutting exactly

one edge? A related and easier question is whether any band can be unfolded by

cutting the shortest path between the two planes. This was conjectured to be true by

O’Rourke in 2000 (see [O’R03]). In Chapter 7 the band unfolding problem is solved,

and arguments are given for the proof of O’Rourke’s conjecture, based on the proof

for bands.

With a little imagination, one can see that cutting an edge of a band yields a

polyhedral surface which contains a series of “hinges” that can rotate. Such constructs

have been studied before. Bhattacharya and Rosenfeld [BR95] define a polygonal

ribbon as a finite sequence of polygons, not necessarily coplanar, such that each

pair of successive polygons intersects exactly in a common side. Triangular and

rectangular ribbons (both open and closed) have also been studied. Simple bands

can be used as linkages to transfer mechanical motion, as pointed out by Cundy and

Rollett [CR61]. Singularities of such “panel and hinge” structures were examined by

Borcea and Streinu [BS05]. In fact, in their analysis, bands are three-dimensional

generalizations of planar universal-motion chains. Last, but not least, continuous

6Though not stated in published form, this question has been circulating since at least 1998,
apparently first posed by E.Demaine, M.Demaine, A.Lubiw and J.O’Rourke.
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ribbons were studied by Sir Francis Crick as representations of DNA strands [Cri76].

In all these instances, almost no attention was paid to questions regarding the non-

self-intersecting states or the collision-avoiding motions of bands.

Finally, applications of folding polyhedra and linkages, mentioned throughout the

literature, are in bending sheet metal or hydraulic tubes. In the manufacturing busi-

ness, there is interest in constructing 3D polyhedral surfaces (not necessarily closed

polyhedra), by creating creases on planar polygonal sheets of metal and then folding

(see [AFM03, O’R00] and references therein). Naturally, if one has a 3D shape in

mind, a good question is whether it can actually be constructed from one piece of

sheet metal. This is equivalent to asking whether it can be unfolded without overlap.

Realistically, these applications are likely to be impeded primarily by motion plan-

ning problems between machinery and product, and are likely to involve non-convex

polyhedra with relatively simple shapes and few edges (up to a few dozen). Still, as

illustrated in Chapter 7, very simple shapes can easily lead to trouble if we are not

careful.

2.6 Other reconfigurations

H-P model: An interesting lattice model of protein folding is the H-P model,

where H and P stand for hydrophobic and hydrophilic amino-acids respectively. In

this model, a typical task is to find the minimum energy configuration of an H-P

chain, where vertices are labelled H or P and edges have unit length. Mimicking the

tendency of amino-acids to either avoid or seek water, minimum energy is defined so

as to maximize the number of H-adjacencies on the lattice. The paper by Aichholzer

et al. [ABD+03] provides a detailed introduction and the most recent results for this

model.

Origami: Paper folding (origami) is somewhat similar to polyhedral unfolding.

It involves reconfiguring and folding a surface that cannot tear, stretch, or cross
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itself (just think of very durable paper). On the other hand, this model allows self-

intersection and in fact sometimes demands it. Also, paper is allowed to bend, and

creases may be formed anywhere. The typical issue of interest is to determine whether

a given shape can be constructed from a flat polygonal piece of paper. A large variety

of problems, including that of map folding, is discussed in [DOar].

Hinged sets of polygons: Consider two simple planar polygons that are attached

at a single common vertex, which acts as a hinge. An allowed state is one where the

polygons do not overlap. A “hinged set” (of polygons) is just a connected collection of

such polygons and hinges. Clearly, such a hinged set may reach several configurations,

via rotations at each hinge. Deciding whether two valid configurations are connected

through hinge motions is PSPACE-hard [HDF03]. Extensions to sets of polyhedra

hinged at edges have only recently been looked into [DDLS04].

Polygon morphing: Grenander, Chow and Keenan [GCK91] investigated mor-

phing between polygons that have parallel edges (or equivalently, identical sequences

of interior angles). They proved that by shifting edges, maintaining their directions

and possibly extending others, reconfiguration is possible. In the same model, Guibas,

Hershberger and Suri [GHS00] consider a morphing “step” to be a uniform scaling or

translation of part of a polygon. They show that O(n log n) such steps are sufficient

to morph, using O(n logn) time to compute the steps. It is interesting that the au-

thors establish a form of correspondence between their transformations and rotations

in binary trees, as is the case with edge flips in triangulations.

One way of viewing polygonal shape is to consider a tree as the “skeleton” of a

polygon. For example, one can use the spanning tree of the dual of a triangulated

polygon7. Then, polygonal morphing can become an issue of reconfiguring spanning

trees. With this in mind, Aichholzer, Aurenhammer and Hurtado [AAH02b] proved

7The dual of any triangulation has one point representing each triangle and one edge between
points that represent adjacent triangles. The spanning tree of a point set is a tree that covers all
points.
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that any non-crossing geometric spanning tree of a point set can be reconfigured to

the minimum (length) spanning tree with O(n log n) length-improving edge moves.

An edge move deletes one edge and inserts another and is useful for the enumeration

of spanning trees. It is known that a linear number of edge moves (neglecting length

improvement) suffice to reconfigure between spanning trees in general position [AF96].

The general position requirement was removed in [ABG+04]. The edge slide is a more

local operation, where one endpoint of an edge remains fixed and the other slides

along a neighbouring edge. This operation, introduced in the combinatorial setting

by Goddard and Swart [GS96], was investigated in [AAH02b] with the motivation of

polygonal morphing and enumeration. Aichholzer and Reinhardt [AR05] proved that

O(n2) edge slides suffice to reconfigure between any two spanning trees.

Hernando, Houle and Hurtado [HHH02] defined local transformations for the

boundaries of polygons embedded on fixed point sets. Using their types of “flips”,

they show that all weakly externally visible polygons are connected8 . They remark

that no other local transformation is known to connect a more general class of poly-

gons on fixed point sets.

Pach and Tardos [PT01] considered the problem of “untangling” a crossing polygon

into a simple one. The operation used was a point move, i.e. the relocation of a point’s

coordinates. At most n − Ω(
√

n) operations always suffice.

8A polygon is weakly externally visible if for every boundary point there is a ray to infinity that
does not cross the remaining boundary.



Chapter 3

Similarity of Monotone Chains

In this chapter we focus on one of the simplest types of reconfigurations: rigid motions.

The structures considered here are monotone chains. The question studied here is not

whether one chain can be transformed to another, since that can be answered quite

easily for rigid motions. Instead we are concerned with how similar two chains are, if

we are allowed to move them rigidly. As described below, the field of melodic similarity

provides us with a measure of chain similarity and some interesting motivation for

our problem. Most previous work in the area of motivation has involved approaches

not related to polygonal reconfigurations. Thus no background was presented in

Chapter 2 and we give a brief introduction in the following section.

3.1 Background and motivation

The manner in which humans detect similarities in melodies has been studied exten-

sively [Mar01, HE02, MF04]. There has also been some effort in modeling melodies

so that similarities can be detected algorithmically. Some results in this fascinating

study of musical perception and computation can be found in a collection edited by

Hewlett and Selfridge-Field [HSF98].

41
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Similarity measures for melodies find application in content-based retrieval meth-

ods for large music databases such as query by humming (QBH) [GLCS95, MHK99]

but also in other diverse applications such as helping prove music copyright infringe-

ment [Cro98]. Previous work on rhythmic and melodic similarity is based on meth-

ods like one-dimensional edit distance computations [Tou04], approximate string-

matching algorithms [BNMW+99, Lem00], hierarchical correlation functions [LYZ01],

two-dimensional augmented suffix trees [CCC+00], transportation distances [TGV+03,

LT04], and maximum segment overlap [ULM03].

Ó Maid́ın [Ó98] proposed a geometric measure of the difference between two

melodies, Ma and Mb. The melodies are modeled as monotonic pitch-duration rec-

tilinear functions of time as depicted in Figure 3.1. This rectilinear representation

of a melody is equivalent to the triplet melody representation in [LYZ01]. Ó Maid́ın

measures the difference between the two melodies by the minimum area between the

two polygonal chains, allowing vertical translations. The area between two polygonal

chains is found by integrating the absolute value of the vertical L1 distance between

Ma and Mb over the domain θ. Arkin et al. [ACH+91] show that the minimum in-

tegral of any distance Lp (p ≥ 1) between two orthogonal cyclic chains, (allowing

translations along θ and z) is a metric.

Ma

∆z

Mb

Figure 3.1: The area between two melodies, Ma and Mb, and a small vertical shift of
Mb by ∆z that changes the area.

In a more general setting such as music retrieval systems, we may consider match-

ing a short query melody against a larger stored melody. Furthermore, the query

may be presented in a different key (transposed in the vertical direction) and in
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a different tempo (scaled linearly in the horizontal direction). Francu and Nevill-

Manning [FNM00] compute the minimum area between two such chains, taken over

all possible transpositions. They do this for a constant number of pitch values and

scaling factors, and each chain is divided into m and n equal time-steps. They claim

(without describing in detail) that their algorithm takes O(nm) time, where n and

m are the number of unit time-steps in each query. This time bound can be achieved

with a brute-force approach.

In some music domains such as Indian classical music, Balinese gamelan music

and African music, the melodies are cyclic, i.e. they repeat over and over. In Indian

music these cyclic melodies are called talas [Mor98]. Two such monophonic melodies

may be represented by orthogonal polygonal chains on the surface of a cylinder, as

shown in Figure 3.2. This is similar to Thomas Edison’s cylinder phonographs, where

music is represented by indentations around the body of a tin foil cylinder. We

consider the problem of computing the minimum area between two such chains, over

all translations on the surface of the cylinder.

We present two algorithms to find the minimum area between two given orthogonal

melodies, Ma and Mb of size n and m respectively (n > m). The algorithms may be

used for cyclic melodies or in the context of retrieving short patterns from a database

(open planar orthogonal chains). We have chosen to describe the algorithms for the

case where the melodies are cyclic. The first algorithm, given in section 3.2, will

assume that the θ direction is fixed. The second algorithm, described in section 3.3,

will find the minimum area when both the z and θ relative positions may be varied. In

each case, we will assume that the vertices defining Ma and Mb are given in the order

in which they appear in the melodies. In section 3.4 we discuss natural extensions,

both for the polygonal description of melodies and for the types of queries.
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z

θ

Mb
Ma

Figure 3.2: Two orthogonal periodic melodies.

3.2 Minimization with respect to z direction

In the first algorithm, we will assume that both melodies are fixed in the θ direction.

Without loss of generality, we will assume that melody Ma is fixed in both directions,

so all motions are relative to Ma. In Figure 3.1 we show the area between two

melodies, and a small shift of Mb in the z direction.

To see how the area between the two melodies changes as Mb moves in the z

direction, consider a set of lines defined by all vertical segments of the melodies as

shown in Figure 3.3. This set of lines partitions the area between the melodies into

rectangles Ci, i = 1, . . . , k, each defined by two vertical lines and two horizontal

segments, one from each melody. Note that k is at most n+m
2

. The area between Ma

and Mb is the sum of the areas of all Ci. If Mb starts completely below Ma and moves

in the positive z direction, then for any given Ci the lower horizontal segment (from

Mb) will approach the upper fixed horizontal segment while the area of Ci decreases

linearly. This happens until the horizontal segments are coincident (and the area of

Ci is zero). Then the upper horizontal segment (now from Mb) will move away from

the lower fixed horizontal segment while the area of Ci increases linearly.

We will consider the vertical position of Mb to be the z-coordinate of its first edge.

We define z = 0 to be the position where this edge overlaps the first edge of Ma. Let

Ai(z) denote the area of Ci as a function of z. Define zi to be the coordinate at which
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Ai = 0. These k positions of Mb where some Ai becomes zero will be called z-events.

The slope of Ai(z) is determined by the length of the horizontal segments of Ci. The

total area between Ma and Mb is given by A(z) =
∑k

i=1 Ai(z). Note that since A(z)

is the sum of piecewise-linear convex functions, it too is piecewise-linear and convex.

Furthermore its minimum must occur at a z-event.

Theorem 3.1. A minimum for A(z) can be computed in O(n + m) time.

Proof. The function A(z) is given by A(z) =
∑

wi|zbi − zai| , where zbi is the vertical

coordinate of Mb in Ci, zai corresponds to Ma, and wi is the weight (width) of Ci, as

shown in Figure 3.3. Let αi denote the vertical offset of each horizontal segment in

Mb from zb1. Thus we have zbi = zb1 + αi, and A(z) =
∑

wi|zb1 − (zai − αi)|. Finally,

notice that the term zai − αi is equal to zi. Thus we have A(z) =
∑

wi|zi − zb1| .

This is a weighted sum of distances from zb1 to all the z-events. The minimum is the

weighted univariate median of all zi and can be found in O(k) time [Rei78]. This

median is the vertical coordinate that zb1 must have so that A(z) is minimized. Once

this is done, it is straightforward to compute the sum of areas in O(k) time. Recall

that k is at most n+m
2

.

z

C4

α4

w4

zb4

za4

Ma

Mb

z = 0
z4

α4

Figure 3.3: Contribution of C4 to area calculation.
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3.3 Minimization with respect to z and θ direc-

tions

If no vertical segments among Ma and Mb share the same θ coordinate, then Mb may

be shifted in at least one of the two directions ±θ so that the sum of areas does not

increase. This means that in order to find the global minimum, the only θ coordinates

that need to be considered are those where two vertical segments coincide. Thus our

first algorithm may be applied O(nm) times to find the global minimum in a total

of O(nm(n + m)) time. We now propose a different approach to improve this time

complexity.

As described in the previous section, for a given θ, the area minimization resembles

the computation of a weighted univariate median. When we shift Mb by ∆θ, we

are essentially changing the input weights to this median. Some Ci grow in width,

some become narrower, and some stay the same width. As we keep shifting, at θ

coordinates where vertical segments coincide, we have the destruction of a Ci and

creation of another Ci. An important observation is that all Ci grow (or shrink) at

the same rate.

Let us store the z-events and their weights in the leaves of a balanced binary search

tree. Each leaf represents one Ci. The leaves are ordered by the value zi. Each leaf

also has a label to distinguish between Ci that are growing, shrinking, or unaffected

when Mb is shifted infinitesimally in the positive θ direction. At every node with

subtree T we store:

• WT : The sum of weights of all leaves in T .

• D : The number of growing leaves minus the number of shrinking leaves in T .

The weighted median of all zi may be calculated by traversing the tree from root

to leaf, always choosing the path that balances the total weight on both sides of the
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path. The time for this is O(log k).

Suppose that we shift Mb by some offset ∆θ, which is small enough such that no

vertical segments overlap during the shift. Each wi belonging to a growing leaf must

be increased by ∆θ, and each wi belonging to a shrinking leaf must be decreased by

this amount. Instead of actually updating all our inputs, we just maintain a global

variable ∆θ, representing the total offset in the θ direction. The total weight of a

subtree T is now WT + D∆θ.

When we shift to a position where two vertical segments share the same θ co-

ordinate, we potentially eliminate some Ci, create a new Ci, or change type of Ci.

The number of such changes is constant for each pair of collinear vertical segments.

The weight given to a created leaf must equal −∆θ. Each of these changes in-

volves O(log k) work to update the information stored in the ancestors of a newly

inserted/deleted/altered leaf. There are O(nm) such instances where this must be

done and where the median must be recomputed, so the total time to compute all

candidate positions of Mb is O(nm log(n + m)).

At every θ coordinate where we recalculate the median, we also need to calculate

the integral of area between the two melodies. For a given median z∗, the area

summation for those Ci for which z∗ > zi has the form
∑

wi(z∗ − zi).

This may be calculated in O(log k) time if we know the value of this summation

for every subtree. In order to do this, we store some additional information at every

subtree T . Specifically, the area is given by

z∗(WT + D∆θ) − ∑
(wizi) − ∆θ

∑
(Izi),

where in the second summation I takes the values (+1, 0,−1) for growing, unchanged

and shrinking leaves respectively. These two summations are the additional param-

eters that need to be stored, and they may be updated in O(log k) time at every

critical θ coordinate.

We must also perform a similar O(log k) time calculation of
∑

wi(zi − z∗), for all
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zi > z∗. No additional parameters are needed for this.

Since at every critical θ position we can calculate the median and integral of area

in O(log k) = O(log(n + m)) time, we obtain the following theorem:

Theorem 3.2. Given two orthogonal periodic melodies with n and m vertices, a rel-

ative placement such that the area between the melodies is minimized can be computed

in O(nm log(n + m)) time.

The analysis above may be used for the problem of matching two planar orthogonal

monotonic open chains. Clearly if we are only interested in varying one direction, an

optimal placement may be found in linear time. If the direction of monotonicity is

the x-axis, then this problem is more interesting if one of the two chains has a shorter

projection onto the x-axis. This “shorter” chain reminds us of a short motif that

we might search for in a larger database of music. For this problem, we measure

area only within the common domain of the two chains along the x-axis. Naturally,

the projection of the shorter chain must be entirely covered by the projection of the

longer chain.

Corollary 3.3. Given two planar orthogonal chains monotone with respect to the

x-axis, with n and m vertices respectively, a relative placement such that the area

between the chains is minimized can be computed in O(nm log(n + m)) time.

Arkin et al. [ACH+91] showed that two polygonal shapes may be compared by

parametrizing their boundary lengths and examining their orientation differences.

They showed that their measure, which is invariant to scaling, rotation and trans-

lation, can be computed by finding the minimum integral of the vertical distance

between two orthogonal chains, which are constructed in a preprocessing step (Fig-

ure 3.4). Specifically, every edge of a polygon corresponds to a horizontal segment

of proportional length in a monotone chain. Every turning angle of a polygon corre-

sponds to a vertical segment. In fact some of the techniques in [ACH+91] are similar
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Figure 3.4: A polygon represented by an orthogonal chain.

to those given in this section. However, they chose to use the L2 distance, as opposed

to the L1 distance used here. Using the L2 distance, the optimal z-position at any θ

can be computed in O(1) time, so there is no need to use a data structure as was done

in this chapter. The complexity of the algorithm given by Arkin et al. is dominated

by sorting the O(nm) critical θ events. They indicated that their algorithm offers no

improvement over a O(n3) time brute-force approach for the L1 metric.

3.4 Extensions

3.4.1 Higher dimensions

Consider a simple orthogonal open chain which is monotone with respect to the x-

axis. Furthermore, at any particular x-coordinate suppose that the chain has at

most two edges (in the y- and/or z-directions). This is an extension of the melody

representation which we have seen so far. The x-axis still represents time, but perhaps

now the other axes might represent pitch, loudness, timbre or chord density. In the

plane, the measurement made was an integral of the pitch (height) difference taken

over a domain in the x-axis. Here, we still wish to minimize an integral of the distance

between two chains over all common x-coordinates. Whether this should be Euclidean

distance or perhaps the L1 distance is debatable. The latter is definitely easier to
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compute. Suppose that we only allow motions of the chains Ma and Mb in the y- and

z-directions. Minimizing the sum of pairwise Euclidean distances is equivalent to the

Weber problem, which involves finding a point with minimum sum of distances to

points in a given set. It is not possible to find an exact solution to the Weber problem

(also known as the generalized Fermat-Torricelli problem; see [GS98]). Using the L1

metric, the function to minimize is
∑

wi(|zbi − zai| + |ybi − yai|). This may be split

into two terms,
∑

wi|zbi − zai| +
∑

wi|ybi − yai|. Thus we just have to make two

univariate median computations to find the optimal (y, z) placement for a particular

relative position of the two chains in the x-direction. In R
d we can accomplish this

task in O(dn) time. The decoupling of the two coordinates allows us to update each

median separately at every critical x coordinate. In R
3 there are still O(nm) critical

x coordinates and O(n+m) weights/leaves, so the time complexity is the same as for

planar chains. If we let n and m be the total number of edges parallel to the x-axis

for two chains, then in R
d the time complexity becomes O(mnd log(m + n)), using

O(dn) space. Note that only these edges are significant in any of the computations

we have made so far.

3.4.2 Scaling

Here we consider the effect of scaling planar chains, either in the vertical or horizontal

directions.

If we shrink the shorter chain horizontally, the domain of the integral becomes

smaller, so the total area will tend to zero eventually. How should we deal with this?

It seems reasonable to normalize by computing the total area over the domain of the

smaller chain. It is equivalent to fix the shorter chain at unit domain length and

modify the larger chain instead. Its domain would expand from unit length to some

value where its narrowest strip has unit width.

Let an x-value be an x-coordinate where there are vertical segments from both
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chains.

Lemma 3.4. For the scaling method proposed above, the optimal scaling of the larger

chain occurs at a position where two or more x-values occur.

Proof. For a particular scaling value we know that the optimal placement of the

larger chain occurs when we have an x-value. This follows from the arguments given

in section 2. Suppose that somehow we know the optimal scaling factor. Assume that

there is only one x-value and we know which two vertical segments are aligned. Now

we can keep scaling the large chain while using the x-value as an “anchor”. One of

the two scaling directions will improve the area minimization, at least until we obtain

another x-value.

This means that we have O(n2m2) candidate configurations, so a brute-force al-

gorithm would take O(n3m2) time using O(n) space. The lemma also applies to

vertical scaling. In this case a brute-force algorithm would have a time complexity of

O(n3m3 log(n + m)).

3.4.3 Non-orthogonal chains

In the preceding sections it is assumed that a melody may be divided into intervals,

and within each interval the pitch (or volume/timbre) remains constant. In a more

general setting, these features may vary within each interval. A further step in this

direction is to consider monotonic piecewise linear chains. Consider two such planar

chains. Let us divide the plane into strips, just as we had for orthogonal chains. In

this case, a vertical boundary is placed at every vertex, as shown in Figure 3.5.

Thus within every strip we have two linear segments. Suppose we vary only the

relative pitch of the chains. As one chain is moved down from infinity, within a

given strip the area decreases linearly until the two segments touch inside the strip.

Then the area decreases quadratically until the midpoints of the segments intersect.
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Figure 3.5: Two monotone chains and some of their strips.

A

Z

(C )iA

Figure 3.6: A set of area functions from the Ci strips.

Of course, the reverse occurs as we keep moving the chain down. The overall area

function of each strip Ci is now a symmetric convex function, which is part linear and

part quadratic (around the symmetric point). The total area is a sum of n functions,

such as those shown in Figure 3.6.

The area function is convex and piecewise quadratic with O(n) inflection points.

Specifically, in the aggregate function an inflection point will exist only at a coordinate

where some individual function changes from linear to quadratic. There are two such

points per individual function. Note that the minimum of the aggregate function

need not occur at an inflection point, unlike the case of orthogonal chains. Now, it
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is possible for the minimum to exist between two consecutive inflection points. This

would be the only region between two successive inflection points where the function

is not monotone.

To compute the minimum of the aggregate function, we give the following algo-

rithm:

1. Let R be the set of individual area functions. Let F be a single quadratic term,

initialized at zero.

2. Compute Q1, the median of the x-coordinates of the minima of all functions in

R, as shown in Figure 3.7.

3. Compute the value and gradient of the total area function at Q1, by querying

F and all functions in R. If not at the global minimum, assume without loss of

generality that the minimum is to the left of Q1.

4. For the subset of functions in R whose minima are to the right of Q1, compute

the median Q2 of their left inflection points. Q2 splits the subset into the left

group and the right group.

5. If Q2 ≥ Q1, as shown in Figure 3.8, replace all functions in the right group with

a single linear term, which is a summation of all individual left-hand linear

terms. Update F by adding this term to it. Remove the right group from R.

6. Else if Q2 < Q1, as shown in Figure 3.9, compute the gradient of the total

function at Q2. If the global minimum is to the left of Q2, follow the instructions

of step 5 on the right group. Otherwise if the minimum is between Q2 and Q1,

replace all functions in the left group with a single quadratic term, which is a

summation of all individual quadratic terms. Then update F and remove the

left group from R.

7. Go to step 2.
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Figure 3.7: The median Q1 of function minima.
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Figure 3.8: The median Q2 of left inflection points.
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Figure 3.9: Q2 to the left of Q1.

The algorithm does O(|R|) work in each iteration, and a constant fraction of R

is removed each time. Thus the total time is O(n), by a simple geometric series

summation, given in [CLRS01].

Theorem 3.5. The minimum area between two x-monotone chains, found over all

vertical translations, can be computed in O(n) time.

Updating the aggregate function as we shift one of the chains along the x-axis

appears to be non-trivial. It is no longer true that the optimal position must occur

when vertices from each chain are aligned vertically. Also, when we make a small

shift along the x-axis, not only do the two linear parts of each individual function

change slope, but the center of symmetry of each function also may shift (Recall

that these are functions of the z-coordinate). These changes depend on the slopes of

our chains within each strip and are not difficult to compute on an individual basis.

However understanding their aggregate effect is a different matter. To rephrase, each

strip now has three “z-events” instead of one (the two boundaries between linear and

quadratic forms, plus the center of symmetry). To make things worse, the z-events

change position as a chain is shifted along θ. So if a tree is used to maintain the
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median, it will be necessary not only to insert/delete leaves but also to rearrange the

order of leaves (to say the least).

3.4.4 Integer weights/heights

Here we discuss the cases where only certain pitches (heights) and/or weights are

allowed.

If there are O(1) height differences allowed, we can sort all critical points in

O(nm log m), and sweep along each height difference horizontally, updating the area

function in O(1) time per critical point (i.e. O(mn) per height difference), so the time

complexity is dominated by the sorting step. Even in the simplest case, where we

just wish to compute the minimum area while keeping z fixed, we do not know how

to avoid sorting all critical positions.

If all weights are equal (i.e. we have evenly spaced sampling of melodies), then

each median computation takes O(m) time and there are O(n) critical positions.

Thus a brute force approach takes O(nm) time. A direct implementation of our tree

algorithm would take O(nm log m) time, since at each of the O(n) critical positions

we would have to update all O(m) leaves of our tree. It is possible that this can be

greatly improved.



Chapter 4

Reconfiguring Triangulations

4.1 Definitions and background

We now turn to the classic type of question posed in this thesis: can object A be

transformed to object B, using a defined set of operations? The first polygonal object

types considered in this context are planar geometric triangulations. Recall that a

geometric near-triangulation consists of a set of points, pairs of which are joined by

straight edges, so that no two edges intersect at their interiors and no more edges can

be added. As a result, the convex hull of the point set is subdivided into triangular

faces. The region outside of the hull is known as the outer face. If the outer face is

incident to only three vertices (i.e. the hull contains only three vertices), then the

object is plainly called a triangulation.

We allow (near)-triangulations to be reconfigured with two types of operations:

edge flips and point moves. An edge flip on a triangulation is simply the deletion

of an edge, followed by the insertion of another edge such that the resulting graph

remains a triangulation. A point move is the modification of the coordinates of one

vertex such that after the modification the graph remains a geometric triangulation.

Recall that it was Abellanas et al [ABG+04], who introduced the point move in the

57
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context of triangulations, to allow reconfigurations between geometric triangulations

on different point sets. They showed that this can be done with O(n2) edge flips and

O(n) point moves. For labeled triangulations, a quadratic number of each operation

is used.

When restricted to edge flips, Ω(n2) flips are sometimes necessary to transform

one triangulation on a given point set to another one on the same point set [HNU99].

However, are Ω(n2) edge flips required if one is also allowed to use point moves?

We give an algorithm which uses O(n log n) edge flips and point moves to trans-

form any geometric near-triangulation on n points to any other geometric near-

triangulation on n possibly different points, even if the points are labeled. It is

important to realize that we do not restrict points to remain on a grid after each

operation. Whether the same result may be achieved for grid points is still unknown.

We also show that if we restrict our attention to geometric near-triangulations defined

on a fixed point set of size n, i.e. the setting studied in [Law77], the problem is just

as difficult even in the presence of point moves. Specifically, we show that if there

exists an algorithm that transforms any near-triangulation on an n-point set to any

other near-triangulation on the same point set using O(n) point moves and edge flips,

then this algorithm can be used to solve the more general problem of transforming

any near-triangulation on one point set to any other near-triangulation on a possibly

different point set with O(n) operations. Finally, we show that with a more general

point move, we can remove the extra log factor from our main result.

4.2 Some useful tools

From now on we assume that all triangulations and near-triangulations are geometric,

and that the n vertices of any given triangulation are in general position. It is not

difficult to see that O(n) point moves can reconfigure a triangulation to this form.

We begin with a few of the basic building blocks that will allow us to prove the main
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theorems.

Lemma 4.1. [BCG+03] A reconfiguration between two triangulations of the same

point set that is in convex position can be done with O(n) edge flips.

Lemma 4.2. [HNU99] Let v1, v2 and v3 be three consecutive vertices on the outer

face of a near-triangulation T1. Let C be the path from v1 to v3 on the convex hull of all

vertices but v2. A near-triangulation T2 containing all edges of C may be constructed

from T1 with t edge flips, where t is the number of edges initially intersecting C in T1.

Lemma 4.3. Given a near-triangulation T , any vertex p ∈ T with degree d > 3 that

is inside the convex hull of the vertices of T can have its degree reduced to 3 with d−3

edge flips.

Proof. Let P be the polygon that is the union of all triangles incident to p. P is a

star-shaped polygon and p is in the kernel. By Meister’s two-ears theorem [Mei75], if

P has more than three vertices, then it has at least two disjoint ears1. At most one

of them can contain p. Therefore p and one of the ears form a convex quadrilateral.

We may flip the edge from p to the tip of the ear, effectively cutting the ear from P

and reducing the number of vertices of P by one (see Figure 4.1). This process may

be continued until P is reduced to a triangle that contains p as desired.

Lemma 4.4. Given a near-triangulation T , any vertex p ∈ T with degree 3 that is

inside the convex hull of the vertices of T can be moved to a new position in the

triangulation along a straight path crossing t edges, using at most 2t edge flips and

2t + 1 point moves, assuming the path does not cross through any vertices.

Proof. Suppose that p is joined by edges to vertices v1, v2 and v3. Without loss

of generality, let edge v2v3 intersect the path that p must follow, and let this path

continue into triangle v2v3v4, as shown in Figure 4.2.

1A triangle, defined by three consecutive vertices of a polygon, is an ear if it is empty and the
vertices form a convex angle. The second vertex is the tip of the ear.
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Pp

Figure 4.1: Polygon P is visible from vertex p, which is inside one of the two ears of
P . The empty ear is labelled with white vertices. The edge that may be flipped is
dashed.

v1

v2

v3

v4

p

Figure 4.2: A vertex p and a straight path that it must move along (dashed). p can
pass through any edge with two edge flips.
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Clearly p can be moved anywhere within triangle v1v2v3 without the need of any

edge flips. Then it can be moved along its path, as close to edge v2v3 as necessary, so

that the quadrilateral pv2v3v4 becomes convex. This allows edge v2v3 to be flipped

into edge pv4. Now p may continue along its path. As soon as it enters v2v3v4, edge

pv1 may be flipped into v2v3. Now, with two edge flips and two point moves, p has

crossed through the first edge intersecting its path, and still has degree 3. By the

same argument, p may traverse its entire path with two edge flips and two point

moves for each intersecting edge. One additional point move is required in the last

triangle. Note that only three edges in the original and final triangulations will be

different.

Lemmata 4.3 and 4.4 imply the following result:

Lemma 4.5. Given a near-triangulation T , any vertex in the interior of the con-

vex hull of the vertices of T with degree d can be moved to a new position in the

triangulation along a path crossing t edges, using O(d+ t) edge flips and point moves.

Lemma 4.6. An edge can be constructed between a convex hull vertex and any other

vertex in a triangulation using O(n) edge flips, with the aid of one moving point that

is moved O(n) times.

Proof. Let v1 be the hull vertex. First suppose that the second vertex is an interior

point. Then it will play the role of the moving point, and we will label it p. We can

move p directly towards v1, until it is located within a triangle that has v1 as a vertex.

Now v1 and p must be joined with an edge. Next we move p back along the same

line to its original position, always maintaining edge v1p. To do this, we consider the

set of triangles that intersect p’s path, as in lemma 4.4. Vertex p can always enter

a triangle intersecting the path back to its original location. The difference is that

once it has crossed an intersecting edge, we do not restore the edge. This means that

p will accumulate edge degree. An issue that needs to be taken care of is that of
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v2

v3

v1

v4

p

Figure 4.3: Maintaining a triangulation while extending edge v1p: p has moved from
a position close to v1 (shown white), and still has to traverse the dashed segment to
its original position. Edge pv3 causes a problem if p is to continue.

maintaining a triangulation when p is about to lose visibility to another vertex. This

occurs when one of its incident edges is about to overlap with another edge in the

triangulation, as shown in Figure 4.3.

Suppose that edge pv3 is about to overlap with edge v3v4. v3 and v4 cannot be

on opposite sides of the remaining path that p must traverse, otherwise v3v4 may be

flipped. Vertex p must share an edge with v4 in this configuration. Vertices p and v3

are also part of another triangle, along with some vertex v∗ which may be anywhere

on the path from v1 to v3. These two triangles must form a convex quadrilateral

pv∗v3v4, otherwise p would have already lost visibility to v∗. Thus pv3 may be flipped

into v4v
∗, which means that v3 is removed from the polygon that intersects p’s path.

The result is that when p reaches its original position, it leaves a fan2 behind it, which

includes edge v1p. Overall one edge flip is used when p enters a new triangle, and at

most one flip is used for every edge that attaches to p.

If both vertices of the edge that we wish to construct are on the hull, then we

can take any point p within the hull and move it close to v1 and onto the segment

between the two hull vertices. p can then move along this segment to the second hull

vertex until it is connected to both. At this moment, p may be perturbed so that the

2A fan is a star-shaped polygon with a vertex in its kernel.
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vR

v1

vL

Figure 4.4: The canonical configuration used for triangulations.

three vertices form a triangle. This triangle might contain other edges incident to p.

Lemma 4.2 implies that these edges may be removed so that the desired edge can be

constructed with O(n) edge flips.

4.3 A divide and conquer algorithm

Here we give an algorithm which uses O(n logn) total operations to perform any

reconfiguration.

4.3.1 Triangulations

With the basic building blocks in place, we now prove one of our main results.

Theorem 4.7. With O(n log n) edge flips and point moves, we can transform any

geometric triangulation on n points to any other geometric triangulation on n possibly

different points.

Proof. We transform one triangulation to another via a canonical configuration. As

shown in Figure 4.4, the interior vertices form a backbone (i.e. their induced subgraph

is a path). The top of the backbone is joined to the topmost hull vertex v1, and all

interior vertices are joined to the other two hull vertices, vL and vR.
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vM

v1

vL vR

Figure 4.5: The configuration of a triangulation prior to merging the backbones on
each side of the median vertex vM .

The canonical configuration is constructed in a divide-and-conquer manner. We

perform a radial sweep from v1, to find the median vertex interior to the convex hull,

vM . After constructing edge v1vM we move vM directly away from v1 towards the

base vLvR, maintaining v1vM until triangle vMvLvR contains no interior points. By

Lemma 4.6, we use O(n) operations to accomplish this. Now, we transform v1vMvL

and v1vMvR into backbone configurations by induction since they are smaller instances

of the same problem. The resulting configuration is shown in Figure 4.5.

We now show that the two sides may be merged using O(n) operations. As shown

in Figure 4.6a, we first move the lowest vertex of a backbone into a position that is

close to the base and is along the extension of edge v1vM . This requires one edge flip.

The vertices on the left/right backbones are processed in ascending order, and are

always moved just above the previous processed vertex, as shown in Figure 4.6b. Each

vertex will require two point moves and one edge flip. Thus v1vLvR is reconfigured into

canonical form, and by a simple recurrence the number of edge flips and point moves

used is O(n logn). It is trivial to move a canonical triangulation to specific coordinates

using n point moves. Thus the transformation between any two triangulations may

be completed.
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(a) (b)

Figure 4.6: Merging two backbones into one.

4.3.2 Near-triangulations

If the initial graph is a near-triangulation, we assume that the outer face is a convex

polygon. We also assume that the initial and target triangulations have the same

number of hull vertices. This is necessary in order for both to have the same number

of edges. Since the outer face is not a triangle, Theorem 4.7 does not directly apply.

Some care must be taken to handle a non-triangular outer face. We outline the details

below.

Theorem 4.8. With O(n log n) edge flips and point moves, we can transform any

geometric near-triangulation on n points to any other geometric near-triangulation

on n possibly different points.

Proof. As in the case with triangulations, we transform one near-triangulation to

another via a canonical configuration. In the primary canonical configuration, shown

in Figure 4.7, one chosen hull vertex (v1) is joined by chords to all other hull vertices.

Thus v1 is in the kernel of a convex fan. Every triangle incident to a hull edge, except

for one, is empty. All interior vertices, located in the non-empty triangle T , are in

the canonical configuration of a triangulation. Once this configuration is achieved,

all vertices can easily be placed at specific coordinates, so that the transformation

between two-near triangulations can be completed. This will be described further on.

We first construct all edges of the top-level fan configuration, leaving interior
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v1

T

Figure 4.7: The primary canonical configuration used for near-triangulations.

vertices in their original positions. Then within each triangle of the fan, we rearrange

the interior vertices into a canonical triangulation. Finally, we merge all triangles of

the fan, so that all interior points move to a single triangle and are in canonical form.

To construct the fan chords, we always divide the problem into two roughly equal

parts. We begin by constructing two chords as follows: perform a radial sweep from

v1 to successive hull vertices vi {2 ≤ i ≤ n− 1}, always keeping fewer than n
2

vertices

in the swept region. Let vj be the last hull vertex for which this holds. Construct

chords v1vj and v1vj+1. The unswept region not including triangle v1vjvj+1 contains

fewer than n
2

vertices. The swept region contains fewer than n
2

vertices. Triangle

v1vjvj+1 may contain an arbitrary number of vertices, but this is not a sub-problem

(we will not look at this region again during the construction of the fan). Now we can

continue a new sweep on each side of v1vjvj+1. Construction of the two chords could

take O(n) edge flips and point moves, as described in Lemma 4.6. However the even

split of the sub-problems ensures that the total number of operations is O(n log n).

Each fan triangle v1vivi+1, containing ki interior points, can be reconfigured into

a backbone structure with O(ki log ki) operations, by Theorem 4.7. Thus the total

number of edge flips and point moves used to reconfigure all triangles of the fan into

backbone structures is O(n log n).

Now we are left only with the task of merging the fan triangles so that only one

of them will contain all interior points. To do this, we pair up consecutive triangles,
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Figure 4.8: Merging two adjacent fan triangles.

TT TT

Figure 4.9: Handling multiple adjacent empty fan triangles. Triangles marked (T)
contain triangulations.

merge them, and continue recursively: We can add ki interior points of a canonical

triangulation to an adjacent canonical triangulation using O(ki) edge flips and point

moves. The ki points are processed in descending order and are always added to the

top of the adjacent triangulation, as shown in Figure 4.8.

Thus we obtain one triangle in canonical form next to an empty triangle. It is

just as easy to merge two canonical triangles separated by an empty triangle. If we

ever encounter two or more adjacent empty fan triangles, we may use Lemma 4.1 to

reconfigure them so that they will not affect the fan-merging process (see Fig 4.9).

By the above arguments, once we select the triangle that is to finally contain all
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v1

v2

v3

T

(b)(a)

Figure 4.10: (a) Moving a vertex onto the bounding rectangle. (b) All hull vertices
on the bounding rectangle.

of the interior points (the median triangle is a good choice), we can iteratively merge

its neighbouring triangles onto it using a total of O(n) edge flips and point moves.

Finally we are left with a single triangle containing all interior points in canonical

form. On either side, we may have an arbitrary triangulation (resulting from handling

multiple adjacent empty fan triangles), but the vertices will be in convex position.

By Lemma 4.1 they may be moved to our desired configuration using O(n) edge flips.

We must still show that this primary canonical configuration can be moved to

specific coordinates. This can be done with O(n) point moves: First we move all

vertices onto the bounding rectangle, by processing each of the hull paths between

extreme vertices Xmax, Xmin, Ymax and Ymin separately. Let the path from Xmin to

Ymax contain vertices Xmin = v1, . . . , vk = Ymax. Vertex v2 can be moved directly away

from v3 until edge v1v2 becomes vertical, as shown in Figure 4.10a. Similarly, vertices

v3, . . . , vk−1 may be moved to this vertical line through Xmin. By performing similar

motions for the other paths, we obtain a configuration as the one in Figure 4.10b. In

each case one point move suffices, except for the hull vertices belonging to the triangle

that contains the interior points. To move these two vertices, we have to displace the

interior points, but one point move per interior point suffices.

Now it is trivial to move all hull vertices except for Ymax along the edges of the

bounding rectangle so that they reach the bottom edge. This allows the top vertex

to move to any chosen coordinate above the bottom edge. All remaining vertices
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may be shifted horizontally to any position. Finally, by moving them again along

the boundary of their new bounding rectangle, they can be positioned on the two

vertical sides, which now allows them to be moved to any position vertically. Thus

the reconfiguration may be achieved within the bounding box of the source and target

triangulations.

4.3.3 Reconfiguring triangulations on a fixed point set

If two triangulations have the same point set, the problem is no easier than the general

problem. Suppose that there exists an algorithm that can transform a triangulation

T1 on a given n-point set to a triangulation T2 on the same point set using Fn =

o(n log n) edge flips and point moves3 . Then this algorithm can be used to transform

a triangulation on one point set to any other triangulation on a possibly different

point set with Fn + O(n) edge flips and point moves. This argument is summarized

in Fig 4.11. Let Fig 4.11(a) be the input triangulation. With Fn flips and moves,

move to the triangulation in Fig 4.11(b) where every interior vertex is adjacent to the

lower left vertex v` of the outer face.

Now consider the triangulated polygon, P , that consists of edges not adjacent to

v`. Notice that if we perform a radial sweep from v`, the boundary of P is monotonic.

At least two of the triangles in P are disjoint ears, which means there must exist an

ear tip that is an interior vertex and is also joined to v` by an edge in the original

triangulation. We may move this point directly towards v` and cut the ear from

P . This still leaves a monotone polygon P ′. By continuously locating such ears,

and moving them to a predefined convex position, we can obtain the configuration

illustrated in Figure 4.11c. The monotonicity of P (and its descendants) and the

convexity of the final configuration of interior points guarantee that no edge crossings

will occur. This process requires a linear number of point moves.

3The upper bound of a function Fn is o(fn) if the limit of Fn

fn

approaches infinity. In other words,
fn is strictly more than just a constant multiple of Fn.
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(a)
(b) (c)

(d)(e)

Figure 4.11: Problem on fixed point set is not easier.

Next, by Lemma 4.1, we can use O(n) edge flips to obtain the triangulation where

the lower right vertex of the outer face is adjacent to every vertex, as illustrated in

Figure 4.11d. From here, it is trivial to move to the canonical configuration.

We conclude with the following:

Theorem 4.9. If an algorithm exists that can reconfigure between any two geometric

triangulations of the same point set with o(n log n) edge flips and point moves, then

we can also transform any geometric triangulation on n points to any other geometric

triangulation on n different points with o(n log n) flips and moves.

It is tempting to try to find a fast algorithm that will construct a monotone path, as

illustrated in the transition from Figure 4.11a to Figure 4.11b. Consider the polygon

that is the union of all triangles incident to the lower left vertex of Figure 4.11b. By

continuously cutting ears of this polygon, we may get to a triangulation that is similar

to that of Figure 4.11a, using O(n) edge flips. The similarity is that all neighbours of

the lower left vertex will be in convex position. However, we have little control over

the resulting positions of the remaining edges if we use only O(n) operations. It is
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possible to create triangulations for which the reversal of this ear-cutting technique

is not possible. In fact, Figure 4.11c serves as an example, if we add a few more

vertices inside the large triangle. In this figure none of the edges directly visible from

the lower left vertex can be flipped, so there is no obvious way to achieve a monotone

path by using operations only in the neighbourhood of v`.

4.4 Remarks

An interesting result by Aichholzer et al [AAC+96] is that there is a matching be-

tween the edges of any two triangulations of a point set, such that an edge of one

triangulation is matched either to the identical edge in the other triangulation or to

an edge that crosses it. This result might prove to be useful for reconfigurations.

The results of this chapter also hold for labelled triangulations. The merging step

for triangulations can be easily adapted so that two backbones, sorted by their labels,

can be merged into one sorted backbone in a procedure that resembles merge-sort.

For near-triangulations, merging adjacent backbones as in Figure 4.8 results in one

backbone inverting its sorted order. This must be taken into consideration. Note

that in our algorithms a point move can be visualized as a continuous motion of a

vertex. In the case of labelled triangulations, if it is necessary to change points on

the convex hull, “continuous” point moves are inadequate. Instead, the coordinates

of a hull vertex vh can be modified instantaneously to a position within the hull, as

long as an interior point exists close enough to vh.

Finally, consider a more powerful point move, where we can delete an interior

vertex of degree three (and its incident edges), and create a new vertex of degree

three elsewhere. With this type of move we can reconfigure triangulations using O(n)

operations. We select a triangle incident to a hull edge and create a backbone inside.

This is done by repeatedly selecting a vertex of constant degree from outside the

triangle, reducing its degree to three, and moving it to the lower end of the backbone.
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Locked Hexagonal Linkages

5.1 Background

We now turn to one of the most intuitive classes of polygonal Structures: three-

dimensional polygons. The method of reconfiguration is also one of the easiest to

visualize: basically anything is allowed, as long as no edges cross or deform. This is

the universal model of motion for polygonal linkages.

Consider a hexagon in R
3 with fixed edge lengths1 `1, . . . , `6, and for which we allow

universal joint motions but no edge crossings. In other words, we allow the vertices

v1, . . . , v6 of the hexagon to move freely as long as the edges remain straight, and do

not cross or change length. Following the notation of Cantarella and Johnston [CJ98],

we denote the space of this hexagon as Pol6(`1, . . . , `6). The general question that we

study here is: how many connected components can Pol6 have, for a suitable choice

of `1, . . . , `6? It is then natural to ask whether each connected component of Pol6

corresponds to a separate knot type, or if some knot type (say the unknot, or trivial

knot) exists in separate components of space. Millet [Mil94] showed that for regular

hexagonal unknots there is only one embedding class. The question remained open

1We use `i to denote both the edge and its length.

72
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Figure 5.1: Unknot classes 2 and 3, by Cantarella and Johnston. (not drawn to scale)

until Cantarella and Johnston proved that there exist three connected components in

Pol6(100, 63.5, 22.7, 5.6, 22.7, 63.5), each belonging to the unknot2. The first compo-

nent includes the planar convex embedding. Recall from Chapter 2 that all convex

polygons are in the same component. The remaining two classes, which are left and

right hand versions of the same polygon, were shown to be “stuck”, in the sense that

they cannot be reconfigured into planar convex embeddings. These classes are shown

in Figure 5.1.

Cantarella and Johnston suspected that these three classes were the only ones for

the unknot in Pol6, but Toussaint [Tou01] showed that there exist two more classes,

for Pol6(20, 13, 4, 1, 4, 13). The two new classes are left and right hand versions of

each other, and are shown in Figure 5.2. In the following section, we show that four

more classes can exist for appropriate edge lengths.

5.2 A hexagonal unknot with nine embedding classes

We consider the space Pol6(1, 1, 0.55, ε, 0.55 − ε, 1), where ε ≤ 0.01 (i.e. sufficiently

small). Here, we show that this space has at least nine connected components corre-

sponding to the unknot. In other words there are at least nine embedding classes of

the unknot for our given edge lengths.

2The numbers given are approximate.
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Figure 5.2: Unknot classes 4 and 5, by Toussaint. (not drawn to scale)
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Figure 5.3: New unknot classes 6 and 7. (not drawn to scale)

The first class contains all planar convex embeddings. The next four are similar in

shape to those of Cantarella and Johnston and those of Toussaint. However, since we

are using different edge lengths it is necessary to verify that our classes of hexagons

are still in different connected components of space. The four new classes are shown

in Figures 5.3 and 5.4.

Cantarella and Johnston showed that a sufficient condition for their classes to

be in different connected components than the convex class is that (`3 + `4)
2 <

`1`2 − (`1)
2/2. Our chosen edge lengths satisfy this condition, so we can say that

the proof of Cantarella and Johnston holds for our hexagon. Of course, it is not

enough just to show that every class is in a different connected component than that

containing the convex class.

Unfortunately, we can not do the same as above and borrow the proof for Tou-
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Figure 5.4: New unknot classes 8 and 9. (not drawn to scale)

ssaint’s classes. A sufficient (but not necessary) condition used in this case is that

`3 + `4 + `5 < min{`2, `6}. Our hexagon is modified enough that this condition no

longer holds. It seems that we cannot avoid such a modification, in order to create

the new classes.

Even though Toussaint’s proof cannot be used here, the intuition is quite the same.

For each class, there are a couple of motions that must be made in order to convexify

the hexagon. We will show that such motions are impossible to make, and conclude

that it is impossible not only to convexify a hexagon belonging to each class but also

to reconfigure between the non-convex classes.

Let us now fix a coordinate system in order to view all possible motions. Let `1

be fixed in the xy plane, and `6 be constrained to the plane. Specifically, v1 is at

(0, 0, 0), v2 is at (1, 0, 0), and v6 is at (v6x, v6y, 0) where v2
6x + v2

6y = 1. Our view will

be along the normal of the plane. Thus vertex v6 may move only in a circle about v1.

We choose to focus on Class 9, as shown on the right of Figure 5.4. Intuitively we

can see that to convexify this hexagon we would have to pass v3 over `6 and into the

plane, or we would have to pass `5 over v2 so that v5 could be placed in the plane.

We now proceed to describe certain constraints in the configuration of our poly-

gon. The polygon shown in Figure 5.4 possesses certain properties, listed here:
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1. v5z > 0, and v4z < 0. Thus we can define the point P = P(x,y) = (Px, Py) to be

the intersection of `4 with the plane. This also means that v4 and v5 are at a

distance of at most ε from the plane.

2. Py > 0, and ε < Px < 1 − ε.

3. v3z > 0.

We will show that, while reconfiguring the polygon, it is impossible to change any

single property without causing an intersection or contradicting the validity of at

least one other. We will also show that we cannot change more than one of these

properties simultaneously. This implies that the properties are always true. Note

that changing a property is done via a continuous motion of the polygon. Thus for

example, property 1 changes the moment that v5z = 0 and/or v4z = 0. In case we

attempt to set both of these vertices into the plane simultaneously, the point P will

be defined to be the last unique point of intersection of `4 with the plane.

First we attempt to change only the third property. Consider the case where

v3y < 0. v3 can be placed in the plane only if the angle at v2 or the angle at v1 opens

to more than π/3. This would mean that the distance from v3 (or v6 respectively)

to `1 becomes greater than
√

3
2

. The distance to P is at least as great, since Py > 0.

However, the distance from v3 (v6) to P can be at most the sum of the lengths `3 + `4

(or `5 + `4 respectively). These sums are less than
√

3
2

. Thus, by contradiction, we

conclude that v3 cannot be placed in the plane if v3y < 0. Allowing properties 1

and/or 2 to change simultaneously with property 3 does not affect the arguments

given above. At the “critical” moment that we attempt to place v3 into the plane,

we still have Py ≥ 0, for example.

It remains to be seen if we can change only the third property, when v3y > 0.

Even reaching a configuration where v3y > 0 requires a subtle motion. It can be done

by bringing P sufficiently close to `1, which allows us to obtain v4y < 0. Then `2
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Figure 5.5: Alternate configuration of Class 9. (not drawn to scale)

can move in a clockwise motion as viewed from the normal to the plane. The final

configuration is shown in Figure 5.5. During the motion described above, we have

0 ≤ v3x ≤ 1. Thus the x-coordinates of both endpoints of `3 are within this range.

This means that if `3 is to avoid intersection with `1 it is in fact necessary to have

v4y < 0. Keeping in mind that v4z < 0 (property 1), we see that it is impossible to

place v3 in the plane without causing an intersection between `3 and `1. We conclude

that v3 always remains above the plane, as long as properties 1 and 2 are true. Again,

allowing properties 1 and/or 2 to change at the same time (i.e. allowing Px = ε and/or

v4z = 0) doesn’t affect our arguments. Thus property 3 cannot change, either on its

own, or at the same time as properties 1-2.

We now focus on the second property: To obtain Py < 0, we must first have

Px < 0 or Px > 1. This is because of the position of `1. So we would be requiring

that v4x < ε or v4x > 1 − ε. The same holds for v5x. In other words, v4 and v5 would

have to approach to within a distance ε from the halfline x = 0, y > 0, z = 0 or the

halfline x = 1, y > 0, z = 0. By examining the triangle v1v5v6 (which can be made

to approach arbitrarily close to the plane if ε is small enough) and using elementary

trigonometry, we can see that the former case is impossible. On the other hand, for v4

to approach the halfline x = 1, y > 0, z = 0, we would need the angle v1v2v3 to reach
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π/3. As shown previously, this cannot be done when v3y < 0. We also established

that if v3y > 0, as shown in Figure 5.5, then v4y < 0. This means that the angle v1v2v3

cannot open to π/3, by the same logic used when dealing with changing property 3.

Thus we must always have 0 < Px < 1 and Py > 0. Once again, the argument given

is not affected by allowing property 1 to change simultaneously.

Finally, we can examine the first property: Given property 2, we cannot place v5

into the plane because this would cause an intersection between the polygonal arc

Pv5v6 and `1. Also, we cannot place v4 into the plane because the arc v3v4P would

intersect `1. More specifically, if v3y ≥ 0, bringing v4 to the plane would cause an

intersection between `4 and `1, since Py > 0. If v3y < 0, the intersection would be

between `1 and either `3 or `4 depending on the value of v4y. We conclude that v4

(v5) must always be below (above) the plane.

Having established property 1, we know that Class 9 cannot be reconfigured to

classes 2,5,7,8. Now consider Class 6: `2 passes above the polygonal arc Pv5v6,

whereas in Class 9 it passes beneath the arc. In both cases, `2 is above the plane. We

know that starting from Class 9 we cannot position v3 into the plane. This implies

that if we are to reconfigure between these classes, v3 must pass under `5. This cannot

be done, due to the angle restrictions mentioned while handling property 1. In fact,

if this were possible, then v3 could be placed in the plane. The same applies for Class

3. Finally, the only difference between classes 4 and 9 is in the crossing of `3 and

`6, as we view along the normal to the plane. To change this crossing, the point Q,

defined earlier, would have to move to an intermediate position such that Qy < v6y.

This involves passing v3 under `5, which cannot be done, as we have just seen.

We can now say that Class 9 cannot be reconfigured to any of the other classes

shown. If we ignore the small difference in the lengths of `3 and `5, which does not

play a role in the proofs given above, then the four new classes are either left/right

hand versions or rigid transformations of each other. Thus the arguments given for
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Class 9 hold for classes 6–8. As for our modified examples of Toussaint’s classes, the

proofs are similar and need not be repeated. This leads us to the following theorem:

Theorem 5.1. For suitable choices of edge lengths, there are at least nine connected

components belonging to the unknot in Pol6.

5.3 Remarks

Although we show that there are at least four more embedding classes for Pol6, we

note that our examples are not very “stable”, in the sense that the slightest change in

the length of either `2 or `6 would result in the loss of four classes: those of Toussaint,

and two of the four new ones. If we made both lengths larger, then we would only

have the three classes of Cantarella and Johnston. Therefore an open problem is to

find suitable edge lengths so that Pol6 has more than five “stable” embedding classes.

As was mentioned by Cantarella and Johnston, these results can be extended to

Poln, by replacing the shortest edge with a chain. Alternatively, a link or a knot can

be placed to obtain similar results.

It was tempting to see whether we could modify our classes, by changing some

crossings, to obtain more than four components corresponding to the trefoil knot.

The examples of Cantarella and Johnston cannot be transformed into trefoils, and the

remaining six non-planar unknots produce only four trefoil classes, due to symmetry

conditions.



Chapter 6

Dihedral Motions

6.1 Definitions and background

We have seen that polygons and chains in R
3 can “lock” even with the least restrictive

model of motion. Here, we continue to deal with polygonal chains, but we will focus

on the class of chains that have all edge lengths equal. This restriction makes it

difficult to find chains that are locked using universal motions (if they even exist).

One might say that unit-length chains are more flexible. However, the method of

reconfiguration considered in this chapter is more restrictive.

Here, in addition to edge lengths, the angles between successive edges also cannot

change. Informally, to perform a dihedral motion we fix one edge in space and rigidly

rotate one of the two remaining subchains, using the fixed edge as an axis of rotation.

As shown in Fig 6.1, the fixed edge forms a plane with each of its two neighbours.

A dihedral rotation causes the angle between these planes to vary. This model is

essentially the “ball and stick” model for molecules, used in introductory chemistry

classes. The general dihedral chain reconfiguration problem is to determine whether

two configurations of a three-dimensional chain are connected via a series of dihedral

motions that preserve simplicity.

80
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e

e1

e2

Π1

Π2

v1

v2

Figure 6.1: A local dihedral motion. e1 and e are fixed in plane Π1, while e2 (in plane
Π2) rotates about e.

A major open problem is to determine whether any two planar configurations of

a chain are “connected” by a series of dihedral motions, while maintaining simplicity

at all times. If this is true for two chains, we say that they are “flat-state connected”.

This problem, which is now known as the “flat-to-flat” problem, was left open after

an extensive study of dihedral motions by Soss [Sos01]. Planar configurations may

be useful as an intermediate (canonical) form during the reconfiguration of three-

dimensional chains.

Recent results have only been obtained by placing additional restrictions on angles

and/or edge lengths. Some of our results that have appeared at CCCG and ISAAC

(2002) [ADM+02, ADD+02] are summarized in Table 6.1.

Note a particular result on the flat-state connectivity of unit length chains for

which all angles are in the range (60◦, 90◦]. The following section extends this result

to the range (60◦, 150◦).
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Table 6.1: Summary of results on dihedral reconfigurations. The ‘—’ means no
restriction of the type indicated in the column heading. Entries marked ‘?’ are open
problems. Unless indicated otherwise, results are from [ADD+02].

Constraints on Fixed-Angle Linkage Flat-state
Connectivity Angles Lengths Motions connectivity

Open chain — — — ?
has a monotone state — ?
non-acute — — Connected [ADM+02]
equal acute — — Connected [ADM+02]
each in (60◦, 90◦] unit — Connected [ADM+02]
— — 180◦ edge spins Disconnected
orthogonal — 180◦ edge spins Connected

Set of chains, each orthogonal — — Connected
pinned at one end orthogonal — partially rigid Disconnected

Polygon — — — ?
nonacute — — ?
orthogonal — — ?
orthogonal unit — Connected

Tree — — — ?
orthogonal — — ?
orthogonal — partially rigid Disconnected

Graph orthogonal — — Disconnected
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Figure 6.2: Two configurations of a unit-length chain with angles in the range
(60◦, 150◦).

6.2 Unit length chains

In this section we prove that unit length chains with all dihedral angles in the range

(60◦, 150◦) are flat-state connected. Two configurations of such a chain are shown in

Figure 6.2.

We use a canonical configuration in a plane perpendicular to the original, as an

intermediate between the two configurations. The definition of the canonical form

is the following: the first edge v1v2 of the given chain must point up1 . From there,

each successive edge vivi+1 is placed so that vi+1 reaches a position with maximum

height (without interfering with edges already fixed in place). This definition creates

a unique chain in a vertical plane except for the case that an edge is vertical. In this

case we can arbitrarily choose a direction for its successor, according to any rule that

we like (for example, always choose a left turn).

Figure 6.3 shows how we would build the canonical configuration of the linkage in

Figure 6.2. Alternate positions of each edge are shown dashed.

1We say that an edge vivi+1 points down if vi+1 is strictly lower than vi. Otherwise the edge
points up. Pointing left and right are defined similarly, with vertical edges symbolically defined to
be pointing right.
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Figure 6.3: The canonical configuration of a chain. The alternative position for each
edge is shown dashed.

6.2.1 Proof that a canonical chain is simple

Lemma 6.1. In a canonical chain, no edge can point down at a slope greater than

30◦ from horizontal, and two successive edges cannot both point down.

Proof. Suppose that we have a chain that has been placed into canonical form up to

a vertex vi+1 with both properties true. Then edge vivi+1 must be within region R1

as shown in Figure 6.4 (up to reflective symmetry about a vertical line). In the same

figure, R2 is the region that edge vi+1vi+2 might be found if vivi+1 happened to be

vertical. One can easily see that regardless of the position of vivi+1, vivi+1vi+2 must

form a left turn (due to the greedy rule) and vi+1vi+2 can never point down at a slope

greater than 30◦. Since by definition the first edge points up, our first claim is true

for all edges above it. By rotating R2 clockwise to match any possible position of

vivi+1 that points down, we also see that vi+1vi+2 cannot point down.
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Figure 6.4: An edge following vertex v must be in region R1. If the edge is vertical,
its successor must be in region R2.

Let the notation va > vb denote that va is higher than vb in the vertical plane.

Lemma 6.2. Suppose that vivi+1 points up. Then vi+2 is at least half a unit higher

than vi.

Proof. Suppose without loss of generality that vivi+1 points to the right. Then

vivi+1vi+2 form a left turn. Now we have two cases: The first case is if vi+1vi+2

also points up. Since the turn is more than 30◦, the height difference between vi+2

and vi+1 is greater than 1
2

(= sin30◦), so the claim is true since vi+1 > vi. The second

case is if vi+1vi+2 points down. Then it is in region R3 as shown in Figure 6.5. vivi+1

must be in region R4. The smallest height increase occurs when the angle between

the two edges is minimized. If vivi+1 is vertical, the increase is 1
2
. We can hold vi

fixed and rotate the two edges clockwise to observe that the height difference can only

increase as vivi+1 becomes less vertical.

Lemma 6.3. Once a particular height h is reached by the canonical chain, the re-

maining chain cannot reach more than half a unit below h.



Chapter 6. Dihedral Motions 86

30o

R

R 4

3

v

Figure 6.5: Regions of space relative to a vertex v.

Proof. By Lemma 6.1, no two successive edges can point down. Thus by Lemma 6.2,

every time an edge points down, it can be combined with its predecessor for a net

height increase. This proves the claim.

The argument given in the first case of Lemma 6.2 taken together with Lemma 6.3

imply the following:

Corollary 6.4. If e1 and e2 are consecutive edges that point up, no successor of e2

can intersect e1.

Lemma 6.5. A canonical configuration has the property that every third vertex has

monotonically increasing height. In addition, if edge ei points up, then vi+3 is at least

1
2

higher than vi.

Proof. Consider any three consecutive edges, e1, e2, e3. We will show that v4 must

always be higher than v0. If none of the three edges point down, then the claim holds

trivially.

Suppose that e2 points up. By Lemma 6.1, a possible height decrease due to e1 is

less than 1
2
. By Lemma 6.2, e2 and e3 combine to a height increase of at least 1

2
.

If e2 points down, Lemma 6.1 tells us that the other two edges point up. By

Lemma 6.2, e1 and e2 increase height by at least 1
2
, and this increase cannot be

negated by e3.
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If the first edge points up, then only one edge can point down so the latter can be

combined with its predecessor for a net height increase of at least 1
2
.

Lemma 6.6. Every six consecutive vertices result in a height increase of at least 1
2
.

Proof. Let the six edges be e1, . . . , e6. If e1 or e4 point up then by Lemma 6.5 there

is a triplet of consecutive edges (e1e2e3 or e4e5e6) that gains 1
2

in height. The other

triplet does not lose height, so the claim is true. If both e1 and e4 point down, then

e2, e3 and e5 point up, by Lemma 6.1. e6 may point up or down. Thus by Lemma 6.2,

pairs (e3e4) and (e5e6) each contribute a height increase of at least 1
2
. e2 contributes

positively, and e1 can lose at most 1
2
.

Lemma 6.7. Edge ei+6 and its successors cannot intersect ei or its preceding edges.

Proof. The proof follows directly from Lemmata 6.3 and 6.6.

The remaining part of this section focuses on proving that no six consecutive

edges in canonical form can self-intersect. This allows us to conclude that a chain in

canonical form must be simple.

From the angular restrictions of the problem definition, we have the following fact:

Fact 6.8. No three consecutive edges can intersect.

Lemma 6.9. Four consecutive edges in canonical form cannot intersect.

Proof. Let the edges be e1, . . . , e4. By the fact above, intersection can occur only if

e1 intersects e4. This is impossible if e1 and e2 both point up, by corollary 6.4.

Suppose instead that e1 points up and e2 points down. Without loss of generality

we may assume that e1 also points to the right, which means that e2 points to the

left and e2e3 form a right turn. Consider the line through e2. e1 is below this line,

while e3 and e4 can only be above. Thus no intersection can occur.

The last case to consider is that in which e1 points down and e2 points up. Without

loss of generality assume that e1 also points to the right. It is clear that if e2 and
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e3 form a right turn, there is no possibility of intersection. So if an intersection is

to occur, e2 must point to the right. By Lemma 6.5 v4 > v1. If e3 points down, by

Lemma 6.1 e4 must point up, which means no intersection can occur, since v5 > v4 >

v1 > v2. Therefore e3 is forced to point up and e4 is forced to point down, if there is

to be an intersection.

Now, v3 cannot be more than 1
2

lower than v1. By Lemma 6.2, v5 must be at least

1
2

above v3 which implies v4 > v5 > v1 > v2, i.e. no intersection occurs.

Lemma 6.10. Five consecutive edges in canonical form cannot intersect.

Proof. Let the edges be e1, . . . , e5. By Lemma 6.9, we only need to worry about e1

and e5 intersecting. By corollary 6.4, there are two cases to consider:

Case 1: e1 points up and e2 points down. This implies that e3 points up. Now,

if e4 points down (meaning e5 points up), we cannot have an intersection because

v6 > v5 > v2 > v1. Instead, if e4 points up, we either have v6 > v5 > v2 > v1, or (if

e5 points down), by Lemma 6.2 v6 has height at least 1
2

more than v4, and v4 cannot

be more than 1
2

below v2. Thus v5 > v6 > v2 > v1.

Case 2: e1 points down and e2 points up (v1 > v2).

If e3 points down (and thus e4 points up), we have v3 > v4, v5 > v4. By Lemma 6.5,

v4 > v1, v5 > v2, v6 > v3. If e5 points up we have v6 > v5 > v4 > v1 > v2. Otherwise

if e5 points down we have v5 > v6 > v3 > v4 > v1 > v2. In either case, no intersection

occurs.

On the other hand if e3 points up, one sub-case is that e4 points up, which means

v4 > v3, and v5 > v3 by Lemma 6.2. Since v3 > v0 > v1, no intersection occurs. The

second sub-case is that e4 points down (and thus e5 points up). By Lemma 6.2, v4 is

higher than v2 by at least 1
2
, and v2 cannot be more than 1

2
below v0. This implies

v5 > v4 > v0 > v1.

Lemma 6.11. Six consecutive edges in canonical form cannot intersect.
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Proof. Case 1: e1 points up. By corollary 6.4 e2 must point down if there is to be an

intersection. Thus e3 points up. If e6 points down (implying e5 points up) we have

v6 > v7 > v5 > v2 > v1 so we are done. If instead e6 points up, we must look at e5:

if it points up, we have v7 > v6 > v5 > v2 > v1, implying no intersection. Thus the

only dangerous configuration remaining has e5 pointing down (and e4 pointing up).

By Lemma 6.2, v6 is at least 1
2

higher than v4, which is no more than 1
2

lower than

v2. So v7 > v6 > v2 > v1.

Case 2: e1 points down (so e2 points up). By Lemma 6.5, v6 > v3 > v0. Since

v0 > v1, we must only prove that v5 > v0. Clearly we only worry if e6 points up.

Let us examine the pair e4e5. e4 cannot point up, since then by Lemma 6.2 v5 > v3,

which proves our claim. Thus e4 points down, which means e3 and e5 point up. Since

v4 is at least 1
2

higher than v2, and v2 is no more than 1
2

lower than v0, we have

v5 > v4 > v0.

Lemmata 6.7 and 6.11 imply the following theorem:

Theorem 6.12. A chain that is in canonical form must be simple.

6.2.2 Lifting a chain to canonical form

Let the given chain be in the horizontal plane. We wish to use dihedral motions to

reconfigure it into its canonical form in the vertical plane. We begin by lifting the first

edge so that it projects vertically onto the second edge, which is still in the horizontal

plane. Thus the second edge is both a part of the original configuration and of the

canonical configuration. Now suppose that we have part of the linkage still in the

original configuration, and part of it has been lifted into a vertical plane and is in

canonical form. This is illustrated in Figure 6.6.

We want to move the canonical portion of the chain into a position above the next

edge of the horizontal portion, as demonstrated in Figure 6.7. On the left of the
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Figure 6.6: A chain that is partially in canonical form.
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Figure 6.7: Lifting the next edge into canonical form.

figure is a partially lifted chain. The edge common to both planes is labelled c. This

edge will be lifted so that the canonical chain will project down to the line through

the next horizontal edge n. The result will be a configuration such as the one on the

right hand side of the figure.

In Figure 6.8 we show two simultaneous dihedral motions that are performed dur-

ing this operation. Edges that are already in canonical configuration remain coplanar

(in a vertical plane) throughout these motions. To do this, we rotate c about n as

shown on the left and at the same time we rotate the canonical plane accordingly, as
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Figure 6.8: The primary dihedral motions necessary for lifting an edge.

shown on the right, so that it always projects vertically through c. We call these two

dihedral motions primary.

While doing this, we wish to maintain the properties of the canonical chain. We

only need to intervene if an edge u points directly up (becomes vertical) during the

primary motion. At this instant the chain Cu above u may be placed arbitrarily in

either of two possible positions in the canonical plane. If the overall motion is to

continue, one can see that u and the edge above it will no longer satisfy the greedy

property. Thus we rotate Cu about u and proceed with the primary motion, until

another edge becomes vertical or c reaches its target position above n.

It is best to visualize this idea from a viewpoint that moves so that it remains per-

pendicular to the canonical plane. From this viewpoint, the canonical chain appears

to be rotating continuously in its plane. In Figure 6.9 we show a canonical chain

rotating counterclockwise in its plane. Dashed edges show the alternative position of

each edge. We see that as the chain rotates, edges maintain their greedy positions

until an edge u becomes vertical. If the chain continues to rotate, the property will

no longer hold for the edge above u. Performing a dihedral rotation of Cu about u

resolves this problem for u.
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Figure 6.9: Maintaining the canonical property when lifting an edge.

We conclude with the following theorem:

Theorem 6.13. Any two planar chains with edges of unit length and angles in the

range (60◦, 150◦) are flat-state connected.

The technique described can also be used for linkages with non-acute angles and

arbitrary edge lengths. The canonical configuration is defined in the same way and

is clearly monotone. The primary motions of the algorithm are identical. Again, the

only time that these motions must be interrupted is when an edge points vertically

upward.

Theorem 6.13 should also apply to unit length chains with angles in the range

(60◦ + k, 150◦ + k), where k is an angle between zero and 30◦. In other words the

chains considered in this chapter and chains with non-acute angles are at the two

extremes of the range of k.



Chapter 7

Band Unfolding

7.1 Preliminary information

After considering dihedral motions for chains, we turn to a similar method of re-

configuration for polyhedral surfaces. As described immediately below, we are not

concerned with reconfiguring between two arbitrary objects here. Instead we wish to

know whether all objects can be transformed to a specific state.

As mentioned in Chapter 2, it has long been an unsolved problem to determine

whether every polyhedron may be cut along edges and unfolded flat to a single, non-

overlapping polygon. This chapter deals with an interesting special case: That of

unfolding a polyhedral band without overlap by cutting an appropriate single edge.

Recall that a band is the surface of a convex polyhedron, enclosed between two parallel

planes and not containing vertices of the polyhedron. A band and its associated

polyhedron are illustrated in Figure 7.1.

This band forms the side faces of what is known as a prismatoid (the convex hull

of two parallel convex polygons in R
3) but the band unfolding question ignores the

top and bottom faces of the prismatoid. An example was found (by E. Demaine and

A. Lubiw) that shows how flattened bands can end up overlapping if the edge to be

93
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Y
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Figure 7.1: A polyhedron cut by two parallel planes, and the projection of the result-
ing band onto the xy plane.

cut is chosen incorrectly (see Figure 7.2).

Figure 7.2: A band that self-intersects when cut along the wrong edge and unfolded.
Left: projection of band. Right: self-intersecting unfolding.

There is one unfolding result that is particularly relevant to this problem, which

may be interpreted as unfolding infinitely thin bands. This result states that a “slice

curve”, the intersection of a plane with a convex polyhedron, develops (unfolds) in the

plane without overlap (see [O’R03, O’R01]). To develop a slice curve, a cut point must

be chosen, and all polyhedral faces that the curve passes through must be flattened

(best visualized as a rolling motion of the polyhedron). The trace of the slice curve

on the plane will not self-intersect, though its shape depends on the cut point. This

result also applies to any “convex” curve on the surface of a polyhedron (in the sense
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that it makes only left -or only right- turns once it has been developed) [OS89]. In

fact we will initially consider slice curves with this property. These proofs depend on

the generalization of Cauchy’s arm lemma mentioned in Chapter 2.

Thus, both the top and the bottom boundary of any band (and in fact any slice

curve in between), will not self-intersect after a band has been flattened. Overlap can

occur only from interaction with the cut edge, as in Figure 7.2.

Here we will prove that all bands can be unfolded by explicitly identifying an edge

to be cut. We will begin with a special case of bands, defined as follows: A band

is nested if projecting the top polygonal rim A orthogonally onto the plane of the

bottom polygonal rim B results in a polygon nested inside B. For example, the band

in Figure 7.1 is nested. Intuitively, we might expect to obtain a nested band if both

parallel planes cut the polyhedron near its “top”. We prove that all nested bands

can be unfolded. Our proof provides more than non-overlap in the final planar state:

it ensures non-intersection throughout a continuous unfolding motion. These results

are then extended to arbitrary bands.

7.2 Properties of bands

We first define bands more formally and analyze their combinatorial and geometric

structure, without regard to unfolding.

Consider a convex polyhedron P , and let z0, z1, . . . , zm denote the sorted z coordi-

nates of the vertices of P . Pick two z coordinates zA and zB that fall strictly between

two consecutive vertices zi and zi+1, and suppose zA is above zB: zi < zB < zA < zi+1.

The band determined by P , zA, and zB is the intersection of P ’s surface with the hor-

izontal slab of points whose z coordinates satisfy zB ≤ z ≤ zA.

The band is a polyhedral surface with two components of boundary, called A and

B. Specifically, A is the top polygonal rim of the band, i.e., the intersection of P ’s

surface with the plane z = zA, and B is the bottom polygonal rim, corresponding
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to the plane z = zB. Both rims A and B are convex polygons in their respective

planes, being slice curves of a convex polyhedral surface P . All vertices of the band

are vertices of either A or B.

Every vertex of the band is incident to exactly three edges. two along the rim A or

B containing the vertex, and the third connecting to the other rim. This third edge,

called a hinge, is part of an edge of the original polyhedron P connecting a vertex of

P with z coordinate less than zB to a vertex of P with z coordinate greater than zA.

The hinge from each vertex of the band defines a perfect matching between vertices

of the top rim A and vertices of the bottom rim B. This matching is consistent with

the cyclic orders of A and B in the sense that, if vertex ai of A is paired with vertex

bi of B, then the vertex ai+1 clockwise around A from ai is paired with the vertex

bi+1 clockwise around B from bi. This correspondence defines a consistent clockwise

labeling of the vertices a0, a1, . . . , an−1 of A and the vertices b0, b1, . . . , bn−1 of B,

unique up to a common cyclic shift 1 .

Each face of the band is a quadrilateral spanned by two adjacent vertices ai and

ai+1 on the top rim A and their corresponding vertices bi and bi+1 on the bottom

rim B. This facial structure follows from the edge structure of the band. Each face

corresponds to a portion of a face of the original polyhedron P (so in particular it is

planar). Because edges aiai+1 and bibi+1 lie in a common plane as well as in parallel

horizontal planes, the edges themselves must be parallel. Thus every face of the band

is in fact a trapezoid, with parallel top and bottom edges.

7.3 Nested bands

Next we analyze the geometric structure of nested bands in particular, still without

regard to unfolding.

A band is nested if the orthogonal projection of A into the xy plane is strictly

1Throughout this chapter, indices are taken modulo n.
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contained inside the orthogonal projection of B into the xy plane. (Of course, a band

is just as nested if instead B’s projection is contained inside A’s projection, but in

that case we just reflect the band through the xy plane.)

Nested bands have a particularly simple structure when projected into the xy

plane. As with all bands, each face projects to a trapezoid. The unique property of

a nested band is that none of its edges cross in the projection. This property follows

because the projected edges are a subset of a triangulation of the projections of A and

B, which themselves do not intersect by the nested property. (In non-nested bands,

edges of A intersect edges of B in the projection.) Thus the projected trapezoidal

faces of the band form a planar decomposition of the region of the xy plane interior

to the projection of B and exterior to the projection of A.

In the xy projection, the normal cone of a vertex ai of the rim A (or more generally

any convex polygon) is the region between the two exterior rays that start at ai and

are perpendicular to the incident edges ai−1ai and aiai+1 respectively. See Figure 7.3.

A

ai−1

ai

ai+1

Figure 7.3: The normal cone of a vertex ai.

Lemma 7.1. In the projection of a nested band, not all hinges aibi can be to the left

(or all to the right) of their respective normal cones.

Proof. The following proof refers exclusively to the xy projection. Suppose without

loss of generality that all hinges are clockwise of their respective normal cones on the
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inner polygon A. For each i, define Ti to be the trapezoid with vertices ai−1, ai, bi−1, bi,

and let hi denote its width, i.e., the distance between the opposite parallel edges ai−1ai

and bi−1bi. See Figure 7.4. Without loss of generality, let aiai+1 be horizontal in the

plane. Hinge aibi is right of the normal cone at ai. By definition of the problem,

ai+1aiai−1 and bi+1bibi−1 are each left turns, so by simple trigonometry the width hi

of Ti is less than the width hi+1 of the clockwise next trapezoid Ti+1. Applying this

argument to every Ti, we obtain a cycle of strict inequalities h0 < h1 < · · · < hn−1 <

h0, which is a contradiction.

bi

hi

hi+1

ai−1

ai

bi+1

ai+1bi−1

Figure 7.4: If the hinge aibi is right of the normal cone at ai, then the top shaded
angle is less than the bottom shaded angle, so hi < hi+1.

7.4 Unfolding nested bands

After cutting a single hinge, a flattening motion is a continuous motion during which

each face moves rigidly but remains connected to each adjacent face via their common

hinge, and the final configuration is planar. If no intersection occurs during the

motion, then this motion is a continuous unfolding. If the resulting configuration

is non-self-intersecting, but intersection occurs during the motion, then we call the

motion an instantaneous unfolding and the resulting configuration an unfolded state.

Thus in Figure 7.2 we would say that the band has been flattened, but because it

self-intersects it has not unfolded.
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We now describe the flattening motion that will lead to our unfolding. The motion

is based on squeezing together the two parallel planes z = zA and z = zB that contain

the rims A and B, keeping the planes parallel and keeping each rim chain on its

respective plane. At time t, the squeezing motion reduces the vertical separation

between the two parallel planes down to (1−t)(zA−zB), that is, it linearly interpolates

the separation from the original zA − zB down to 0.

The squeezing uniquely determines the hinge dihedral angles necessary to keep the

vertices of the band on their respective moving planes (assuming exactly one edge of

the band has been cut). See Figure 7.5 for an example of the projected motion. For

nested bands, the motion increases the interior angle at every vertex of each chain in

the projection. This property can be seen by examining any two adjacent faces that

are being “squeezed”. Both faces rotate continuously to become more horizontal. If

we force one of the faces to keep its vertices in the parallel planes, but allow the

second face to only follow this motion rigidly (i.e., the dihedral angle at the hinge

remains fixed), then the edges of the second face no longer remain on the horizontal

planes. To compensate, the second face must perform a (dihedral) rotation about

the hinge. In fact the interior angle at the hinge must increase, causing the interior

angles of the rims to increase.

Furthermore, because the interior angle at a vertex of a nested band can open

to an angle no greater than π, the opening chains cannot self-intersect after such a

motion (a fact already known from the slice-curve result mentioned earlier). For the

same reason, an opening chain will always have only right turns.

As the parallel planes squeeze together, each band face remains a trapezoid in the

projection. Edges aiai+1 and bibi+1 remain parallel and retain their original lengths

throughout. Hinge projections lengthen as the band is squeezed, which causes the

trapezoid angles to change. Because bi and bi+1 move orthogonally away from aiai+1,

acute trapezoid angles increase toward π/2 and obtuse angles decrease toward π/2.
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Figure 7.5: A view from above of a nested band during a squeezing motion.

The goal of this section is to show that the band does not self-intersect if we cut

a specific hinge. We mention that self-intersection of the band in 3D implies self-

intersection in the projection, so it suffices to prove that there is no self-intersection

in the projection to establish that there is no self-intersection in 3D. It turns out that

the only cause of self-intersection is the cut edge, to which we now turn our attention.

Suppose that we cut hinge aibi and hold ai−1ai fixed along the x-axis in the positive

direction. The motion separates two copies of ai; we call the stationary one ai, and

call the moving one a∗. Correspondingly, for the outer polygon, the direction of

bi−1bi remains fixed (it moves away from ai−1ai because the trapezoid enlarges in the

projection, but remains parallel) and b∗ is a “moving” endpoint. Thus the cut hinge

is split into edges aibi and a∗b∗. See Figure 7.6.

We now introduce some basic terminology and properties of an opening chain in

the projection. Given a chain with all right turns, the interior angle αi at a vertex
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i−1b

i+1

b

b

b

*

i

i−1 i−1a

a

a ai a i a*

i+1

i+1a

Figure 7.6: Left: projection of the inner convex chain and part of the outer chain.
Hinge aibi and the cone of vertex ai are shown. Right: the result of cutting at aibi

and flattening.

ai is the angle ai−1aiai+1 located on the right side of ai. Let τi = π − αi be the turn

angle at ai. Let θj be the counterclockwise angle of the vector aj − aj−1 from the

positive x-axis. If ai − ai−1 is fixed along the positive x-axis, then for a chain with all

right turns we have: θi = 0, θi−1 = τi−1, and in general,

θi−k =

i−1∑

j=i−k

τj. (7.1)

We define three classes of shapes that a chain with only right turns may have:

convex, weakly convex, and spiral. Refer to Figure 7.7. A chain is convex if joining

the endpoints with a closing segment yields a convex polygon. A chain is weakly

convex if joining the endpoints with a closing segment yields a simple polygon with

no exterior angles smaller than π/2. If a chain is not convex or weakly convex, it is

a spiral.

Our results below apply to the projection of a band after it has been partially

squeezed, and also to a band that has been flattened.
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Figure 7.7: Types of chains, from left to right: convex, weakly convex, spiral. End-
points are joined by dashed line segments.

Lemma 7.2. Flattening a band cannot produce an inner chain that is a spiral.

Proof. Recall that the inner chain is labeled A. Consider the line that passes through

ai and is orthogonal to aiai+1 prior to any motion. Let R be the halfplane defined by

this line, and which does not contain the normal cone at ai. Let Q be the halfplane

to the right of ai−1ai. See Figure 7.8(a).

We establish two claims about the effect of any opening motion:

1. Every edge akak+1 of A turns clockwise in the sense that the vector ak+1 − ak

turns clockwise. In particular, a∗ai+1 turns clockwise around a∗.

2. The vertices of A always lie in R ∪ Q.

By the second claim, a∗ cannot reach a position where it will be on the hull of a spiral,

as shown on the right of Figure 7.7. By symmetry, this is enough to prove that no

spiral can be created.

The motion of a∗ is determined by the opening of the internal angles of all vertices

on the counterclockwise path from ai−1 to ai+1. Specifically, the opening of an angle

αj at a vertex aj causes a∗ to rotate instantaneously about this vertex aj. Because

all internal angles αj increase, all respective turn angles τj decrease. Equation 7.1

shows that, if all turn angles τj decrease, then θi+1 decreases, which corresponds to a



Chapter 7. Band Unfolding 103

αi−3

θi−3

ai

a∗

ai−3

ai−2 ai+1

αi+1

(b)(a)

ai−1 ai
a∗

R

Q

αi−2

αi−1

τi−1

Figure 7.8: (a) Cut at ai = a∗ ensures that a∗ moves into R ∪ Q; (b) After partial
opening motion. The shaded cone at a∗ shows the range of instantaneous vector
displacements caused by rotations at all vertices.

clockwise turn of a∗ai+1. This establishes the first claim, for the same holds true for

all θk and thus all edges akak+1.

Turning to the second claim, we consider that each rotation centered at a vertex ak

creates a vector displacement of a∗ perpendicular to aka
∗. Every such vector “aims

inside” R ∪ Q, in the sense that any point along the extension of the vector is in

R ∪ Q. More importantly, no vector can be extended to cross through the cone at

ai. Once a∗ moves, the clockwise turn of a∗ai+1 guarantees that again no vector aims

through the cone. More specifically, a vector can either aim inside R ∪ Q as shown

in Figure 7.8(b), or, the vector’s extension can intersect aiai−1 but only if ak is above

and to the right of a∗. In any case, a∗ can never enter the cone at ai. Thus, a∗ remains

inside R ∪Q throughout any opening motion. The same holds true for all vertices of

A.

By Lemma 7.2, we can now assume that the inner chain of a flattened nested band
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is either convex or weakly convex.

Lemma 7.3. If a flattened band overlaps, then some edge crosses over one of the two

cut hinge copies.

Proof. The result mentioned earlier on slice curves shows that neither the A nor the

B chain can self-intersect. Chain A cannot intersect B if they are in convex position:

Let ` be the line that passes through segment aia
∗. This is a supporting line of chain

A. Now we can sweep a line parallel to ` within the halfplane containing A. At any

position of the sweep line we obtain a segment that is in the interior of the band, then

a segment between points on A, and finally another band segment. Thus no part of

B can intersect a part of A.

Now suppose that A is weakly convex, and without loss of generality let a∗ be on

the hull. Thus a∗ is to the left of the line `2 that extends through ai−1ai. A cannot

cross B in the halfplane to the right of `2, by the same arguments given above.

Consider the halfplane to the left of `2. We know that bi−1bi is parallel to `2. The

remaining edges of B are to the left of aibi, and within the strip formed by `2 and

the supporting line of bi−1bi. Thus there is no way for a part of A to intersect these

edges without also intersecting aibi. Therefore band overlap requires one or the other

chain to cross through aibi or through a∗b∗ (cf. Figure 7.2).

Lemma 7.4. Let T1 = ai−1aibibi−1 and T2 = aiai+1bi+1bi be two adjacent trapezoids

of a band. If a cut is made at their common hinge aibi, then hinge copy a∗b∗ of T2

must rotate clockwise with respect to hinge copy aibi of T1.

Proof. Hinge aibi rotates only because T1 is flattened. Hinge a∗b∗ rotates because T2

is flattened, but also because all interior angles of chain A open. We first examine the

two rotations caused by the flattening of T1 and T2. If we were to flatten these two

trapezoids without actually cutting their common hinge, then the two hinge copies,

a∗b∗ and aibi (still glued together), would both undergo an identical rotation. This
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would also cause a∗ai+1 to rotate counterclockwise. Instead, by imposing that a∗ai+1

maintains its orientation, and that a∗ remains incident to ai, we see that a∗b∗ must

rotate clockwise with respect to aibi. Now we may apply the third source of rotation

to a∗b∗, which must also be clockwise because a∗ai+1 rotates clockwise, by the first

claim of Lemma 7.2.

Lemma 7.5. If a flattening motion produces an inner chain A that is convex, then

the flattened band does not overlap, i.e., it has an unfolded state.

Proof. Suppose that we cut at aibi. If the inner chain is convex, then all of chain

A has moved to the right of ai−1ai which means that chain A cannot intersect aibi.

By Lemma 7.4, a∗b∗ has undergone an additional clockwise rotation with respect to

aibi. This relative difference in orientation and the convexity of the opened chain

imply that the two hinges cannot intersect, and that b∗ (and in fact, all sections of

the B chain) cannot cross over aibi. By symmetric arguments, nothing crosses over

a∗b∗.

Lemma 7.6. If we cut a hinge aibi that is inside the normal cone of ai, then the

nested band can be continuously unfolded.

Proof. Apply the squeezing motion to flatten the nested band. If the opened inner

chain is convex at any moment, then there is no intersection by Lemma 7.5. Now

suppose that at some instant the chain is weakly convex, and without loss of generality

a∗ is on the hull. Let ` be a fixed line through ai and the original position of bi. Let

the direction of ` be from ai to bi. Because aibi can only rotate so that it becomes

more orthogonal to ai−1ai, it will always remain within the normal cone, and more

specifically, to the left of `. From claim (2) of Lemma 7.2, a∗ never enters the interior

of the normal cone, but rather moves immediately into R ∪ Q, where it remains

throughout the motion. Hinge copy a∗b∗ must rotate clockwise, because it becomes

more orthogonal to a∗ai+1 and because all interior angles open. Thus given the relative

positions of ai and a∗, the two hinges cannot intersect.
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From the arguments above, hinge copy a∗b∗ cannot cross over ` in the region above

ai−1ai. Since aibi was in the normal cone of ai, angle ai+1a
∗b∗ is obtuse. Thus a∗b∗

cannot rotate enough clockwise to intersect ` in the region below ai−1ai.

The intersection of ` with the band produces one line segment, a`b` (other than

the point ai). The line ` divides the band into two disjoint bands whose interior chain

is convex, and so by the arguments of Lemma 7.3, they do not self-intersect.

By symmetric arguments there can be no intersection if the partially opened chain

is weakly convex with ai on the hull.

Note that Lemma 7.6 implies that any band with an acute interior angle can be

unfolded, for there must be a hinge inside the normal cone at an acute angle: see

Figure 7.9. Similarly, a geodesic cut (not necessarily along a hinge) perpendicular to

supporting lines to both the inner and outer chains leads to a continuous unfolding.

α
i

a
i-1

b
i

b
i-1

a
i+1

a
i

Figure 7.9: αi < π/2. If the hinge aibi is outside the normal cone, it is impossible to
complete a trapezoid whose base is parallel to aiai+1.
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We now characterize the types of chains that may be obtained after cutting at aibi

and flattening (or partially flattening by applying a squeezing motion). We say that

a chain is “safe” if it could not be the inner chain of a self-intersecting band. Thus,

by Lemma 7.5, all convex chains are safe. Weakly convex chains are not necessarily

safe. Let us subdivide this class of chains into L-weakly convex and R-weakly convex,

depending on which endpoint is on the hull (clearly exactly one of the two endpoints

must be on the hull). If ai is on the hull then the chain is L-weakly convex. Otherwise,

if a∗ is on the hull, the chain is R-weakly convex. A chain may open to a weakly convex

position and be safe, as seen in Lemma 7.6. In fact, for an R-weakly convex chain,

an intersection cannot occur if aibi was initially to the left of the normal cone at ai.

In this case, a∗ must be to the right of aibi. Since a∗b∗ rotates more clockwise than

aibi, no intersection can occur (we may form a line through the final position of aibi

and repeat the arguments of Lemma 7.6. So we say that a chain is “unsafe” if it is

R-weakly convex and in the initial projection aibi was to the right of the normal cone

at ai (see Figure 7.10). By symmetry a chain is unsafe if it is L-weakly convex and

in the initial projection aibi was to the left of the normal cone. We note that even

under these conditions there may be no intersection at any time during a flattening

motion. In other words, the term “unsafe” serves just as a warning.

a ai−1 i
a

i+1

Figure 7.10: After cutting at ai, the inner chain will become R-weakly convex if a∗

ends up above the dotted line. In this case the cut is labeled “unsafe” if hinge aibi

(shown dashed) is to the right of its normal cone.
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Clearly if a band has no unfolded state then all vertices are associated with unsafe

openings. By Lemma 7.1, somewhere there is a vertex ak whose hinge is counterclock-

wise of the normal cone at ak, while the hinge at ak+1 is clockwise of its respective

cone. For the cuts at both vertices to produce unsafe inner chains, cutting at ak must

produce an L-weakly convex chain, while cutting at ak+1 must produce an R-weakly

convex chain (see Figure 7.11).

ak ak+1

Figure 7.11: Two successive vertices, ak and ak+1, whose cuts produce different weakly
convex chains (indicated by the curves below the vertices).

Lemma 7.7. At least one of the cuts at ak or ak+1 (defined above) must result in an

opened chain that is safe.

Proof. Let us begin by cutting at ak+1 and flattening. Hold akak+1 fixed and open

all angles. Assume that the opened chain is unsafe. This means that newly created

a∗ must end up in the upper-right quadrant of ak+1. Now we make a new cut at ak,

and translate the entire opened chain (except the fixed edge) so that a∗ re-attaches to

ak+1. We let the translated copy of ak retain its label, and call the fixed edge a∗ak+1.

Notice that ak must be in the lower left quadrant of a∗ (see Figure 7.12).

Now we have a new opened chain, except that we have not taken care of the

openings at the angles of ak and ak+1. Because ak+1ak+2 (previously a∗ak+2) had

rotated clockwise in the first opening, and we have merely translated it back, we must

rotate it counterclockwise to return it to its initial orientation. We must then further
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Figure 7.12: Left: an opened chain. Right: translating part of the chain so that the
cut vertex is switched. This is a new opened chain, except for the angle at ak+1.

rotate it counterclockwise in order to open the interior angle at ak+1. The entire chain

will rotate rigidly as well. Thus ak cannot cross into the upper-left quadrant of a∗.

Now notice that during the first opening, edge ak−1ak rotated clockwise, due to the

opening of the angle at ak. So we might expect that in order to compensate for this

in our final diagram we should rotate ak−1ak counterclockwise (which might cause ak

to go above the horizontal line). After all, if a cut is made at ak, then ak−1ak must

rotate counterclockwise from its initial position, but now it is clockwise. However,

because the opening of the angle at ak−1 was included in the first opening, and this

has not been tampered with, then edge ak−1ak must be in its correct position. The

counterclockwise motion produced by adjusting the angle at ak+1 is enough to make

the direction of ak−1ak more counterclockwise than it was initially. We conclude that

cutting at ak leads to either an R-weakly convex opening or to a convex opening.

Therefore cutting at ak cannot be unsafe.

Because we can always find a vertex to cut so that the inner chain opens to a

position that is safe, we can always find an edge to cut along so that a nested band

has an unfolded state.
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Theorem 7.8. Every nested band has an unfolded state.

Theorem 7.9. For every nested band there exists a continuous unfolding motion.

Proof. Consider the squeezing motion that we have defined. Parameterize any point

p on the band by its original height zp divided by the height z of the original band.

After partially squeezing the band to height zS , the new height of p will be zS
zp

z
. So

all the points with the same original height have the same new height at some time

of the squeezing motion.

Now consider two points p and q, that intersect at some instant during a squeezing

motion. The two points are in some horizontal plane H when they intersect. Because

p and q both started out in another horizontal plane H∗, and had the same height at

all times throughout squeezing, they are part of a curve that satisfies the conditions

of the generalized Cauchy arm lemma. Thus at any moment this curve satisfies

the conditions of a developing slice curve, given in [O’R03]. We conclude that no

intersection can occur until the final flattened configuration of the band, which is a

singularity where the above arguments do not apply. However, by Theorem 7.8 we

know that some cut exists that produces an unfolded state. Therefore by making the

same cut and applying the squeezing motion, we obtain a continuous unfolding of the

band.

7.5 Unfolding general bands

Here we examine bands which generate arbitrary projections. Non-nested bands may

have a more complicated appearance (as do the proofs used here to show that they

have unfolded states), but in a way unfolding becomes even more likely because the

cut hinge copies move further apart than in the nested case.

As mentioned in section 7.2, the projection of a non-nested band can be decom-

posed into trapezoids. The difference from the nested case, is that now some trape-
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zoids will overlap, as shown in Figure 7.13(c and e). It is clear that one of two

overlapping trapezoids must “flip over” when the band is flattened, as shown in parts

(d) and (f) of the same figure. It is possible that two trapezoids that appear to be

locally nested will both flip over, as shown in parts (a) and (b).

ia
ia ia

iaia
ia

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.13: (a,c,e) : Local views of a general band. (b,d,f) : Possible results of
flattening in each respective case.

As can be seen in the figure, a major difference from the nested case is that an

interior angle may open to more than π. The following lemma proves that the smaller

angle at any vertex will never be smaller than the original interior angle.

Lemma 7.10. Let αi be the internal angle at ai prior to flattening. Then the smaller

of the two angles ai−1aiai+1 measured after flattening must be greater than αi. Fur-

thermore, edge ai−1ai must rotate clockwise with respect to edge aiai+1.

Proof. If the cone ai−1aiai+1 contains bi−1bibi+1 (or vice versa), then locally the band

resembles the nested case as shown in Figure 7.13a. If the top side of these two faces

remains on top in the flattened state, then the interior angle at ai (and bi) will open

to no more than π, just as in the nested case. On the other hand, if the two faces flip

over, then it is sufficient to reflect our viewpoint through the xy-plane to see that the
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first claim is true. In either case, by holding edge aiai+1 fixed, it is easy to see that

the second claim is also true.

The two overlapping cases of Figure 7.13 are symmetric, so only case (c) is dis-

cussed here. Without loss of generality, suppose that the trapezoid F1 containing

aiai+1 will not flip over (if it does, we can reflect our viewpoint through the xy-

plane). Perform a dihedral rotation about the hinge aibi, so that vertices ai−1 and

bi−1 reach their original z-coordinates. In other words, in the projection we just re-

flect one face about the hinge. The resulting configuration resembles that shown on

the right side of Figure 7.14. Notice that the smaller angle at ai is shown on both

sides: on the left, this is the interior angle; on the right, in this particular case, we

see that it has switched sides.

F1 F1

F2

a i
a i

a i−1

F2

a i−1

Figure 7.14: Left: two overlapping faces. Right: Performing a rotation about the
hinge.

Since we are dealing with overlapping faces, the hinge must make a left turn

following edge ai+1ai. When we flatten F1, the left turn is preserved. This implies

that the smaller angle at ai cannot become smaller than the original interior angle,

after performing the dihedral motion (reflection). This motion eliminates the overlap

between the two faces. Thus we may proceed to flatten both, and rely on the preceding

case mentioned above to conclude that this cannot decrease the smaller angle at ai.
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The direction of the hinge relative to ai+1ai guarantees that ai−1ai will rotate clockwise

after the dihedral motion. Flattening can only cause further clockwise rotation if the

smaller angle has not switched sides. If it has switched sides as shown in the figure,

then it is clear that ai+1aiai−1 will still be a right turn after flattening. We conclude

that the interior angle αi cannot open by no more than 2(π − α).

Since the smallest angle at all ai occurs prior to flattening, each convex chain

cannot self-intersect. Proof of this statement is omitted, since the claim is equivalent

to the slice-curve result mentioned at the beginning of this chapter. Therefore, just

as in Section 7.4, we just need to focus on the hinges when studying possible overlap.

Lemma 7.11. All edges of a polygon in the projection will rotate clockwise after

flattening.

Proof. As shown in Lemma 7.10, the angle adjustment at any vertex ai leads to a

clockwise rotation of edge aiai−1 (keeping ai+1ai fixed). The composition of these

rotations leads to a clockwise rotation for any edge.

As in the nested case, we claim that if there is an acute interior angle, we can

safely cut there. The logic remains the same, and it suffices to examine the relation

between the hinge and the normal cone. Thus from now on we assume that there

are no acute interior angles. This claim is not critical for the proofs to follow, but it

makes the description simpler.

It is necessary to discuss a few more differences between nested and non-nested

bands, before proving the main results.

Consider ai−1ai and aiai+1, two adjacent edges of the inner polygon in the nested

case. Suppose that we cut at ai, keeping the first edge fixed, and flatten the band.

This cannot cause aiai+1 to rotate clockwise by more than 2π, since each angle opens

to π at most. As we have just seen, in the general case this last statement is no longer
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necessarily true. Actually, there is no longer a clear definition of “inner” and “outer”

polygon in the projection.

Figure 7.15 informally shows what can happen to flattened bands in the general

case. At the top-left is an unflattened band (the illustration is not meant to show that

it is nested). The hinge that will be cut is shown. Without loss of generality suppose

that the face containing ai−1ai will remain in its position without flipping over after

flattening. We temporarily assign the term ”inner chain” to the one containing ai−1ai.

Notice that ai+1ai may initially point anywhere down and to the right, as indicated

next to the band. At the bottom-left of the figure is a band that has been flattened,

and the inner chain is in a position where overlap is possible (based solely on the

orientation of the moving end, ai+1a
∗). Here, ai+1a

∗ has rotated clockwise from its

original direction (that of ai+1ai). As long as it points to the left, as shown, overlap

is possible. We allow the “inner chain” to retain its label, since apart from the non-

convex shape of the band, the ends appear similar to those in the nested case. In

other words, potential overlap can still be determined based on the inner chain. At

the top-right of the figure, the moving end has rotated clockwise, enough so that it

cannot possibly be dangerous: ai+1a
∗ no longer points to the left, so no overlap can

occur. Each of these situations may arise in the nested case (ignoring the non convex

shapes illustrated).

The bottom-right of Figure 7.15 shows a configuration that cannot occur in the

nested case, but must be considered in the general case. Notice that the arrows have

been switched to the other chain. Here, ai+1a
∗ has rotated so much clockwise that it

now points to the left again. What was considered to be the “inner” chain has now

been switched to become the “outer” chain. This configuration is symmetric to that

at the top-right. In order for overlap to become possible again, it would be necessary

for bi+1b
∗ to rotate even more clockwise, past the vertical position, in a configuration

symmetric to that at the bottom-left of the figure.
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a i

b*

b i+1

b i

a*a i+1

a i+1

a*a i

a i− 1

a i+1

Figure 7.15: Examples of flattened bands in the general case.

We have seen that every flattening results in the moving end ai+1a
∗ rotating clock-

wise, but now it can theoretically perform a total turn of 4π. Let us say that if the

inner chain becomes an outer chain as shown in Figure 7.15, then the band has “in-

verted”. The minimum rotation (of the moving end) required for inversion is 3π
2

(assuming no acute angles exist; otherwise it would be π
2
). A rotation of at least 2π

ensures inversion.

Lemma 7.12. If no cut results in an inverted chain then a non-nested band has an

unfolded state.

Proof. Select a vertex v as shown at the top-left of Figure 7.16. This vertex belongs

to two faces that overlap. As we traverse the band in a clockwise manner, face F2 is

hidden by F1 in the neighbourhood of v. Without loss of generality assume that the
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side of F2 that is visible in the original projection will remain so in the flattened state.

Thus F1 will flip over. Consider the chain that v belongs to. For a possible overlap

after flattening, this chain must open as shown at the top-right of Figure 7.16. This

is similar to the L-weakly convex opening for nested bands. This is the only way that

the hinge might become involved in an intersection.

Now, using the same figure, we see that by following the band counterclockwise,

we will encounter two faces as shown at the bottom-left. By continuity, F3 will flatten

as is, and F4 will flip over. Vertex u is along the same chain as v. If we were to cut

at u, the only way to get an overlap is if the type of opening is opposite from that at

v, as shown on the bottom-right of the figure (this is analogous to R-weakly convex

openings).

Therefore there must exist adjacent vertices, between v and u, that have different

types of openings if both are to be unsafe. We may repeat the arguments of Lemma 7.7

to contradict this, just as in the nested case.

By simply reversing the roles of each chain, the preceding Lemma implies the

following:

Corollary 7.13. If all cuts result in inverted chains then a non-nested band has an

unfolded state.

Lemma 7.14. If some cuts lead to inverted chains and some do not, then an unfolded

state exists.

Proof. Consider two adjacent vertices, one that inverts the chain and one that doesn’t.

As described earlier, if a chain does not invert, the moving end can rotate by at most π

and still be in a position that causes overlap. Let us begin by cutting at the vertex ai

that does not cause inversion. Then the “inner” chain is A. Let ai−1 be the inverting

vertex, adjacent counterclockwise to ai. When we cut at ai, the moving end rotates
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F1

2F

v

F3

4F
u

Figure 7.16: How to select a cut if no inversions occur.

by at most π, and edge ai−2ai−1 may also rotate (only clockwise) by some amount

between zero and π (see Figure 7.17).

Now, as in the proof of Lemma 7.7, we unglue the hinge at ai−1, and re-attach

vertex a∗ to its original location with a rigid motion. Then we can restore the original

direction of edge aiai+1, with a counterclockwise motion (that is less than π). This is

shown in Figure 7.18.

We must also account for the angle opening at ai, which could be at most a

counterclockwise rotation of π since the angle is not acute and cannot decrease in

value. We note that the re-gluing and the new angle adjustment can add up to at

most a counterclockwise rotation of 3π
2

, even though each on its own could be up to

π. Thus, the new end, ai−2ai−1, which could not have been pointing down initially

(because we assume no acute angles exist), can now rotate counterclockwise to point
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a*
a i
a i−

a i−

1

2

Figure 7.17: Cutting at a non-inverting vertex.

a*

a i

a i−1

a i+1
a i−2

Figure 7.18: Left: ungluing hinge ai−1bi−1 and translating a∗ to its original position.
Right: Restoring the original orientation of aiai+1. Notice that vertices are relabeled.

at most straight up, which is nowhere near what is necessary for it to cause overlap

in an inverted configuration. In fact, given the assumption that no acute angles exist,

the chain cannot even reach an inverted configuration. This contradiction implies

that cutting at one of the two vertices produces a safe chain.

Figure 7.19 shows the band after the adjustment of the angle at ai has been made.

On the right is a rotated copy, which brings things into the perspective of Figure 7.15.

In this copy, we view edge ai−2ai−1 as fixed, and see that edge aia
∗ would have to

rotate clockwise by even more than it already has, in order to invert.

We conclude the following:
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a i a i−2

a i
a i−1

a*

a i−1

a*

Figure 7.19: Adjusting the angle of a.

Theorem 7.15. Every band can be cut along one of its edges to produce an unfolded

state.

It is clear that the squeezing motion of the previous section cannot be used to

obtain a continuous unfolding of non-nested bands. Instead, we propose the following

continuous unfolding motion which consists of n − 1 separate moves that “peel” a

band.

After cutting a hinge aibi that is safe, we start by performing a dihedral rota-

tion about hinge ai−1bi−1 so that its two adjacent trapezoids become coplanar. No

intersections can happen during this move because, at any given time, trapezoid

ai−1aibibi−1 is in a supporting plane of the remaining polyhedron. The next move is

a dihedral rotation about hinge ai−2bi−2. In general, before we perform a dihedral

rotation about ai−kbi−k, we can divide the band into two components: The first com-

ponent consists of all trapezoids incident to hinges at vertices ai−1, ai−2, . . . , ai−k+1,

and has already been positioned into the plane of trapezoid ai−kai−k+1bi−k+1bi−k. The

second component consists of all remaining trapezoids which are still in their original

positions.
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Theorem 7.16. The peeling motion (described above) is a continuous unfolding mo-

tion. Thus all bands can be continuously unfolded.

Proof. Clearly no trapezoids within the second component can intersect. No inter-

sections can occur within the first component since they would also be present after

the final move when the band has been flattened. This would contradict the safe

instantaneous unfolding by cutting at aibi. No intersections can occur between trape-

zoids in separate components, since the first component is in a supporting plane of

the original polyhedron. Finally, during each motion no intersections can occur, since

the plane containing all trapezoids of the first component rotates about an edge of

the original polyhedron and remains a supporting plane.

7.6 Bands containing vertices

In a closed band, vertices are allowed on the parallel planes of the slab. The main

difference of closed band projections is that vertices may attach to more than one

hinge. Thus, apart from trapezoids, the decomposition of a band can include triangles

(see Figure 7.20).

Figure 7.20: A closed band in an overlapping flat configuration.
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All arguments concerning the opening of interior angles and the clockwise rotation

of edges still hold. Below we will discuss nested closed bands, more for the sake of

improving intuition than to provide detailed proofs. We claim that the problem does

not change at all if multiple hinges are attached to vertices of the outer polygon in

the projection. However, some care is required if a vertex of the inner polygon has

multiple hinges.

Notice that all interior angles of the inner chain in Figure 7.20 are acute. Why

then, was there overlap after selecting such an angle? The answer is that the correct

vertex was selected, but not the correct hinge attached to that vertex. Had the other

edge been cut at the same vertex, the band would have unfolded. This is explained

below.

It is still true that a nested band with an acute angle at vertex ai can be unfolded

by cutting a hinge at ai. Before, we relied on the fact that the (only) hinge at ai had to

be inside the normal cone. Now this is not necessarily true, if ai has multiple hinges,

as shown in Figure 7.21. This example also demonstrates that convex openings are

not trivially safe. However, in such cases, regardless of the type of opening that the

a i

b iR
b iL

Figure 7.21: A difference between closed and open bands.

inner chain might make after cutting at ai, we can choose a hinge to cut on the

appropriate side of the normal cone.
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Let us focus on the first hinge to each side of the normal cone, aibiL on the left

and aibiR on the right. Consider a line ` through ai, parallel to the edge biLbiR. The

hinges are above the line, and the inner polygon is below the line. Cut the hinge

aibiR and keep the edge counterclockwise of ai fixed in the plane. There is a danger

of overlap only if the moving end crosses above `. But now we can repeat the same

arguments as in Lemma 7.7 to show that cutting hinge aibiL is safe.

The arguments above work for any ` that separates the inner polygon and the two

chosen hinges. However, our choice of ` was not arbitrary. Had we produced a slightly

narrower band from the same polyhedron, there would have existed a new edge on

the inner chain, parallel to biLbiR. The creation of this new edge would provide the

necessary conditions for Lemma 7.7. It makes sense that all previous results remain

valid for closed bands , since we can approach as close as we like towards a closed

band without including vertices on the two planes. In fact, as we have shown above,

a good way to choose the cut vertex on a closed band is to examine what happens in

the limit of its associated “open” band. For example in the case of the band given

in Figure 7.20, we could lower the top plane (which produces the inner chain). Thus

we would obtain two quadrilaterals without multiple hinges per vertex, and it would

be clear which edge to cut. In fact the resulting shape would be quite similar to that

given in Figure 7.2.

The arguments above apply to any vertex of an inner polygon that has multiple

hinges. Therefore any such vertex has a hinge that can be cut safely. Precise details

for the non-nested case are not mentioned here, but by the limit argument mentioned

above, we conclude the following:

Theorem 7.17. All closed bands may be unfolded.
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7.7 Unfolding prismatoids

We have shown that arbitrary bands may be unfolded without overlap. It remains

interesting to determine if this can lead to an unfolding of prismatoids without overlap,

including the top and bottom faces, by cutting one hinge and all but one edge on

each of the parallel planes. It is natural to hope that the top and bottom faces could

be placed flat on opposite sides of the unfolded band, but it is not obvious how to

ensure non-overlap.

It seems intuitive that prismatoids which produce nested bands can be unfolded,

by cutting all hinges and all but one of the edges on the outer polygon. An interesting

question is whether such cuttings extend to arbitrary bands.

7.8 Cutting a geodesic: O’Rourke’s conjecture

As mentioned after Lemma 7.6, for nested bands it is easy to see that a geodesic cut

is safe. First, this shortest path must be orthogonal to each slice curve, otherwise

it could be adjusted to be made shorter. Second, the shortest path occurs on the

trapezoid with steepest slope, and in fact such a trapezoid will resemble the one in

Figure 7.11. Thus the shortest path passes through only one trapezoid in a nested

band, so we can insert an orthogonal hinge and use the proofs for nested bands to

show that no overlap will occur. In general, even if the shortest cut is a polygonal

path C that passes through more than one trapezoid, the fact that it is geodesic

implies that in the flattened state C will be straight. Thus, once flat, C will resemble

a hinge that is orthogonal to its adjacent edges. The arguments given in this chapter

prove that the resulting configuration has no overlap.
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Conclusion

The main contributions of this thesis are the following:

• The minimum area between two orthogonal monotone chains, over all transla-

tions, can be computed in O(n2 log n) time.

• Reconfiguration of geometric triangulations can be achieved with O(n log n)

edge flips and point moves.

• Flat chains with unit-length edges and each angle within the range (60◦, 150◦)

are connected with dihedral motions.

• There exist at least nine distinct classes of hexagonal unknots in the universal

model of motion.

• All polyhedral bands can be cut along one edge and unfolded.

This research has left certain open problems, some of which are listed here:

Open Problem 8.1. What is the complexity of computing the minimum area between

two monotone chains, over all possible translations?

Open Problem 8.2. Is it possible to reconfigure triangulations with O(n) edge flips

and point moves?

124
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Open Problem 8.3. For appropriate edge lengths, do there exist more than four

classes of hexagonal trefoils?

Open Problem 8.4. For the dihedral model, can the angle restrictions on unit-length

chains be relaxed?

It is difficult to allow angles to approach π, since this would simulate chains with

arbitrary edge lengths in the dihedral model.

Open Problem 8.5. Can band unfolding be applied to the unfolding of specific poly-

hedra?
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[BGRT99] Prosenjit Bose, Francisco Gómez, Pedro A. Ramos, and Godfried T.

Toussaint. Drawing nice projections of objects in space. Journal of

Visual Communication and Image Representation, 10:155–172, 1999.

[BHYJ88] B.K.Choi, H.Y.Shin, Y.I.Yoon, and J.W.Lee. Triangulations of scat-

tered data in 3D space. Computer Aided Design, 20(5):239–248, 1988.

[Bie00] Therese Biedl. Polygons needing many flipturns. Technical Report CS-

2000-04, Department of Computer Science, University of Waterloo (To

appear in Discrete and Computational Geometry), January 2000.

[BNMW+99] David Bainbridge, Craig G. Nevill-Manning, Ian H. Witten, Lloyd A.

Smith, and Rodger J. McNab. Towards a digital library of popular

music. In Proceedings of the Fourth ACM International Conference on

Digital Libraries, 1999.

[BR95] Prabir Bhattacharya and Azriel Rosenfeld. Polygonal ribbons in two

and three dimensions. Pattern Recognition, 28(5):769–779, 1995.



Bibliography 132

[BS05] Ciprian Borcea and Ileana Streinu. Singularities of hinge structures.

Manuscript, 2005.

[Cal01] Jorge A. Calvo. The embedding space of hexagonal knots. Topology

and its Applications, 112(2):137–174, 2001.

[Cau13] Augustin L. Cauchy. Sur les polygones et les polyèdres, seconde
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sequence of deflations. Beiträge zur Algebra und Geometrie (Contribu-

tions to Algebra and Geometry), 42(2):307–311, 2001.

[FK97] Maxim D. Frank-Kamenetskii. Unravelling DNA. Addison-Wesley,

1997.

[FNM00] Cristian Francu and Craig G. Nevill-Manning. Distance metrics and

indexing strategies for a digital library of popular music. In Proc. IEEE

International Conference on Multimedia and EXPO (II), 2000.

[For93] Steven Fortune. A note on delaunay diagonal flips. Pattern Recognition

Letters, 14:723–726, 1993.

[GCK91] Ulf Grenander, Yunshyong Chow, and Daniel M. Keenan. Hands: A

Pattern Theoretic Study of Biological Shapes. Springer-Verlag, 1991.
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