Thomas LEMAIRE

CS 507- Project

AN ALGORITHM FOR SLOPE SELECTION

Introduction

Papers

“An optimal-time algorithm for slope selection”,

SIAM J COMPUT, Vol18, No4, pp 792-810, August 1989,

By Richard Cole, Jeffrey S.Salowe, W.L Steiger and Endre Szemeredi

"Applying Parallel Computation Algorithms in the Design of Serial Algorithms"

Journal of the ACM, Vol 30, No 4, pp852-865, 4 October 1985

By Nimrod Megiddo

"Parametric Search Made Practical"
ACM, Juin 2002

By Rene Van Oostrum and Remco C.Veltkamp
What’s the problem?

Given n points in the plane and an integer k:

[image: image1.png]

We want to select the pair of points that determines the line with the kth smallest slope.

[image: image2.png]

Time of the algorithm which will be computed

For general k the parametric search technique (Megiddo) gives an O(n(logn)2) algorithm. This is modified to produce an optimal O(nlogn)-time selection algorithm by incorporating an approximation idea.

Remark:When k=O(n), line sweeping gives an optimal, O(nlogn) algorithm.

Formulation of the problem

Given n distincts points in the plane, (x1, y1),…, (xn, yn), write N =
[image: image3.wmf]÷

÷

ø

ö

ç

ç

è

æ

2

n

 and consider N lines (not necessary distincts) they determine y = aijx + bij, where 1≤i<j≤n, one for each pair of points.

Chazelle mentions the problem of selecting one of these lines according to the rank of its slope : given 1≤k≤N, we seek the kth smallest element of S = {aij, 1≤i<j≤n}

The First Selection Algorithms

Dual Problem

Given n points (x1, y1),…, (xn, yn). We assume that the points are in general position, that means that no three points are colinear and that no two of the induced lines have the same slope.This assumption symplify the problem without affecting the complexity of the algorithms.

To make progress in designing selection algorithms, we transform the slope selection problem into a more convenient form using point-line duality.

This is defined vy a mapping T that takes the point p = (a,b) to the line Tp given by y=ax+b and the line l given by y = cx+d to the point (-c,d). T preserves incidence.

[image: image4.png]pt

Initial

Dual

Under T, the n given points map to lines l1,…, ln whose points of intersection , li∩lj = (uij ,vij), correspond to the lines incident with ith and jth original points.

Furthermore -uij is the slope of this line. Thus the dual of the problem of selecting slope k is the following, equivalent selection problem:

Given distinct l1,…, ln, lines, find the intersection point whose x-coordinate is the N-k+1th smallest element of the set TS = {uij, 1 ≤ i< j ≤ n}.
Now, we will consider the general problem of selecting elements in TS.

We write t1<…<tN for the N elements of TS. The ti's are distinct because the input points are in general position. Given k, we seek tk.

Shallow selection by the line sweep technique of Bentley and Ottman

The sweep starts at x = a, a< t1.

Let π be the number of permutation that sort the slopes in ascending order.

Thus mπ1 <…<mπn, where we write y = mi x+bi as a equation of li.

If a< t1, the vertical line x=a meets l1,…, ln, at y1(a),…, yn(a) and yπ1(a)>…> yπn(a).

For each adjacent pair of lines, find the x-coordinate zi = (bπi - bπi+1)/(mπi+1 – mπi) of their intersection point and place these n-1 numbers in a (min) heap. Clearly t1 = min(zi).

Suppose zp is the smallest zi. It is currently at the top of the heap. We sweep juste beyond t1=zp. When a> t1, yπp(a) < yπp+1(a) because lπp and lπp+1 have crossed at t1. We compute the two new intersection points

· z' = (bπp+1 – bπp-1)/(mπp-1 – mπp+1)

· z'' = (bπp+2 – bπp)/(mπp – mπp+2)

Remark : If p=n-1, only conpute z'; if p=1, only compute z''

[image: image5.png]a<zp 2>2p

.
We delete zp from the heap, insert z' and z'', and exchange πp and πp+1 . We may now obtain t2 = min(zi) having expended O(logn) steps. The two new z's were computed in constant time, and the deletion and two insertions took O(logn) time. We continue in the same fashion by sweeping through to tk.

So the running time is O(nlogn+klogn). O(nlogn) for the starting (min) heap and O(klogn) for the insertions , computation of the z's and deletions, which are applied until we find tk (so k steps).

The general selection algorithm with a O(n(logn)2)-time complexity

Introduction

We write π(a) for the permutation that orders the intercepts of l1,…, ln, in descending order at x=a. So yπ1(a)>…> yπn(a). We renumber l1,…, ln so that for a< t1, π(a) is the identity. At the intersection points ti ,we disambiguate π by defining π (ti)= π (ti+ε), where 0< ε<min(tj+1- tj).

The permutation π (t1) has one inversion (exactly one paire of lines crossed at t1), π (t2) has two, etc…

In fact the function I(π (x)) = number of inversions in π (x), is a monotone step function in x with unit jumps at the ti's.

I(π (x)) = j if and only if tj = max(ti:ti≤x).

[image: image6.png]4

5inversions

For a given k, the problem of finding tk may be viewed as an usual sorting problem to which we apply Megiddo's technique of building algorithms from parallel ones. An implicit binary search over the ti's is performed, each step taking O(nlogn) time. This will an O(n(logn)2)-time algorithm.

Presentation of the algorithm

In seeking tk , we will attempt to sort y1(a*),…, yn(a*) at a* = tk + ε.

We know that this sort may be achieved in O(nlogn) comparisons (cf Binary Search Tree), each answering a question Qij of the form "yi(a*)≤yj(a*)?". The O(nlogn) answers yield the permutation π* that sorts these intercepts : yπ*1(a*)>…> yπ*n(a*).

Once π* has beed found, tk = max[uπi*πi+1*:πi*>πi+1*]; the kth inversion must have just reversed a pair of adjacent intercepts in the permutation π(tk-1).

The control structure for the sort will come from the O(logn)-depth sorting network of Ajtai, kmlos and Szemeredi (AKS-Network). At each level, n/2 questions are answered. The network is just a guide for blocking these comparisions into groups of size n/2. The sort is complete once the O(nlogn) answers are obtained and we have determined π*.

Even though we do not know a*, we can answer the question Qij in time O(nlogn) as follows. We find uij the x-coordinate of , li∩lj , I<j, in constant time and then obtain its rank among the ti's.To find its rank, we sort the n intercepts at uij in decreasing order to get π(uij). The rank uij is the number of inversions in π(uij), I(π (uij)).

If I(π (uij))>k, we know that uij> tk so the answer is "no"; lines i and j have not yet crossed at tk.

If I(π (uij))<k, we know that uij< tk so the answer is "yes".

If I(π (uij))=k, uij=tk.

[image: image7.png]

I may be computed in time O(nlogn) (merge sort of Knuth) : if π (uij) = (r1,…,rn), we use merge-sort to sort the slopes mr1,…,mrn and count the number of inversions that were performed.

If we actually answered all n/2 questions Qi1j1,…, Qinjn on a level of the network by counting inversions, the complexity would be O(n2logn) for that level (n/2 questions*2nlogn for the sort of the n intercepts and the merge sort). And as there are O(logn) levels, we have a complexity of O((nlogn)2) overall.

Improvements

The trick is to resolve the n/2 questions on a level by actually counting inversions only O(log) times.

As mentionned, each questions determines an intersection of a distinct pair of lines, and the answer is obtained by comparing the rank of that intersection point with k.

On a given level of the sequentialzed version of the sorting network, denote the x-coordinates of these points by zi1,…,zin/2. We can compute the median of these intersections points, zmed, in time O(n). Its cost time O(nlogn) to rank it, and answer half the questions.

For example, if zmed < tk, then zik < tk for all the zik ≤ zmed. Continuing with the n/4 unresolved questions on this level, we again find the median z and rank it in time O(nlogn), etc…After O(logn) inversions counts, all n/2 questions on this level are resolved. Since each inversion count takes O(nlogn) steps and there are O(logn) levels, the algorithm has time complexity O(n(logn)3).

But, Cole shows how the result may be improved by a factor of logn, by considering the fact that in the network each question has two inputs. (see R.COLE, Slowing down sorting networks to obtain faster sorting algorithms, Journal of the.ACM, No34 (1987), pp200-208)

So we obtain an algorithm of O(n(logn)2)-time complexity.

Improvement with approximate ranking

The new idea

We use an approximate rank for each point chosen by the sorting network.

Let sign(x) = 1 if x>0, 0 if x=0, and –1 if x<0.
In the improved algorithm, we will use O(n) time to develop an approximation ρz to the rank of z. Let ez denote the error of approximation : ez=|rank(z)-ρz|.

 If the error is small enough, ρz can tell us the relative ordering of z and tk.

By definition, rank(z) must lies inside the closed interval [ρz-ez,ρz+ez], then sign(z- tk) = sign(rank(z)-k) = sign(ρz -k); in this case the relative ordering of z and tk can be deduced from ρz and k, and we may resolve the relevant zi's.

On the other hand, if lies inside [ρz-ez,ρz+ez], the approximation will not be accurate enough to distinguish the relative position of z and tk, so we must do some extra comparisons to refine ρz and reduce ez, until k lies outside the interval. It turns out that most O(nlogn) extra work will be done to refine rank approximations throughout the entire course of the algorithm.

The key structure

Suppose we have a "reference" point at x=r and we know sign(rank(r) - tk).

Also suppose that we have partitioned the n lines into τ = E[n/T] groups G1,…,Gτ of size T (maybe Gτ is smaller and T is an integer to be specified) with the property that if k є Gi and l є Gj, and I<j, then yk(r)≥yl(r).

Thus,G1 refers to the lines with the T largest intercepts at x=r, etc…The groups are therefore sorted, but within any particular group, we have no ordering information. Such a structure is called a partition of size T at r. The occasional refinements will divide T by 2 and restore the reference point in time O(n).

A partition of siwe T at r is represented by a permutation p(r,T).

p(r,T) = (p1(r,T),..., pn(r,T)), where (p1(r,T),..., pT(r,T)) are the lines in G1, etc…

Partition p(r,T) is thus an approximation to π(r). So we define the approximate rank ρ(r,T) to be the number of inversions in p(r,T).

Because p(r,T) represents the partition, it can differ from π(r) only with respect to inversions between pairs of lines within the same group.There are at most "T choose 2" such inversions in a group, there are n/T groups so ρ(r,T) differs from rank(k) by less than nT/2. Therefore, for any given value of T, ez <nT/2.

Let T such that, |ρ(r,T)-k|≤nT and |ρ(r,T/2)-k|>nT/2.

From the last condition, we are able to determine the relative position of r and tk. If these conditions fail for the current value of T, we would halve T and create the partition for the new smaller groups.

Moreover, these two conditions imply the fact that nT/4<|rank(z)-k|<3nT/2.

The flow of control

We now describe the flow of control in the approximation algorithm. The algorithm maintain two reference points : rL≤ tk and rR≥tk.

[image: image8.png]

We maintain orderings p(rL) and p(rR) and calibrated partition sizes TL and TR for both reference points. The reference with the smaller T is "active".

When the network gives a new query point x=q (weighted median point of n/2 points), if q lies outside [rL, rR], the relative position of q with respect to tk, may be deduced by transivity. We can resolve this point and the relevant zi's of wich q was the weighted median. Otherwise we construct the partition of x=q.

If q< tk, the partition of size T at q is a modification of the partition of size T at rL.
If q> tk, the partition of size T at q is a modification of the partition of size T at rR.

But we do not know the relative ordering of q, an attempt is to modify the partition at r, the active reference point. The attempt will be aborted if |rank(r)-rank(q)| is "large"; in this case, the other reference point becomes active and the partition at this reference point is modified to give the partition at q.

Position q then replaces the appropriate reference point (on the same side of tk), and the reference point with smallest value of T becomes the new active reference point.
_1100083988.unknown

