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Abstract. We examine reconfigurations between triangulations and near-
triangulations of point sets, and give new bounds on the number of point

moves and edge flips sufficient for any reconfiguration. We show that with
O(n log n) edge flips and point moves, we can transform any geometric
near-triangulation on n points to any other geometric near-triangulation
on n possibly different points. This improves the previously known bound
of O(n2) edge flips and point moves. We then show that with a slightly
more general point move, we can further reduce the complexity to O(n)
point moves and edge flips.

1 Introduction

An edge flip is a graph operation that is defined on triangulations and near-
triangulations3. An edge flip on a triangulation is simply the deletion of an edge,
followed by the insertion of another edge such that the resulting graph remains a
triangulation. The definition of an edge flip gives rise to several natural questions:
Does there always exist a sequence of flips that transforms or reconfigures a given
triangulation to any other triangulation? Are there bounds on the lengths of such
sequences if they exist? Can these sequences be computed? These questions have
been studied in the literature in many different settings [7, 11, 19, 10, 2, 16, 3, 15,
18, 14, 4, 17, 5, 20, 6, 9, 8]. In particular, Wagner [19] proved that given any two n-
vertex triangulations G1 and G2, there always exists a finite sequence of edge flips
that reconfigures G1 into a graph isomorphic to G2. Subsequently, Komuro [10]
showed that in fact O(n) edge flips suffice. Recently, Bose et al.[2] showed that
O(log n) simultaneous edge flips suffice and are sometimes necessary. This setting
of the problem is referred to as the combinatorial setting since the triangulations
are only embedded combinatorially, i.e. only the cyclic order of edges around each
vertex is defined.

In the geometric setting, the graphs are embedded in the plane with edges
represented by straight line segments. Pairs of edges can only intersect at their
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3 A near-triangulation is a plane graph where every face except possibly the outer face
is a triangle.



endpoints. Edge flips are still valid operations in this setting, except that now the
edge that is added must be a line segment and this line segment cannot properly
intersect any of the existing edges of the graph. This additional restriction implies
that there are valid edge flips in the combinatorial setting that are no longer valid
in the geometric setting, as can be seen in Figure 1.
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Delete edge de and add edge ac. This is a valid combinatorial edge

flip since the graph is still planar but it is an invalid geometric edge

flip since the edges ac and be intersect properly.
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Original graph Invalid geometric flip Valid combinatorial flip

Fig. 1. Valid combinatorial edge flip but invalid geometric edge flip.

Lawson [12] showed that given any two geometric near-triangulations N1

and N2 embedded on the same n points in the plane, there always exists a finite
sequence of edge flips that transforms the edge set of N1 to the edge set of N2.
Hurtado, Noy and Urrutia [9] showed that O(n2) flips are always sufficient and
that Ω(n2) flips are sometimes necessary.

Note that there is a discrepancy between the combinatorial and the geometric
settings. In the combinatorial setting, Wagner [19] showed that every triangula-
tion on n vertices can be reached from every other triangulation via edge flips.
In the geometric setting, Lawson [12] showed that only the near-triangulations
that are defined on the specified point set can be attained via edge flips. For
example, in the point set shown in Figure 2, no planar K4 (complete graph on 4
vertices) can be drawn on the given point set without introducing a crossing. In
fact, in the geometric setting, given a set of points in convex position, the only
plane graphs that can be drawn without crossings are outer-planar.

It is this discrepancy that sparked the work of Abellanas et al. [1]. In order
to resolve this discrepancy, they introduced a geometric operation called a point

move. A point move on a geometric triangulation is simply the modification of
the coordinates of one vertex such that after the modification the graph remains
a geometric triangulation. That is, the move is valid provided that after moving
the vertex to a new position, no edge crossings are introduced (see Figure 3). As
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Given point set Straight-line embedding of K4 has a crossing

Fig. 2. Discrepancy between combinatorial and geometric setting.

can be seen in Figure 2, point moves are required in order to be able to move
from any geometric triangulation to any other.

x

x

Vertex x is moved

Fig. 3. Illustration of a valid point move.

Abellanas et al. [1] showed that with O(n2) edge flips and O(n) point moves,
any geometric triangulation on n points can be transformed to any other geo-
metric triangulation on n possibly different points. This result can be viewed as
the “geometric equivalent” to Wagner’s [19] result since it is not restricted to
remaining on the same point set as is the case with Lawson’s result [12].

The question which initiated our investigation is whether or not O(n2) edge
flips are necessary in the result by Abellanas et al. [1]. When restricted to edge
flips, Hurtado, Noy and Urrutia [9] showed that Ω(n2) flips are sometimes
necessary to transform one triangulation on a given point set to another one on
the same point set. However, are Ω(n2) edge flips required if one is also allowed
to use point moves? In this paper, we show that point moves are quite powerful
and allow one to break the quadratic lower bound. We show that with O(n log n)
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edge flips and point moves, we can transform any geometric near-triangulation on
n points to any other geometric near-triangulation on n possibly different points.
Next, we show that if we restrict our attention to geometric near-triangulations
defined on a fixed point set of size n, i.e. the setting studied in [12], the problem
is just as difficult even in the presence of point moves. Specifically, we show that if
there exists an algorithm that can allow one to transform any near-triangulation
on an n-point set to any other near-triangulation on the same point set using
O(n) point moves and edge flips, then this algorithm can be used to solve the
more general problem of transforming any near-triangulation on one point set
to any other near-triangulation on a possibly different point set with O(n) point
moves and edge flips. Finally, we show that with a slightly more general point
move, we can remove the extra log factor from our main result.

2 Results

In the remainder of the paper, we assume that all triangulations and near-
triangulations are geometric. We assume that the n vertices of any given tri-
angulation are in general position. It is not difficult to see that O(n) point
moves can reconfigure a triangulation to this form. We begin with a few of the
basic building blocks that will allow us to prove the main theorems.

Lemma 1. [2] A reconfiguration between two triangulations of the same point

set that is in convex position can be done with O(n) edge flips.

Lemma 2. [9] Let v1, v2 and v3 be three consecutive vertices on the outer face

of a near-triangulation T1. Let C be the path from v1 to v3 on the convex hull

of all vertices but v2. A near-triangulation T2 containing all edges of C may be

constructed from T1 with t edge flips, where t is the number of edges initially

intersecting C in T1.

Lemma 3. Given a near-triangulation T , any vertex p ∈ T with degree d > 3
that is inside the convex hull of the vertices of T can have its degree reduced to

3 with d − 3 edge flips.

Proof. Let P be the polygon that is the union of all triangles incident to p. P is
a star-shaped polygon and p is in the kernel. By Meister’s two-ears theorem [13],
if P has more than three vertices, then it has at least two disjoint ears4. At
most one of them can contain p. Therefore p and one of the ears form a convex
quadrilateral. We may flip the edge from p to the tip of the ear, effectively cutting
the ear from P and reducing the number of vertices of P by one (see Figure 4).
This process may be continued until P is reduced to a triangle that contains p

as desired. ut

4 A triangle, defined by three consecutive vertices of a polygon, is an ear if it is empty
and the vertices form a convex angle. The second vertex is the tip of the ear.
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Pp

Fig. 4. Polygon P is visible from vertex p, which is inside one of the two ears of P .
The empty ear is labeled with white vertices. The edge that may be flipped is dashed.

Lemma 4. Given a near-triangulation T , any vertex p ∈ T with degree 3 that is

inside the convex hull of the vertices of T can be moved to a new position in the

triangulation along a straight path crossing t edges, using at most 2t edge flips

and 2t + 1 point moves, assuming the path does not cross through any vertices.

Proof. Suppose that p is joined by edges to vertices v1, v2 and v3. Without loss
of generality, let edge v2v3 intersect the path that p must follow, and let this
path continue into triangle v2v3v4, as shown in Figure 5.

v1

v2

v3

v4

p

Fig. 5. A vertex p and a straight path that it must move along (dashed). p can pass
through any edge with two edge flips.

Clearly p can be moved anywhere within triangle v1v2v3 without the need
of any edge flips. Then it can be moved along its path, as close to edge v2v3 as
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necessary, so that the quadrilateral pv2v3v4 becomes convex. This allows edge
v2v3 to be flipped into edge pv4. Now p may continue along its path. As soon as
it enters v2v3v4, edge pv1 may be flipped into v2v3. Now, with two edge flips and
two point moves, p has crossed through the first edge intersecting its path, and
still has degree 3. By the same argument, p may traverse its entire path with two
edge flips and two point moves for each intersecting edge. One additional point
move is required in the last triangle. Note that only three edges in the original
and final triangulations will be different. ut

Lemmata 3 and 4 imply the following result:

Lemma 5. Given a near-triangulation T , any vertex in the interior of the con-

vex hull of the vertices of T with degree d can be moved to a new position in the

triangulation along a path crossing t edges, using O(d + t) edge flips and point

moves.

Lemma 6. An edge can be constructed between a convex hull vertex and any

other vertex in a triangulation using O(n) edge flips, with the aid of one moving

point that is moved O(n) times.

Proof. Let v1 be the hull vertex. First suppose that the second vertex is an
interior point. Then it will play the role of the moving point, and we will label
it p. We can move p directly towards v1, until it is located within a triangle that
has v1 as a vertex. Now v1 and p must be joined with an edge. Next we move p

back along the same line to its original position, always maintaining edge v1p.
To do this, we consider the set of triangles that intersect p’s path, as in lemma 4.
Vertex p can always enter a triangle intersecting the path back to its original
location. The difference is that once it has crossed an intersecting edge, we do
not restore the edge. This means that p will accumulate edge degree. An issue
that needs to be taken care of is that of maintaining a triangulation when p is
about to lose visibility to another vertex. This occurs when one of its incident
edges is about to overlap with another edge in the triangulation, as shown in
Figure 6.

Suppose that edge pv3 is about to overlap with edge v3v4. v3 and v4 cannot be
on opposite sides of the remaining path that p must traverse, otherwise v3v4 may
be flipped. Vertex p must share an edge with v4 in this configuration. Vertices p

and v3 are also part of another triangle, along with some vertex v∗ which may
be anywhere on the path from v1 to v3. These two triangles must form a convex
quadrilateral pv∗v3v4, otherwise p would have already lost visibility to v∗. Thus
pv3 may be flipped into v4v

∗, which means that v3 is removed from the polygon
that intersects p’s path. The result is that when p reaches its original position,
it leaves a fan5 behind it, which includes edge v1p. Overall one edge flip is used
when p enters a new triangle, and at most one flip is used for every edge that
attaches to p.

If both vertices of the edge that we wish to construct are on the hull, then
we can take any point p within the hull and move it close to v1 and onto the

5 A fan is a star-shaped polygon with a vertex as its kernel.
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v2

v3

v1

v4

p

Fig. 6. Maintaining a triangulation while extending edge v1p: p has moved from a
position close to v1 (shown white), and still has to traverse the dashed segment to its
original position. Edge pv3 causes a problem if p is to continue.

segment between the two hull vertices. p can then move along this segment to
the second hull vertex until it is connected to both. At this moment, p may be
perturbed so that the three vertices form a triangle. This triangle might contain
other edges incident to p. Lemma 2 implies that these edges may be removed so
that the desired edge can be constructed with O(n) edge flips. ut

2.1 Triangulations

With the basic building blocks in place, we now prove one of our main results.

Theorem 1. With O(n log n) edge flips and point moves, we can transform any

geometric triangulation on n points to any other geometric triangulation on n

possibly different points.

Proof. We transform one triangulation to another via a canonical configuration.
As shown in Figure 7, the interior vertices form a backbone (i.e. their induced
subgraph is a path). The top of the backbone is joined to the topmost hull vertex
v1, and all interior vertices are joined to the other two hull vertices, vL and vR.

The canonical configuration is constructed in a divide-and-conquer manner.
We perform a radial sweep from v1, to find the median vertex interior to the
convex hull, vM . After constructing edge v1vM we move vM directly away from
v1 towards the base vLvR, maintaining v1vM until triangle vMvLvR contains no
interior points. By Lemma 6, we use O(n) operations to accomplish this. Now, we
transform v1vMvL and v1vMvR into backbone configurations by induction since
they are smaller instances of the same problem. The resulting configuration is
shown in Figure 8.

We now show that the two sides may be merged using O(n) operations.
As shown in Figure 9a, we first move the lowest vertex of a backbone into a
position that is close to the base and is along the extension of edge v1vM . This
requires one edge flip. The vertices on the left/right backbones are processed in
ascending order, and are always moved just above the previous processed vertex,
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vR

v1

vL

Fig. 7. The canonical configuration used for triangulations.

vM

v1

vL vR

Fig. 8. The configuration of a triangulation prior to merging the backbones on each
side of the median vertex vM .
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as shown in Figure 9b. Each vertex will require two point moves and one edge
flip. Thus v1vLvR is reconfigured into canonical form, and by a simple recurrence
the number of edge flips and point moves used is O(n log n). It is trivial to move
a canonical triangulation to specific coordinates using n point moves. Thus the
transformation between any two triangulations may be completed. ut

(a) (b)

Fig. 9. Merging two backbones into one.

2.2 Near-triangulations

If the initial graph is a near-triangulation, we assume that the outer face is
a convex polygon. Since the outer face is not a triangle, Theorem 1 does not
directly apply. Some care must be taken to handle a non-triangular outer face.
We outline the details below.

Theorem 2. With O(n log n) edge flips and point moves, we can transform any

geometric near-triangulation on n points to any other geometric near-triangulation

on n possibly different points.

Proof. As in the case with triangulations, we transform one near-triangulation
to another via a canonical configuration. In the primary canonical configuration,
shown in Figure 10, one chosen hull vertex (v1) is joined by chords to all other
hull vertices. Thus v1 is in the kernel of a convex fan. Every triangle incident to
a hull edge, except for one, is empty. All interior vertices, located in the non-
empty triangle T , are in the canonical configuration of a triangulation. Once this
configuration is achieved, all vertices can easily be placed at specific coordinates,
so that the transformation between two-near triangulations can be completed.
This will be described further on.

We first construct all edges of the top-level fan configuration, leaving interior
vertices in their original positions. Then within each triangle of the fan, we
rearrange the interior vertices into a canonical triangulation. Finally, we merge
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v1

T

Fig. 10. The primary canonical configuration used for near-triangulations.

all triangles of the fan, so that all interior points move to a single triangle and
are in canonical form.

To construct the fan chords, we always divide the problem into two roughly
equal parts. We begin by constructing two chords as follows: perform a radial
sweep from v1 to successive hull vertices vi {2 ≤ i ≤ n − 1}, always keeping
fewer than n

3
vertices in the swept region. Let vj be the last hull vertex for which

this holds. Construct chords v1vj and v1vj+1. The unswept region not including
triangle v1vjvj+1 contains fewer than 2n

3
vertices. The swept region contains

fewer than n
3

vertices. Triangle v1vjvj+1 may contain an arbitrary number of
vertices, but this is not a sub-problem (we will not look at this region again
during the construction of the fan). Now we can continue a new sweep on each
side of v1vjvj+1. Construction of the two chords could take O(n) edge flips
and point moves, as described in Lemma 6. However the even split of the sub-
problems ensures that the total number of operations is O(n log n).

Each fan triangle v1vivi+1, containing ki interior points, can be reconfigured
into a backbone structure with O(ki log ki) operations, by Theorem 1. Thus the
total number of edge flips and point moves used to reconfigure all triangles of
the fan into backbone structures is O(n log n).

Now we are left only with the task of merging the fan triangles so that only
one of them will contain all interior points. To do this, we pair up consecutive
triangles, merge them, and continue recursively: We can add ki interior points
of a canonical triangulation to an adjacent canonical triangulation using O(ki)
edge flips and point moves. The ki points are processed in descending order and
are always added to the top of the adjacent triangulation, as shown in Figure 11.

Thus we obtain one triangle in canonical form next to an empty triangle. It
is just as easy to merge two canonical triangles separated by an empty triangle.
If we ever encounter two or more adjacent empty fan triangles, we may use
Lemma 1 to reconfigure them so that they will not affect the fan-merging process
(see Fig 12).

By the above arguments, once we select the triangle that is to finally contain
all of the interior points (the median triangle is a good choice), we can iteratively
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Fig. 11. Merging two adjacent fan triangles.

TT TT

Fig. 12. Handling multiple adjacent empty fan triangles. Triangles marked (T) contain
triangulations.
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merge its neighboring triangles onto it using a total of O(n) edge flips and point
moves.

Finally we are left with a single triangle containing all interior points in
canonical form. On either side, we may have an arbitrary triangulation (resulting
from handling multiple adjacent empty fan triangles), but the vertices will be in
convex position. By Lemma 1 they may be moved to our desired configuration
using O(n) edge flips.

We must still show that this primary canonical configuration can be moved
to specific coordinates. This can be done with O(n) point moves: First we move
all vertices onto the bounding rectangle, by processing each of the hull paths
between extreme vertices Xmax, Xmin, Ymax and Ymin separately. Let the path
from Xmin to Ymax contain vertices Xmin = v1, . . . , vk = Ymax. Vertex v2 can
be moved directly away from v3 until edge v1v2 becomes vertical, as shown in
Figure 13a. Similarly, vertices v3, . . . , vk−1 may be moved to this vertical line
through Xmin. By performing similar motions for the other paths, we obtain
a configuration as the one in Figure 13b. In each case one point move suffices,
except for the hull vertices belonging to the triangle that contains the interior
points. To move these two vertices, we have to displace the interior points, but
one point move per interior point suffices.

v1

v2

v3

T

(b)(a)

Fig. 13. (a) Moving a vertex onto the bounding rectangle. (b) All hull vertices on the
bounding rectangle.

Now it is trivial to move all hull vertices except for Ymax along the edges of
the bounding rectangle so that they reach the bottom edge. This allows the top
vertex to move to any chosen coordinate above the bottom edge. All remaining
vertices may be shifted horizontally to any position. Finally, by moving them
again along the boundary of their new bounding rectangle, they can be positioned
on the two vertical sides, which now allows them to be moved to any position
vertically. Thus the reconfiguration may be achieved within the bounding box
of the source and target triangulations. ut

2.3 Remarks

If two triangulations have the same point set, the problem is no easier than the
general problem. Suppose that there exists an algorithm that can transform a
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triangulation T1 on a given n-point set to a triangulation T2 on the same point
set using Fn = o(n log n) edge flips and point moves. Then this algorithm can
be used to transform a triangulation on one point set to any other triangulation
on a possibly different point set with Fn +O(n) edge flips and point moves. This
argument is summarized in Fig 14. Let Fig 14(a) be the input triangulation.
With Fn flips and moves, move to the triangulation in Fig 14(b) where every
interior vertex is adjacent to the lower left vertex v` of the outer face.

(a)
(b) (c)

(d)(e)

Fig. 14. Problem on fixed point set is not easier.

Now consider the triangulated polygon, P , that consists of edges not adjacent
to v`. Notice that if we perform a radial sweep from v`, the boundary of P is
monotonic. At least two of the triangles in P are disjoint ears, which means there
must exist an ear tip that is an interior vertex and is also joined to v` by an edge
in the original triangulation. We may move this point directly towards v` and
cut the ear from P . This still leaves a monotone polygon P ′. By continuously
locating such ears, and moving them to a predefined convex position, we can
obtain the configuration illustrated in Figure 14c. The monotonicity of P (and
its descendants) and the convexity of the final configuration of interior points
guarantee that no edge crossings will occur. This process requires a linear number
of point moves.

Next, by Lemma 1, we can use O(n) edge flips to obtain the triangulation
where the lower right vertex of the outer face is adjacent to every vertex, as
illustrated in Figure 14d. From here, it is trivial to move to the canonical con-
figuration.

We conclude with the following:
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Theorem 3. If an algorithm exists that can reconfigure between any two geo-

metric triangulations of the same point set with o(n log n) edge flips and point

moves, then we can also transform any geometric triangulation on n points to

any other geometric triangulation on n different points with o(n log n) flips and

moves.

It is tempting to try to find a fast algorithm that will construct a monotone
path, as illustrated in the transition from Figure 14a to Figure 14b. Consider
the polygon that is the union of all triangles incident to the lower left vertex
of Figure 14b. By continuously cutting ears of this polygon, we may get to a
triangulation that is similar to that of Figure 14a, using O(n) edge flips. The
similarity is that all neighbors of the lower left vertex will be in convex position.
However, we have little control over the resulting positions of the remaining edges
if we use only O(n) operations. It is possible to create triangulations for which
the reversal of this ear-cutting technique is not possible. In fact, Figure 14c serves
as an example, if we add a few more vertices inside the large triangle. In this
figure none of the edges directly visible from the lower left vertex can be flipped,
so there is no obvious way to achieve a monotone path by using operations only
in the neighborhood of v`.

We finally consider the following more powerful point move as an alternative
to the point move studied so far. In this more powerful point move, we can
delete an interior vertex of degree three (and all its incident edges), and create
a new vertex of degree three inside another triangle of the triangulation. With
this type of move we can reconfigure triangulations using O(n) operations. We
simply select a triangle incident to a hull edge and create a backbone inside.
This is done by continuously selecting a vertex of constant degree from outside
the triangle, reducing its degree to three, and moving it to the lower end of the
backbone.
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