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Abstract

Let SandT be two finite sets of points on the real line wjBi+ |T| = nand|S > |T|. Therestriction
scaffold assignment problem in computational biology assigns each poirgfa point ofT such that the
sum of all the assignment costs is minimized, with the camstthat every element df must be assigned
at least one element & The cost of assigning an elemenof Sto an element; of T is |s —tj|, i.e., the
distance betweeg andt;. In 2003 Ben-Dor, Karp, Schwikowski and Shamir [2] publidlzeO(nlogn)
time algorithm for this problem. Here we provide a countesraple to their algorithm and present a new
algorithm that runs if©(n?) time, improving the best previous complexity®@fn®).

1 Introduction

In the context of measuring the similarity of musical rhythms with the goal ofopeihg a phylogenetic
analysis of rhythms, Toussaint [8] proposed the use of the swap-déstakh comparison of this distance
measure with other rhythm dissimilarity measures shows it to be superior irabegpects [9]. In [8] and
[9] the rhythms are represented as binary sequences, where atitedahe onset of a note and a ‘0’ denotes
a silence. Furthermore, all the rhythms compared have the same larith, with the same numbérof
1's (or onsets). A swap operation on a string consists of interchangim@dyacent elements in that string.
The swap distance between two binary strings is defined as the minimum nuishexoperations needed
to transform one string into the other. In this restricted version of the prgldemputing the swap-distance
is very simple. For ali, theith ‘1’ of one string must move to the position of thh ‘1’ of the second string.
Therefore the number of swaps needed for one such operation isférexde between their indices (which
may be viewed as integercoordinates). The swap distance is the sum of alktddferences, which may
be trivially computed inO(n) time given the two binary sequences as input. Note that actually performing
the swaps may requi®(n?) swaps.

In a more general setting, the two rhythms have different valuds ahd the algorithm described in
the preceding will not work. In order to capture the attributes of the svustprice measure on two binary
stringsSand T whereS has more elements than Toussaint proposed thdérected swap distance, which
was first applied to the phylogenetic analysis of Flamenco rhythmsibg-Bffiez et al. [4]. The directed
swap distance is defined as the minimum number of swaps required to moyekmraent ofSto the index
of an element oT, with the restriction that every elementBfmust have at least one elemenSyhoved to
its index.

The directed swap distance may be viewed as a version of the lssgnment problem [6], where
the cost of an assignment between an elermenS and an elemeng of T is the distance betweerand j.
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Figure 1: (a) A surjection between the two one dimensionalSet$0, 2, 7, 12 andT = {1, 4, 11}. (b) A
minimal surjection betweegandT.

Furthermore, we may consider the more general input consisting of twofseimbers on the real line rather
than binary sequences. Here the real numbers play the role of the infltbesl’s in the binary sequence. In
this setting, if both sets have equal cardinalities, the simple algorithm desdmitieel preceding for binary
sequences may still be used after sorting the sets, thus yieldi@grdogn) time algorithm.

An alternate way of viewing the directed swap distance is as a surjettjidtween two sets of elements
S (the source) and (the target) on the intervdl0, X) where|S§ > |T|. This mapping is bound by the
constraint that each element dfmust have at least one element®Mmapped to it. More formally the
directed swap distance may be expressed as a surjection as follows:
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Any surjection that satisfies the preceding equation we call a minimal surjechiigure 1 depicts two
different surjections between two sets of points on the line, one of which ist@inNote that all the points
actually have zerg-coordinates; they are shown in this way merely for the purpose of clarity.

In 1979 the philosopher Graham Oddie proposed using surjections tauredhe distance between two
theories expressed in a logical language [7]. In 1997 Eiter and Manxtigmaed this idea by expressing
theories as models, and thus as points in a metric space [5]. This gave treMndistance measure in a
metric space which they called the surjection distance. The surjection diftatveeen two setSandT is
defined as follows:

min 3 3(s W(s). )
ES
whered is a distance metric on the space, amés a surjection betweeSandT. They also proposed an
algorithm for computing the surjection distance@n®) time, wheren = |S|, by reducing the problem to
finding a minimum-weight perfect matching in an appropriate graph.

In 2003, Ben-Dor et al. [2], in the context of the shotgun sequenaiablem in computational biology,
introduced a modified assignment problem similar to the directed swap prolhene \the points are real
numbers on the line rather than bits in a binary string: résiriction scaffold assignment problem. They
also presented a@(nlogn) algorithm to compute this assignment problem. Their result relies heavily on
a result of Karp and Li [6] which provides a linear time algorithm (aftetiag) for computing theone-to-
one assignment problem in the special case where all the points lie on a line. dnéhe-one assignment
problem betwee®andT some elements @& remain unassigned.

In this note we give a counter-example to the algorithm of Ben-Dor et alfgfZlomputing the restriction
scaffold assignment problem, and show that the problem may be sol@dintime.
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Figure 2: The bipartite graph created fr@w {0, 2, 7, 12, T = {1, 4, 11}. The bold lines represent the
minimum perfect bipartite matching, which has a cost of 6.

2 TheAlgorithm of Eiter and Mannila

Since ourO(n?) algorithm is inspired by, and based on, some results of Eiter and Mannila¢5describe

in this section their main results for the sake of clarity and completion. The poddhese results may be
found in [5]. Their algorithm is based on a reduction to finding a minimum wepgitect matching in a
suitable bipartite graph. The reduction makes use of the following observatio

Lemma 2.1. Let Y beaminimal surjection fromSto T. Then for any s # s; if Y(s) = W(sj) the distance
froms to Y(s) is not more than the distance from s to any other element of T.

Taking advantage of this result their algorithm cre&tes|S — |T| auxiliary vertices. These vertices serve
as dummy nodes, for which the distance to amySis made equal to that of the shortest distance fsdm
any element off . This allows the graph to effectively simulate the situation where two or moteegiare
mapped to the same elementlaf

This construction is carried out as follows. For two s&sndT in a metric space, create a complete
bipartite weighted grap® = (XUY, E,w). For eachs € Sconstruct a vertex; € X. For eactt; € T create
a vertexuj € U. Finally, fork = |§ —|T|, create a set of nod&s= {vi,....,w}, and letyY = (UUV). The
weight functionw is defined as follows:

_J e=(u)), 3(st)
w(e) { e=(x.v)), mincrd(s,t) )
wheres;, tj are the set elements corresponding to the vertices, respectively.

Figure 2 illustrates this construction with the s8ts {0, 2, 7, 13 andT = {1, 4, 11. The bold lines
represent the minimum perfect bipartite matching, and correspond to the maurjedtion depicted in Fig-
ure 1 (b). Letw(M) denote the minimum-weight perfect matching of the resulting graph, aon@li¢tenote
the cost of the minimum surjection distance betw8amdT. Eiter and Mannila also prove the following
theorem.

Theorem 2.2. c(@) =w(M).

Letting n equal to|S, Eiter and Mannila note that this reduction yields@n®) time algorithm since
the construction take®(n?) time and their matching algorithm of choice take@?®) time for a complete
graph [3].

3 A Counter-Exampleto the Algorithm of Ben-Dor et al.

Ben-Dor et al. [2] presented @(nlogn) time algorithm for computing the restriction scaffold assignment
problem. In this section we describe their algorithm and exhibit an examplémh the algorithm does not
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Figure 3: (a) The assignment returned by the algorithm in [2]. (b) A minirssibament.

yield the claimed optimal solution.

The key idea in their algorithm is to split the problem into two parts. First, the minimeatto-one
assignment-, betweerSandT is found, leaving out a sé& C S. Then each element & is mapped to its
nearest neighbor i®. The attractive feature of this procedure is that it runs in linear time prdviadiat it
uses the Karp-Li algorithm to solve the first part of the problem (thetorae assignment) on points that
are already sorted.

A simple counter-example to this algorithm follows. Consider the two Sets{0,2,7,12} andT =
{1,4,11} shown in Figure 3. The minimum one-to-one assignment funckors

F(O)=1
F(2) =4 (4)
F(12) =11

which has a total cost of 4. Adding in the distance between 7 and its neaighbor inT, 4, gives a total
cost of 4+ 3 = 7. However, this is not a minimum-cost surjective assignment. We have wlsesh a
solution for these two sets in Section 2, where, using the algorithm of EiteMamndiila, we were able to
find a surjectionp betweenSandT with values,

©®)

which has a total cost of 6, thus providing a counter-example to the algoriffigure 3 illustrates this
counter-example.

4 TheNew O(n?) Algorithm

In this section we propose a nén?) time algorithm for computing the the restriction scaffold assignment
problem (as well as the directed swap distance). The algorithm is bassdeatuction to the problem of
computing the single source shortest path problem in a weighted directeccapgaph. The construction is
inspired by the graph-theoretic approach of Eiter and Mannila, and te@gly on the following lemma,
sometimes called the quadrangle inequality [1].

Lemmad4.l. Let Sand T be sets of points on the line. Also, let a distance function &(s,t) = |s—t|. Then for
a,be Swherea< b,andc,d € T wherec < d,

d(a,c) +9(b,d) < &(a,d)+d(b,c) (6)

Proof. Three cases arise as pictured in Figure 4.
Case 1 :aand b are both less than ¢ or, symmetrically, greater than d
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Figure 4: lllustration of lemma 4.1. The dashed lines represent the smalleratista

Letx=|a—b|,y=|b—c| andz= |c—d|. Then we havéd(a,c) + d(b,d) = x+2y+z=
d(a,d) +d(b,c).

Case 2 Either aor b, but not both, are in between cand d

Letx=|a—c|,y=|c—blandz= |b—d|. Then,d(a,c)+d(b,d) =x+z<x+2y+z=
d(a,d) 4 0(b,c).

Case 3 Bothaand b arein betweencandd

Letx=|c—al,y=|a—b|andz= |b—d|. Then,d(a,c)+d(b,d) =x+z<X+2y+2z=
d(a,d) +9d(b,c)

We relate this lemma to the directed swap distance with the following corollary.

Corollary 4.2. Let Sand T be sets of points on the line. Then there exists a minimal surjection g* from Sto
T suchthat for all 5 < 'sj, Y*(s) < P*(sj).

Proof. Let ) be a minimal surjection function that does not satisfy the lemma. Then there xsiss@nme
S < sj wherey(sj) < Y(s). Lety(sj) =tx andy(s) =t. Consider a new functionp*, which differs
from Y only by havingy*(s) = tx andy*(sj) =t;. By the quadrangle inequality lemma we have that
Yses|S—WH(9)| < Sees|s—W(s)|, thus proving our hypothesis. O

The first thing to note is that since all element$SandT lie on a line, corollary 4.2 implies that no cross-
ings can occur in an optimal assignment. Therefore, we know that thelgraent ofS must be mapped to
the first element oT. Furthermore, also by corollary 4.2, given tisais mapped td;, we can predict that
S+1 is optimally mapped to eithey ortj. ;. The proposed algorithm builds a directed acyclic graph whose
structure takes advantage of these two observations.

Let S T be sets of integers on the interv@, X), where|S > |T|, and lets be theith element ofS.
We construct a weighted directed acyclic grapk= (V,E) in the following way. For each pait j where
1<i<|Tlandi < j<(i+|9—|T|), we create a vertex; j. From eachy; ; we add an edge tq ;.1 with
weight|ti —sj;1|, and an edge t@ 1 ;1 With weight|ti ;1 —Sj; 1|, providedy; j;1 andvi,1 j+1 exist. Finally,
we create a node labeled ‘start’ and put one edge from ‘stavi’ favith weight|s; —t1|. An example of this
construction is shown in Figure 5. The bold lines represent the minimum-leagiithrough the graph, and
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Figure 5: A directed acyclic graph created fr&w {0, 2, 7, 12, T = {1, 4, 11}. The bold lines represent
the shortest path through the graph, which has weight 6.

correspond to the minimum surjection shown in Figure 1 (b).

It remains to show that the weight of the minimum-length patR) returned from ‘start’ tov7 |5 is equal
to the cost of the minimum surjection betwe®andT, c(). We do this by showing first tha{y) < w(P),
and then that(y) > w(P).

Lemmad4.3. c() <w(P).

Proof. From a minimum weight patR* we create a surjectiof in the following way. For each vertey, j
thatP* passes through, l€i(s;) =t;. We can verify thatp is indeed a surjection by noting two things. First,
eachs; is mapped to only ong, since edges from j to viy1; do not exist in the construction. Second,
everyt; receives at least ong, since no path exists from x to vi,2y without first passing through some
Vi+12. This surjectionp has a cost equal to that Bf, since forj =2 to|S, |sj — Y(sj)| = W(Vxj—1,W,j) and
|s1 —P(s1)| = w(startvy 1). Hencec(y) < w(P). O

Lemmad4.4. c(y) >w(P):

Proof. From an optimal surjectiod) we can create a path using the following method. By corollary
4.2, forj =1to|S —1, there are only two possibilities. Whar(s;) =t andy(s; + 1) =t; add the edge,
(Vi,j,Vi,j+1) to P. Otherwisej(sj) =t andyi(s; + 1) =t; + 1, so we add the edd®; j,Vi+1,j+1) to P. Finally
we add the edge (‘starty 1).

It follows thatP is a path through the constructed graph from ‘start o, 1. A consequence of lemma
4.2 is that/(sj) =t implies thaty/(sj;1) =t or ¢/'(sj+1) = ti+1, which means that the corresponding
path P is connected irG. Also, notice that there are exactly= |§ — |T| integers,j, wherey/(s;) =t
andy/'(sj11) = ti. Thus, afterlS steps alond® we must be at nodeg |« = Vig,r|- From the definition
of the weight function it follows thaP has a weight equal to that d@f’. Hence,P is a valid path and
c(y) > w(P). O

Theorem 4.5. c(W) = w(P).
Proof. The result is immediate from lemmas 4.3 and 4.4. O

As for the complexity of this method, first €8 = nand|T| = m. Since in our construction each vertex
has at most two edges pointing to it, we have tEat= O(|V|). Also note thatV| = nx (n—m). Therefore
the construction taked(|V |+ |E|) = O(|V|) time, and the single source shortest path algorithm for directed
acyclic graphs also tak&(|V |+ |[E|) = O(|V|) time [3]. Therefore the entire algorithm runs@{|V|) time,
which isO(r?) in the worst case, thus improving on the previous best complexi®(ot) for this problem
due to Eiter and Mannila [5].
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