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Abstract

Let S andT be two finite sets of points on the real line with|S|+ |T |= n and|S|> |T |. Therestriction
scaffold assignment problem in computational biology assigns each point ofS to a point ofT such that the
sum of all the assignment costs is minimized, with the constraint that every element ofT must be assigned
at least one element ofS. The cost of assigning an elementsi of S to an elementt j of T is |si− t j|, i.e., the
distance betweensi andt j. In 2003 Ben-Dor, Karp, Schwikowski and Shamir [2] published anO(n logn)
time algorithm for this problem. Here we provide a counter-example to their algorithm and present a new
algorithm that runs inO(n2) time, improving the best previous complexity ofO(n3).

1 Introduction

In the context of measuring the similarity of musical rhythms with the goal of performing a phylogenetic
analysis of rhythms, Toussaint [8] proposed the use of the swap-distance. A comparison of this distance
measure with other rhythm dissimilarity measures shows it to be superior in several respects [9]. In [8] and
[9] the rhythms are represented as binary sequences, where a ‘1’ denotes the onset of a note and a ‘0’ denotes
a silence. Furthermore, all the rhythms compared have the same length,n bits, with the same numberk of
1’s (or onsets). A swap operation on a string consists of interchanging two adjacent elements in that string.
The swap distance between two binary strings is defined as the minimum number of swap operations needed
to transform one string into the other. In this restricted version of the problem, computing the swap-distance
is very simple. For alli, theith ‘1’ of one string must move to the position of theith ‘1’ of the second string.
Therefore the number of swaps needed for one such operation is the difference between their indices (which
may be viewed as integerx-coordinates). The swap distance is the sum of all thek differences, which may
be trivially computed inO(n) time given the two binary sequences as input. Note that actually performing
the swaps may requireΩ(n2) swaps.

In a more general setting, the two rhythms have different values ofk, and the algorithm described in
the preceding will not work. In order to capture the attributes of the swap distance measure on two binary
stringsS andT whereS has more elements thanT , Toussaint proposed thedirected swap distance, which
was first applied to the phylogenetic analysis of Flamenco rhythms by Dı̀az-B́añez et al. [4]. The directed
swap distance is defined as the minimum number of swaps required to move every element ofS to the index
of an element ofT , with the restriction that every element ofT must have at least one element ofS moved to
its index.

The directed swap distance may be viewed as a version of the linearassignment problem [6], where
the cost of an assignment between an elementi of S and an elementj of T is the distance betweeni and j.
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Figure 1: (a) A surjection between the two one dimensional setsS = {0, 2, 7, 12} andT = {1, 4, 11}. (b) A
minimal surjection betweenS andT .

Furthermore, we may consider the more general input consisting of two setsof numbers on the real line rather
than binary sequences. Here the real numbers play the role of the indicesof the 1’s in the binary sequence. In
this setting, if both sets have equal cardinalities, the simple algorithm describedin the preceding for binary
sequences may still be used after sorting the sets, thus yielding anO(n logn) time algorithm.

An alternate way of viewing the directed swap distance is as a surjection,ψ, between two sets of elements
S (the source) andT (the target) on the interval(0,X) where |S| ≥ |T |. This mapping is bound by the
constraint that each element ofT must have at least one element ofS mapped to it. More formally the
directed swap distance may be expressed as a surjection as follows:

min
ψ ∑

s∈S

|s−ψ(s)|. (1)

Any surjection that satisfies the preceding equation we call a minimal surjection. Figure 1 depicts two
different surjections between two sets of points on the line, one of which is minimal. Note that all the points
actually have zeroy-coordinates; they are shown in this way merely for the purpose of clarity.

In 1979 the philosopher Graham Oddie proposed using surjections to measure the distance between two
theories expressed in a logical language [7]. In 1997 Eiter and Mannila extended this idea by expressing
theories as models, and thus as points in a metric space [5]. This gave them a new distance measure in a
metric space which they called the surjection distance. The surjection distancebetween two setsS andT is
defined as follows:

min
ψ ∑

s∈S

δ(s,ψ(s)), (2)

whereδ is a distance metric on the space, andψ is a surjection betweenS andT . They also proposed an
algorithm for computing the surjection distance inO(n3) time, wheren = |S|, by reducing the problem to
finding a minimum-weight perfect matching in an appropriate graph.

In 2003, Ben-Dor et al. [2], in the context of the shotgun sequencing problem in computational biology,
introduced a modified assignment problem similar to the directed swap problem where the points are real
numbers on the line rather than bits in a binary string: therestriction scaffold assignment problem. They
also presented anO(n logn) algorithm to compute this assignment problem. Their result relies heavily on
a result of Karp and Li [6] which provides a linear time algorithm (after sorting) for computing theone-to-
one assignment problem in the special case where all the points lie on a line. In theone-to-one assignment
problem betweenS andT some elements ofS remain unassigned.

In this note we give a counter-example to the algorithm of Ben-Dor et al., [2]for computing the restriction
scaffold assignment problem, and show that the problem may be solved inO(n2) time.
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Figure 2: The bipartite graph created fromS = {0, 2, 7, 12}, T = {1, 4, 11}. The bold lines represent the
minimum perfect bipartite matching, which has a cost of 6.

2 The Algorithm of Eiter and Mannila

Since ourO(n2) algorithm is inspired by, and based on, some results of Eiter and Mannila [5], we describe
in this section their main results for the sake of clarity and completion. The proofs of these results may be
found in [5]. Their algorithm is based on a reduction to finding a minimum weightperfect matching in a
suitable bipartite graph. The reduction makes use of the following observation.

Lemma 2.1. Let ψ be a minimal surjection from S to T . Then for any si 6= s j if ψ(si) = ψ(s j) the distance
from si to ψ(si) is not more than the distance from si to any other element of T.

Taking advantage of this result their algorithm createsk = |S|−|T | auxiliary vertices. These vertices serve
as dummy nodes, for which the distance to anys ∈ S is made equal to that of the shortest distance froms to
any element ofT . This allows the graph to effectively simulate the situation where two or more vertices are
mapped to the same element ofT .

This construction is carried out as follows. For two sets,S andT in a metric space, create a complete
bipartite weighted graphG = (X ∪Y,E,w). For eachsi ∈ S construct a vertexxi ∈ X . For eacht j ∈ T create
a vertexu j ∈U . Finally, for k = |S|− |T |, create a set of nodesV = {v1, ....,vk}, and letY = (U ∪V ). The
weight functionw is defined as follows:

w(e) =

{

e = (xi,u j), δ(si, t j)
e = (xi,v j), mint∈T δ(si, t)

(3)

wheresi, t j are the set elements corresponding to the verticesxi,u j, respectively.
Figure 2 illustrates this construction with the setsS = {0, 2, 7, 12} andT = {1, 4, 11}. The bold lines

represent the minimum perfect bipartite matching, and correspond to the minimalsurjection depicted in Fig-
ure 1 (b). Letw(M) denote the minimum-weight perfect matching of the resulting graph, and letc(ψ) denote
the cost of the minimum surjection distance betweenS andT . Eiter and Mannila also prove the following
theorem.

Theorem 2.2. c(ψ) = w(M).

Letting n equal to|S|, Eiter and Mannila note that this reduction yields anO(n3) time algorithm since
the construction takesO(n2) time and their matching algorithm of choice takesO(n3) time for a complete
graph [3].

3 A Counter-Example to the Algorithm of Ben-Dor et al.

Ben-Dor et al. [2] presented anO(n logn) time algorithm for computing the restriction scaffold assignment
problem. In this section we describe their algorithm and exhibit an example on which the algorithm does not
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Figure 3: (a) The assignment returned by the algorithm in [2]. (b) A minimal assignment.

yield the claimed optimal solution.
The key idea in their algorithm is to split the problem into two parts. First, the minimal one-to-one

assignment,F , betweenS andT is found, leaving out a setE ⊂ S. Then each element ofE is mapped to its
nearest neighbor inS. The attractive feature of this procedure is that it runs in linear time provided that it
uses the Karp-Li algorithm to solve the first part of the problem (the one-to-one assignment) on points that
are already sorted.

A simple counter-example to this algorithm follows. Consider the two setsS = {0,2,7,12} and T =
{1,4,11} shown in Figure 3. The minimum one-to-one assignment function,F , is

F(0) = 1
F(2) = 4
F(12) = 11

(4)

which has a total cost of 4. Adding in the distance between 7 and its nearestneighbor inT , 4, gives a total
cost of 4+ 3 = 7. However, this is not a minimum-cost surjective assignment. We have already seen a
solution for these two sets in Section 2, where, using the algorithm of Eiter andMannila, we were able to
find a surjectionψ betweenS andT with values,

ψ(0) = 1
ψ(2) = 1
ψ(7) = 4
ψ(12) = 11

(5)

which has a total cost of 6, thus providing a counter-example to the algorithm.Figure 3 illustrates this
counter-example.

4 The New O(n2) Algorithm

In this section we propose a newO(n2) time algorithm for computing the the restriction scaffold assignment
problem (as well as the directed swap distance). The algorithm is based ona reduction to the problem of
computing the single source shortest path problem in a weighted directed acyclic graph. The construction is
inspired by the graph-theoretic approach of Eiter and Mannila, and reliesheavily on the following lemma,
sometimes called the quadrangle inequality [1].

Lemma 4.1. Let S and T be sets of points on the line. Also, let a distance function δ(s, t) = |s− t|. Then for
a,b ∈ S where a < b, and c,d ∈ T where c < d,

δ(a,c)+δ(b,d) ≤ δ(a,d)+δ(b,c) (6)

Proof. Three cases arise as pictured in Figure 4.
Case 1 :a and b are both less than c or, symmetrically, greater than d
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Figure 4: Illustration of lemma 4.1. The dashed lines represent the smaller distance.

Let x = |a− b|,y = |b− c| andz = |c− d|. Then we haveδ(a,c)+ δ(b,d) = x + 2y + z =
δ(a,d)+δ(b,c).

Case 2 :Either a or b, but not both, are in between c and d

Let x = |a− c|,y = |c− b| andz = |b− d|. Then,δ(a,c)+ δ(b,d) = x + z ≤ x + 2y + z =
δ(a,d)+δ(b,c).

Case 3 :Both a and b are in between c and d

Let x = |c− a|,y = |a− b| andz = |b− d|. Then,δ(a,c)+ δ(b,d) = x + z ≤ x + 2y + z =
δ(a,d)+δ(b,c)

We relate this lemma to the directed swap distance with the following corollary.

Corollary 4.2. Let S and T be sets of points on the line. Then there exists a minimal surjection ψ∗ from S to
T such that for all si < s j, ψ∗(si) ≤ ψ∗(s j).

Proof. Let ψ be a minimal surjection function that does not satisfy the lemma. Then there must exist some
si < s j whereψ(s j) < ψ(si). Let ψ(s j) = tk andψ(si) = tl. Consider a new function,ψ∗, which differs
from ψ only by havingψ∗(si) = tk and ψ∗(s j) = tl. By the quadrangle inequality lemma we have that
∑s∈S |s−ψ∗(s)| ≤ ∑s∈S |s−ψ(s)|, thus proving our hypothesis.

The first thing to note is that since all elements ofS andT lie on a line, corollary 4.2 implies that no cross-
ings can occur in an optimal assignment. Therefore, we know that the firstelement ofS must be mapped to
the first element ofT . Furthermore, also by corollary 4.2, given thatsi is mapped tot j, we can predict that
si+1 is optimally mapped to eithert j or t j+1. The proposed algorithm builds a directed acyclic graph whose
structure takes advantage of these two observations.

Let S, T be sets of integers on the interval(0,X), where|S| ≥ |T |, and letsi be theith element ofS.
We construct a weighted directed acyclic graphG = (V,E) in the following way. For each pairi, j where
1≤ i ≤ |T | andi ≤ j ≤ (i + |S|− |T |), we create a vertex,vi, j. From eachvi, j we add an edge tovi, j+1 with
weight|ti−s j+1|, and an edge tovi+1, j+1 with weight|ti+1−s j+1|, providedvi, j+1 andvi+1, j+1 exist. Finally,
we create a node labeled ‘start’ and put one edge from ‘start’ tov1,1 with weight|s1− t1|. An example of this
construction is shown in Figure 5. The bold lines represent the minimum-length path through the graph, and
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Figure 5: A directed acyclic graph created fromS = {0, 2, 7, 12}, T = {1, 4, 11}. The bold lines represent
the shortest path through the graph, which has weight 6.

correspond to the minimum surjection shown in Figure 1 (b).
It remains to show that the weight of the minimum-length pathw(P) returned from ‘start’ tov|T |,|S| is equal

to the cost of the minimum surjection betweenS andT , c(ψ). We do this by showing first thatc(ψ) ≤ w(P),
and then thatc(ψ) ≥ w(P).

Lemma 4.3. c(ψ) ≤ w(P).

Proof. From a minimum weight pathP∗ we create a surjectionψ in the following way. For each vertex,vi, j

thatP∗ passes through, letψ(s j) = ti. We can verify thatψ is indeed a surjection by noting two things. First,
eachs j is mapped to only oneti, since edges fromvi, j to vi+1, j do not exist in the construction. Second,
everyti receives at least ones j, since no path exists fromvi,x to vi+2,y without first passing through some
vi+1,z. This surjectionψ has a cost equal to that ofP∗, since forj = 2 to |S|, |s j −ψ(s j)|= w(vx, j−1,vy, j) and
|s1−ψ(s1)| = w(start,v1,1). Hence,c(ψ) ≤ w(P).

Lemma 4.4. c(ψ′) ≥ w(P) :

Proof. From an optimal surjectionψ′ we can create a pathP using the following method. By corollary
4.2, for j = 1 to |S|−1, there are only two possibilities. Whenψ(s j) = ti andψ(s j + 1) = ti add the edge,
(vi, j,vi, j+1) to P. Otherwise,ψ(s j) = ti andψ(s j +1) = ti +1, so we add the edge(vi, j,vi+1, j+1) to P. Finally
we add the edge (‘start’,v1,1).

It follows thatP is a path through the constructed graph from ‘start’ tov|S|+|T |. A consequence of lemma
4.2 is thatψ′(s j) = ti implies thatψ′(s j+1) = ti or ψ′(s j+1) = ti+1, which means that the corresponding
path P is connected inG. Also, notice that there are exactlyk = |S| − |T | integers, j, whereψ′(s j) = ti
andψ′(s j+1) = ti. Thus, after|S| steps alongP we must be at nodev|S|,|S|−k = v|S|,|T |. From the definition
of the weight function it follows thatP has a weight equal to that ofψ′. Hence,P is a valid path and
c(ψ′) ≥ w(P).

Theorem 4.5. c(ψ) = w(P).

Proof. The result is immediate from lemmas 4.3 and 4.4.

As for the complexity of this method, first let|S| = n and|T | = m. Since in our construction each vertex
has at most two edges pointing to it, we have that|E| = O(|V |). Also note that|V | = n∗ (n−m). Therefore
the construction takesO(|V |+ |E|) = O(|V |) time, and the single source shortest path algorithm for directed
acyclic graphs also takesO(|V |+ |E|) = O(|V |) time [3]. Therefore the entire algorithm runs inO(|V |) time,
which isO(n2) in the worst case, thus improving on the previous best complexity ofO(n3) for this problem
due to Eiter and Mannila [5].

6



5 Acknowledgement

The authors thank Marc Berndl and Paco Gomez for helpful discussions concerning this research.

References

[1] Alok Aggarwal, Amotz Bar-Noy, Samir Khuller, Dina Kravets, and Baruch Schieber. Efficient minimum
cost matching and transportation using the quadrangle inequality.Journal of Algorithms, 19(1):116–143,
1995.

[2] Amir Ben-Dor, Richard M. Karp, Benno Schwikowski, and Ron Shamir. The restriction scaffold prob-
lem. Journal of Computational Biology, 10(2):385–398, 2003.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms. MIT Press, Cambridge, Mass., 2001.
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