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Abstract

Given a finite set of points S, two measures of the depth of a
query point 6§ with respect to S are the Simplicial depth of Liu and
the Halfspace depth of Tukey (also known as Location depth). We show
that computing these depths requires Q(nlogn) time, which matches
the upper bound complexities of the algorithms of Rousseeuw and
Ruts. Our lower bound proofs may also be applied to two bivariate
sign tests: that of Hodges, and that of Oja and Nyblom.

1 Introduction

The notion of depth for a point with respect to a data set has been stud-
ied extensively by statisticians and computer scientists. Applications include
robust estimation, hypothesis testing, graphical display [MRR"01], data de-
scription, multivariate confidence regions, p-values, quality indices, control
charts [RR96], and even voting theory [RR99]. In general, the depth of a
point # quantifies the degree to which 6 is centrally located in a data set.
An introduction to several definitions of depth, as well as their properties, is
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given in [Sma90]. Below, we include descriptions of the Halfspace depth of
Tukey [Tuk75] and the Simplicial depth of Liu [Liu90].

Let S = {s1,...,8,} be a set of data points in R¢. The Halfspace depth
of a point # € R¢ with respect to S is the minimum number of points in S
contained in any halfspace which includes 6. The Stmplicial depth of a point
6 in R with respect to S is the number of simplices formed by d+ 1 elements
of S that contain #. To find the Simplicial depth of # in R?, we must find
how many triangles formed by triples of points in S contain 6. (Halfspace
and Simplicial depths are sometimes normalized by a function of n, although
in this paper we will not use normalization for either.)

In section 2 we describe simplified versions of the algorithms of Rousseeuw
and Ruts [RR96] for computing the Simplicial and Halfspace depth of a point
in R?. The time complexity of each algorithm is O(nlogn) in the RAM model
of computation. In section 3 we prove that the computation of Simplicial and
Halfspace depth in R? requires ©2(nlogn) time in the algebraic decision tree
model of computation. For a discussion on the connection between the two
models of computation, we refer the reader to [PS80]. Finally in section 4 we
show that the lower bounds also apply for the sign tests of Hodges [Hod55]
and of Oja and Nyblom [ON89].

2 Algorithms for the Depth of a Point in R?

The following two algorithms are simplifications of those of Rousseeuw and
Ruts [RR96].

2.1 Halfspace depth calculation

Suppose we have a data set S of n points, and a point € for which we want
to compute Halfspace depth.

First, note that it suffices to consider only halfspaces determined by lines
through 6. If any element in S coincides with # we can ignore it and increment
the depth value when we are finished. Sort S radially about # and construct
a directed line L through € and some point s in S. For example, in figure 1
L is directed from 6 to point 1. Let L; be the halfline on L that extends
from 6 and crosses s (shown thicker in figure 1). Count the number of points
on or to the left of L, excluding points on L;. This represents the points in
the closed halfspace defined by a line rotated slightly counterclockwise from



L. Rotate L counterclockwise until it encounters a new point. Notice that
it is possible for L to rotate through an angle of zero. If the next encounter
is on Ly, we know that the current halfspace defined by L will have one less
point. Otherwise, we know that the current halfspace will gain one point.
We update the minimum value found every time L changes direction (if there
are no two points collinear with @ this will happen every time). The process
ends when L has performed one full cycle.

In the example of figure 1, L initially contains points 6 and 1. The initial
halfspace contains points 2 through 6, so the initial minimum is five. When
L is rotated it first encounters point 7, which is not on Ly. Thus the new
halfspace contains six points and the minimum is still five. After the next
rotation, L will contain points 2,3,4 and 8. The minimum value found will
be updated to four after all of these points are processed.

Figure 1: Sorting technique for depth computation

The overall running time is dominated by the sorting step, so it is O(nlogn).

2.2 Simplicial depth calculation

To find the Simplicial depth of # with respect to S we can compute the
number of triangles formed by triples of points in S which do not contain 6
and subtract this number from the total number of triangles. We will use
the fact that the three vertices of a triangle which does not contain # must
lie in an open halfspace determined by a line through 6.

The algorithm for Simplicial depth relies on the same technique used for
Halfspace depth. Consider any halfspace determined by a line through 6.
Any triangle formed by points in that halfspace cannot contain 6. All that



is required to compute the Simplicial depth of # is to enumerate all such

triangles and subtract them from the total number which is g

Sort S radially about €, breaking ties by placing points furthest from 6
first. For each point s; (1 < ¢ < n) that is met by the line L we compute h;:
the number of points which are between 6 and s; or strictly to the left of L.

The number of triangles whose first vertex is s; and which do not contain 6 is

( i;l > By proceeding in this way we are sure that every triangle is counted

once. The quantity h is updated in the same way as in the previous section.
The Simplicial depth of @ is

(5)-5(5)

where z is zero if p < q.

The complexity is identical to that of calculating Halfspace depth.

3 Lower Bounds for Computing the Depth of
a Point in R?

In this section we show that computing Simplicial and Halfspace depths
requires 2(nlogn) time.

3.1 Halfspace depth lower bound

We show that finding Halfspace depth allows us to answer the question of
Set Equality, which has an €(nlogn) lower bound in the algebraic decision
tree model of computation [BO83|:

e Set Equality: Given two sets A = {a1,as,...,a,} and B = {b1,b,...,b,},
is A= B?

Lemma 1 Let S = {s1, S9,..., S} be a set of 2n points in the plane radially
sorted around the point @ ¢ S. Then the Halfspace depth of 0 is n if and only
if 55,0,Sn14 are collinear, with 0 between s; and sp14, for all 1 < i < n.



Proof. Suppose that s;,0,s,.; are collinear, with 6 between s; and s,;,
for all 1 < ¢ < n. Then for any line L through @, the points s; and s,;
either lie on opposite sides of L, or they both lie on L (see figure 2a). Since
we have n such pairs of {s;, s,+:}, each closed halfspace determined by a line
through 6 contains at least n points of S. The minimum of 7 is achieved by
selecting a line which does not touch any points of S.

Now suppose that s;.0,s,; are not collinear or that € is not between s;
and s,y; for some 1 < ¢ < n. Then since the angle /s;0s,.; < 2w, it is
possible to draw a line L through 6 such that s; and s,,; are on the same
side of L. Therefore all s; for 7 < 7 < n + 4 are strictly on one side of L.
Since there are at least n + 1 points strictly on one side of L, there are at
most n — 1 points on the other side or on the line. Thus the depth of 4 is at
most n — 1 (see figure 2b).

(a (b

Figure 2: Halfspace depth depends on angular symmetry

Theorem 3.1 Planar Halfspace depth requires Q(nlogn) time in the
worst case.

Proof. We reduce Set Fquality to Halfspace depth. Let A = {ay, as, ..., a,}
and B = {by, by, ...,b,} be two sets of real numbers. For every i (1 <i <n)
construct the points (a;,1) and (—b;, —1) in the plane'. Thus we have a set

'If non-degenerate points are desired, we can instead construct the points (ia;,i) and



S of 2n points, and we select (0,0) as the query point §. Considering the
elements of S in radially sorted order about f, the elements of A correspond
to the points s;...s,, and the elements of B correspond to s;11...S9,. The
only computation is the construction of S, which can be performed in linear
time. Suppose we now find the Halfspace depth of #. If it is n, we know
that s;,0,s,4,; are collinear for all 1 < 7 < n, by lemma 1. Therefore A = B.
Again, by lemma 1, if the depth of # is not equal to n, we cannot have n pairs
of points which are reflections of each other through 0, so A # B. Therefore
by finding Halfspace depth, we can answer the question of Set Equality.

|

3.2 Simplicial depth lower bound

We show that finding Simplicial depth allows us to answer the question of
Element Uniqueness, which has an Q(nlogn) lower bound in the algebraic
decision tree model of computation [BO83]:

e Element Uniqueness: Given a set A = {ay,as9,...,a,}, is there a
pair 7 # j such that a; = a;”?

Theorem 3.2 Planar Simplicial depth requires Q)(nlogn) time in the
worst case.

Proof. We reduce Element Uniqueness to Simplicial depth. Let A =
{ai,as,...,a,} be a set of real numbers, for n > 3. For every a; where
1 <4 < n construct the points (a;,1) and (—a;, —1) which are reflections of
each other through (0,0). Thus we have a set S of 2n points. s; and s,
are reflections of each other through the origin, which we select as the query
point 6.

Suppose s; is a unique element in S. Then the quantity h;, as defined in
section 2.2, must equal n — 1, since h; includes all points $;41, ..., Sp1i—1 (See
figure 3a). Thus if no element is duplicated in S, the Simplicial depth of 8
with respect to S must be

p=(5)-5("")

Now suppose s; = s;+1 for some . Then h; 11 < n—2, since h;; includes
at most the points s;19,...,8,1-1. It does not include the reflection of s;



(b)

Figure 3: (a) hy contains s3, s4, S5, 6. — (b) hs contains sy, s5, S but not s7.

(see figure 3b). Thus if some element is duplicated in S, the Simplicial depth
of 6 with respect to S is strictly higher than if S has no repeated elements.
Therefore by finding Simplicial depth, we can answer the question of Element
Uniqueness: the elements of A are unique if and only if the depth of (0,0)
with respect to S is D. The only computations in the reduction are the
construction of S and the computation of D, which can be performed in
linear time.

4 Ramifications

In this section we show that the lower bounds developed in section 3 may
be applied to the bivariate sign tests of Hodges [Hod55] and of Oja and
Nyblom [ON89]. Sign tests are used to determine if there is a statistically
significant difference in the two distributions of n pairs of data points.

4.1 The bivariate Hodges sign test

The Hodges sign test is conducted as follows: Given a direction d and a set
of n vectors formed by n pairs of points, project each vector onto d and count
the number of projections which have the same direction as d. We call such
vectors positive. The output of the test is the maximum number of positive
vectors found over all directions. Rousseeuw and Ruts [RH99] mention that
Halfspace depth is related to the Hodges sign test. We briefly explain how:
first, shift every vector to the origin. This does not influence any directions,
so the output of the test is unaffected. Now notice that for a given direction
d the number of positive vectors is determined by a halfspace orthogonal to



d. It is now clear that the maximum number of positive vectors over all
directions is the complement of the Halfspace depth of the origin.

Theorem 4.1 The bivariate Hodges sign test requires Q(nlogn) time in the
worst case.

Proof. The Halfspace depth of a query point # with respect to a data
set of n points may be determined by constructing n vectors (from 6 to each
data point) in linear time and applying the Hodges sign test at 6.

4.2 The bivariate Oja-Nyblom sign test

Given a data set of n points, the sign test of Oja and Nyblom involves
computing the number of triples of points, each of which has the property
that it falls on the same side of some line through the origin. Rousseeuw
and Ruts [RR96] mention that their methods, described in section 2, may be
used to compute this sign test. The relation to the problem of computing
Simplicial depth is clear.

Theorem 4.2 The Oja-Nyblom sign test requires 2(nlogn) time in the worst
case.

Proof. By computing the Oja-Nyblom sign test, Simplicial depth may be
determined in constant time.

5 Conclusion

We have shown that the computation of Simplicial or Halfspace depth for
one point in R? requires Q(nlogn) time. Thus we have matched the upper
bound complexity of the algorithms of Rousseeuw and Ruts. In addition, we
have shown that the computation of the bivariate sign tests of Hodges and
of Oja and Nyblom require 2(nlogn) time.

Recently we learned that a different lower bound proof for Halfspace depth
has been obtained independently by Langerman and Steiger [L.S00].
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