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Abstract -The relative neighbourhood graph (RNG) of a set of n points on the plane is defined. The ability of 
the RNG to extract a perceptually meaningful structure from the set of points is briefly discussed and 
compared to that of two other graph structures: the minimal spanning tree (MST) and the Delaunay 
(Voronoi) triangulation (DT). It is shown that the RNG is a superset of the MST and a subset of the DT. Two 
algorithms for obtaining the RNG of n points on the plane are presented. One algorithm runs in 0(n 2) time 
and the other runs in 0(n 3) time but works also for the d-dimensional case. Finally, several open problems 
concerning the RNG in several areas such as geometric complexity, computational perception, and 
geometric probability, are outlined. 
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1. INTRODUCTION points can be triangulated in many different ways. Two 
triangulations of the set of points given in Fig. 1 (a) are 

In many problems in pattern recognition, such as illustrated in Figs l(c) and (d). Triangulations have 
clustering ~11 and computational approaches to per- received a lot of attention in the past and have many 
ception, {2} one is given a set of points on the plane and areas of application. {31 The triangulation we are con- 
it is desired to find some structure among the points in cerned with here is the Delaunay triangulation, or 
the form of edges connecting a subset of the pairs of alternatively the locally equiangular triangulation, t4) 
points. In the clustering problem we would like to have To define the Delaunay triangulation we first in- 
an algorithm that joins two points if the two points troduce a structure known as the Voronoi diagram ~5~ 
belong to the same cluster of points. ~} In corn- (also Dirichlet tessellation). 
putational perception we would like an algorithm to Let P = {Pl,P2 . . . . .  p,} denote n distinct points on 
join pairs of points such that the final graph obtained is the plane. The Voronoi diagram partitions the plane 
perceptually meaningful in some sense/2) into disjoint regions or tiles (also Thiessen polygons) 

Two graphs that we will be concerned with in this such that the tile of p~ is the set T; defined by 
paper are the minimal spanning tree (MST) and the Ti = {x:d(x ,  pi) < d(x, pj) for all j ~ i I, 
Delaunay triangulation (DT). In the minimal span- 
ning tree of a set of points P edges are formed by where d denotes Euclidean distance. The Voronoi 
joining pairs of points to form a tree that spans P such diagram finds wide application in various fields such as 
that the sum of the Euclidean edge lengths is less than geography ~61 and has been used to find elegant and 
the sum for any other spanning tree. As an example efficient algorithms for many problems in compu- 
consider the set of points on the plane in Fig. l(a). The tational geometry by Shamos and Hoey/7~ The Vo- 
MST of that set is given in Fig. l(b). Observation of ronoi diagram for the set of points of Fig. l(a) is given 
Fig. l(b) suggests that the MST is a form of'skeleton' in Fig. l(e). The Delaunay triangulation is now easily 
of the data points. In addition, there is evidence that it explained. Two points pi and pj are joined by an edge if, 
has perceptual significance, eL21 and it has been used and only if, their corresponding tiles T~ and Tj share a 
extensively as a tool for cluster analysis, tL~6~ side. If this operation is carried out on the Voronoi 

A triangulation is more difficuit to define formaily. A diagram of Fig. l(e) one obtains the Delaunay tri- 
set P, of points in the plane, is triangulated by a subset, angulation illustrated in Fig. l(f). 
T, of the straight line segments whose endpoints are in In this paper we investigate a graph which we call 
P, if T is a maximal subset such that the line segments the relative neighbourhood graph (RNG) of a finite 
in T intersect only at their end points. Intuitively, planar set. It is based on the notion of'relatlvely close' 
edges are formed such that as many triangles as neighbours defined by Lankford ~s~ and has not re- 
possible are created without crossing lines. A set of ceived any attention in the literature on computational 
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• geometry or pattern recognition. The R N G  is defined 
• in section 2 and its ability to extract perceptually 

• e •  relevant structures from sets of  points is compared to 
• that of  the MST and the DT. In section 3 the R N G  is 

• • related to both the MST and the DT. Two  algorithms 
for finding the R N G ,  ofn points on the plane, are given 

• in section 4. One algorithm runs in 0(n 3) time while the 
(a) A set of points on the plane, other requires 0(n 2) time. Finally, some open problems 

are discussed in section 5. 

2. THE RELATIVE NEIGHBOURHOOD GRAPH 

Consider again a set P of n distinct points on the 
plane: P = {P l ,P2 , . . .  ,Pn}. There are many possible 
ways of defining whether or not two points Pl and p~ are 

• neighbours of  each other. Several definitions are 
(b) Minimal spanning tree of points in (a). considered/1.2.8.15~ Lankford~8~ defines two points pi 

and p~ as being 'relatively close' if d(p~,p~) < 
max[d(p~,pk),  d(pj,  pk)] for all k = 1 . . . . .  n, k ¢ i ,  j. 

(c) • 

(d) • • 

(a) A set of points. 

(el Voronoi diagram of points in (a). 

if) Delaunay triangulation of points in (a). (b) Relative neighbourhood graph of points in (a). 

Fig. I. Fig. 2. 
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Actually, Lankford uses "< '  rather than ' < '  in his • 
definition. The difference is essentially that with this 
minor modification, in a degenerate situation such as 
three points lying equidistant from each other, all 
three points are considered relative neighbours of each 
other, whereas with only ' < '  in the definition none of • • • 
the three points are relative neighbours of each other. 
Intuitively, the definition states that two points are 
relative neighbours if they are at least as close to each 
other as they are to any other point. The relative • • 
neighbourhood graph is obtained by connecting an 
edge between points p~ and p~ for all i , j=  1, . . . ,  n, i ~ j  • 
if, and only if, Pi and pi are relative neighbours. Figure 2 (a) Set of points on the plane. 
illustrates a set of points and its RNG. 

It is interesting to compare the perceptual relevance 
of the RNG to that of the MST and the DT. To this end 
consider a set of points for which the MST extracts a 
perceptually relevant structure. Such a set and its MST 
are illustrated in Fig. 3. Clearly the DT of the set of 
points of Fig. 3(a) fails as a perceptually meaningful 

• • (b) Delaunay triangulation of points in (a). 

• Fig. 4. 

• structure. However, we can find sets of points where 
• the reverse is true. Figure 4(a) shows a set of points 
• with its DT in Fig. 4(b). In this case the DT appears to 
• be more perceptually relevant than the MST. How- 
• ever, the RNG works well in both cases: in Fig. 3 the 

RNG agrees with the MST, and in Fig. 4 the RNG 
agrees with the DT. It is further possible to find very 
simple and basic sets of points where both the MST 

(a) A set of points on the plane, and the DT fail to extract the perceptually relevant 
structure. A strong case, in fact, for the RNG is a set of 
four points arranged in a square or rectangular fashion 

/ as in Fig. 5(a). Perceptually, the set of points im- 
mediately suggests a rectangle? 9) Here both the MST 
['Fig. 5(b)] and the DT [-Fig. 5(c)] fail and only the 
RNG yields the rectangle. This suggests that the RNG 
may have more perceptual significance than the MST 
considered in, ~1) at least for arbitrary sets of points. 
That this is not always the case can be shown by 
constructing a set of points that have important 
symbolic meaning such as those in Fig. 6(a) which 
clearly indicate the letter 'G'. The MST [Fig. 6(b)] 
yields a 'G'  but the RNG [-Fig. 6(c)] does not. In short, 
the RNG is more adaptive to the data in the sense that 
it imposes less structure than either the MST or the 
DT. 

Figures 7, 8, and 9 illustrate further sets of points 
and their RNGs. Unlike the set of points in Fig. 2 
which consists of points in a somewhat arbitrary (bj Minimal spanning tree of points in (a). 
position, the points in Figs 7, 8, and 9 are more 

Fig. 3. symmetrically arranged. As a result many more tri- 
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• • O • 

• • (a) Set of points on the plane. 

(a) A set of four points on the plane. @'' 
(b) Minimal spanning tree of points in (a). 

_ _ 

(b) Minimal spanning tree of points in (a). 

(c) Relative neighbourhood graph of points in (a). 
Fig. 6. 

angles and squares appear. Recall from Figs 3 and 4 
that the R N G  sometimes behaves like an MST and at 
other  times like a DT. These figures, in particular Fig. 
2, suggest that the R N G  is a structure 'lying some- 
where in between' the MST and the DT. In the next 
section we show, in fact, that the R N G  is a superset of 

- " the MST and a subset of the DT. 
(c) Delaunay triangulation of points in (al. 

3. TWO THEOREMS CONCERNING THE RNG 

Theorem 1. The relative neighbourhood graph is a 
superset of the minimal spanning tree. 

Proof. Consider two points a and b as in Fig. 10. Let 
A 

R denote the interior of the intersection of the two 
circles with centres at a and b and let B denote the 
boundary of R. Let c be a third point in a non- 
degenerate position, i.e., c~ B. (If c lies in B, d(a, b) = 
d(c,b) or d(c, al and the MST is non-unique.) Thus c 
must lie either in R or in/~, the complement  o fR  w B. If 
c~R then d(a,c) < d(a,b) and d(b,c) < cl(a,b), and it 
follows that ab~ MST. Thus a necessary but not a 
sufficient condit ion for a b e M S T  is that all other 

w w 

points lie in /~. However,  this is a necessary and 
(dl Relative neighbourhood graph of points in ( a ) .  sufficient condit ion for abeRNG.  Therefore, 

Fig. 5. M S T ~  RNG.  Q.E.D. 
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Theorem 2. The relative neighbourhood graph is a • • 
subset of the Delaunay triangulation. • • 

Proof. Consider again two arbitrary points a and b • • 
from a finite set of points as in Fig. 10. We must  show • • • • 
that i fab • R N G  then ab • DT. Assume that ab • RNG. 
It follows from the definition that no other points lie in • • • • • 
R. We now ask under what condit ions the tiles To and • • • • • • 
T b of the Voronoi  diagram do not  share a side. 
Consider two addit ional  points, say c and d, that lie • • • 
somewhere on B as in Fig. 119 where the Voronoi  • • 
diagram is indicated with dashed lines. Observe that • • • • 
the Voronoi  lines associated with ca and ad are the • • • 
perpendicular bisectors of the lines joining ca and ad, • • 
respectively. Furthermore,  since a, c, and d all lie on a 
circle with its center at b, it follows that no  matter  how • 
close c and d are to a, T a and T~ will always share a side • • 
of non-zero length. Furthermore,  if either c or d lie in/~, (a) 
the length of the shared side of To and T b will tend to 
increase. Therefore, when no other points lie in R the 

• • • • • 

• • ( b )  

• • Fig. 8. 

(a) tiles To and  T~ always share a side. Therefore ab ~ DT. 
Q.E.Do 

Let  N ,  denote the number  of edges contained in the 
R N G  of n points on the plane. 

Corollary. The number  of edges in the R N G  of n 
points on the plane is bounded  by n - 1 < N e _< 3n - 6, 
and is thus 0(n). 

Proof. By definition, the MST contains n -  1 edges. 
Since the MST is a subset of the R N G  (Theorem 1) it 
follows that N,  _> n - 1, where the equality holds when 
R N G  = MST. It has been shown that a graph without 

. ~ ~  crossings can contain  at most 3 n - 6  edges and that this 
bound  is achieved when all faces of the graph are 
triangles, c: ~ Therefore the DT contains at most 3n - 6 
edges. Since the R N G  is a subset of the DT (Theorem 
2) it follows that N ,  < 3 n -  6 where the equality holds 
when R N G  = DT. Thus'0(n) < N~ < 0(n) and we have 
N, = 0(n). 

v w 

( b )  4. T W O  A L G O R I T H M S  F O R  F I N D I N G  T H E  R N G  

Fig. 7. Let n points be given by their Cartesian coordinates 
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• • I / /  

• • i C ' 
• 

• • • Q 

• • • • • S 

• • • • • • • F i g .  I t .  

• • • 
• • • • • • • value of dk, x that is smaller than d(pl, pfl. If such a 

• a, • • • point is not found, an edge is formed between p~ and pj. 
Step 1 of this algorithm requires 0(n 2) operations to 

(a) yield 0(n 2) pairs. Furthermore, for each of these pairs 
steps 2 and 3 each require 0(n) operations. Hence the 
overall complexity of this algorithm is 0(n3). 

Algorithm RNG-2 
Step 1. Compute the Voronoi diagram of the set of 

points. 
Step 2. Obtain the Delaunay triangulation from the 

Voronoi diagram. 
Step 3. For each pair of points (Pi, Pj), associated 

with an edge of the DT, compute d~ax = max{d(pk, P0, 
d(pk,p~)} for k = l  . . . . .  n, kvai, k ~j. 

Step 4. Same as Step 3 of algorithm RNG-1, with 
edges of the DT only. 

The Voronoi diagram (Step 1) can be computed in 
0(n log n) worst-case running time/TI Since there are 
0(n) edges in the Voronoi diagram~7~ and each yields an 

(b) edge in its dual, the DT, Step 2 requires 0(n) operations. 
In Step 3, for each pair of points considered, 0(n) Fig. 9. operations are required, and since only 0(n) pairs need 
be investigated this step runs in 0(n 2) time. Since Step 4 

pl(xl,yx), pz(x2,y2) . . . .  , p,(x,,y,). It is required to find is 0(n 2) the algorithm's complexity is dominated by 
their RNG. In this section we give two algorithms for Steps 3 and 4 and is thus of 0(n2). 
finding the RNG. The first, RNG-1, is the obvious and It is clear that the reason why algorithm RNG-2 
naive algorithm which has a complexity of 0(n3). The requires 0(n z) running time is that for each of the 0(n) 
second, RNG-2,  uses knowledge from Theorem 2 and edges of the DT, 0(n) points are tested for proximity. It 
has a complexity of 0(n2). follows that if for each edge of the DT only a small 

fraction of the points were tested for proximity the 
Algorithm RNG--1  algorithm should run faster. Such a modification of 

Step 1. Compute the distance between all pairs of algorithm RNG-2 is possible using the 'cell' or 'bin' 
points d(pi, p~ ) i,j= 1, . . . ,  n, i~j .  approach/TM First, the region in which the n points lie 

Step 2. For each pair of points (p~, p~) compute d~,x is divided into a x/n x x/n grid of n bins and each point 
= max{d(pk, p~), d(pk, pj)} for k = 1 . . . . .  n, k # i, k ~:j. is 'placed' in a bin using the floor function. Thus each 

Step 3. For each pair of points (p~,pj) search for a bin has a pointer to a list of its points. Each edge of the 
DT now specifies a small group of cells, as a function of 

B a the edge length, which in turn identifies the points to be 
~ / ~  ~-.-~---..~ I tested. It is conjectured that for some 'nice' distri- 

butions of the points this modification of algorithm 
n / oc RNG-2 will run in 0(n) expected time. 

An idea that also comes to mind for restricting the 
number of points tested for each edge of the DT is to 
test only those points that are Delaunay neighbours of 
the two vertices of the edge being considered. It is also 
conjectured that for some 'nice' distributions this 

Fig. 10. algorithm will run in 0(n) expected time. Unfortunately 
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the algorithm does not always work. It is easy for the ~ ,  
reader to construct an example with five points to 
convince himself that this algorithm does not yield the 
RNG. Nevertheless, it can be considered as an appro- 
ximate algorithm for the RNG. ~, 

" t o a d  . . . .  s t a r f i s h "  

5. OPEN P R O B L E M S  AND C O N C L U D I N G  REMARKS 

One of the main goals of this paper is to introduce 
the RNG to the literature on pattern recognition, , ~  ~ ~ J "  
perception, and computational geometry, and to point - ~ . /  \~ 
out that the RNG opens a host of problems in several "wiggly snake . . . .  convex snake" 
areas of research. In this section we will outline some of 
the more interesting open problems concerning the 
RNG. 

(a) Non-Euclidean case. In this paper we assumed 
that the weight, associated with an edge of the - ~  --._, 
complete graph of the set of points, was equal to the " k i t e "  
Euclidean distance between the vertex points of the 
edge. In general the weights could take on arbitrary Fig. 12. 
values and we would then have a non-Euclidean RNG. 
Algorithm 1 would still work in this case and thus we what is the probability that a certain event occurs in 
have an 0(n a) algorithm for the non-Euclidean RNG. the RNG of the points. For  example, let n -- 4. In this 
It remains an open problem whether we can do better case the RNG can assume only a few easily recogniz- 
than this. able classes of forms illustrated in Fig. 12 : the ' toad',  

(b) d-Dimensional case. In this paper only the two- the'starfish', the'wiggly snake', the'convex snake', and 
dimensional problem was considered. It is clear that last and least the degenerate 'kite' (degenerate because 
algorithm 1 generalizes to the d-dimensional case. this form only occurs when the sides joining the tail 
Thus we have an 0(n 3) algorithm for arbitrary fixed have equal length which happens with probability 
dimensions. It is an open question whether we can do zero.) Are there more ' toads'  than 'starfish'? 
better than this in three and higher dimensions. (h) A final open problem has to do with the 

(c) Is there an 0(n log n) algorithm? Alternatively, relevance of the RNG to the perceptual process. 
find a lower bound on the problem. Section II suggests that the RNG is a powerful model 

(d) Several techniques have been found recently for of low-level visual processes involved in the perception 
making algorithms run in linear expected time. (1°-12) of certain dot patterns. It would be interesting to 
Can such algorithms be found for the RNG problem? compare the RNG to other structures such as those 

(e) In this paper the RNG was related to two other used in (1} and TM and to determine its limits as a model 
graph structures: the MST and the DT. It would be of human perceptual mechanisms. 
interesting to find relationships between the RNG and 
other graph structures such as the minimum weight SUMMARY 
triangulation and those considered in (2) and (s}. The problem of extracting the perceptually mean- 

( f )  Another class of problems relates to the statisti- ingful structure from a dot  pattern or finite set of poir~ts 
cal properties of the RNG. Such problems include: on the plane is considered. Two relevant g raph-  
what is the expected number of circuits in the RNG ofn theoretical structures are reviewed : the minimal span- 
points when the n points are randomly chosen from a ning tree (MST) and the Delaunay (Voronoi) tri- 
given distribution? What is the expected area of the angulation (DT), and their limitations for solving the 
largest circuit ? What is the expected length of the above problem are illustrated with examples. A graph, 
RNG? Theorem 1 partially answers the last question termed the relative neighbourhood graph (RNG), 
with the help of existing results for the MST. Let based on the notion of relative neighbours proposed 
EIMST ) and E{RNG} denote the expected length of by Lankford in a geographical context, is proposed as 
the MST and RNG, respectively. Gilbert (~3) and an improvement to the MST in solving the problem of 
Roberts (14~ showed that for n points distributed ac- extracting the perceptually relevant structure from a 
cording to a Poisson process in the unit square, in the dot pattern.  It is shown that the RNG is a supergraph 
limit as n ~ ~ ,  E[MST} = kx/p/~ where 0.5 _< k _< o f t h e M S T a n d a s u b g r a p h o f t h e D T .  Two algorithms 
0.707. From Theorem 1 it follows that E[RNG} _> for obtaining the R N G  of n points on the plane are 
E{MST 1 and therefore for the Poisson process above presented. One algorithm runs in 0(n 2) time and the 
E{RNG} >_ kx/'~i, other runs in 0(n s) time but works also for the d- 

(g) T h e R N G  also opens new problems in geometri- dimensional case. Furthermore, a modification is 
cal probability. In general, if n points are generated proposed that should make the algorithms run much 
randomly according to a given distribution, we can ask faster on average, and it is conjectured that for n points 
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