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Abstract

This thesis studies measures of musical rhythm complexity. Informally, rhythm complex-
ity may be thought of as the difficulty humans have performing a rhythm, listening to a
rhythm, or recognizing its structure. The problem of understanding rhythm complexity has
been studied in musicology and psychology, but there are approaches for its measurement
from a variety of domains. This thesis aims to evaluate rhythm complexity measures based
on how accurately they reflect human-based measures. Also, it aims to compare their per-
formance using rhythms from Africa, India, and rhythms generated randomly. The results
suggest that none of the measures accurately reflect the difficulty humans have performing
or listening to rhythm; however, the measures do accurately reflect how humans recognize
a rhythm’s metrical structure. Additionally, the results suggest a need for normalization of
the measures to account for variety among cultural rhythms.

Abrégé

Cette thèse examine les mesures de complexité rythme musicale. La complexité de rythme
représente notre difficulté en jouant, en écoutant, ou en reconnaissant la structure, d’un ry-
thme. La compréhension de la complexité étaı́t étudiée dans les champs de musicologie et
de psychologie. Cependant, il y a d’autres méthodes de mesurage. Cette thèse a l’intention
d’évaluer les mesures de complexité rythmique basé sur leurs exactitude de réfléchir leurs
mesures humaines. Le but est aussi de faire comparer la performance des mesures en util-
isant des rythmes de l’Afrique, de l’Inde, et des rythmes réalisés aléatoires. Les résultats
suggèrent qu’aucun des mesures ne peuvent réfléchir exactement notre difficulté en jouant
ou en écoutant des rythmes. Cependant, les mesures peuvent réfléchir avec précision notre
moyen de reconnaitre la structure métrique de rythme. Les résultats suggèrent un besoin de
normaliser les mesures pour rendre compte les variétés des rythmes culturels.
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Chapter 1

Introduction

Mathematics has been used to study music for quite some time. Indeed, since Pythago-
ras first discovered the relationship between numerical proportions and musical harmonies
over 2500 years ago [133], the connection between mathematics and music has also been
commented on by many other notable figures throughout history. For instance, the famous
mathematician and philosopher, Gottfried Wilhelm Leibniz, indicated a deep, unconscious
relationship between mathematics and music when he stated that, “music is the pleasure
the human mind experiences from counting without being aware that it is counting.” Henry
David Thoreau, a renowned American author, elegantly pointed out a possible tie between
the two domains with the words, “the most distinct and beautiful statement of any truth (as
of music) must take at last the mathematical form.” Additionally, the well-known American
science and mathematics writer, Martin Gardner, observed that “a surprising proportion of
mathematicians are accomplished musicians. Is it because music and mathematics share
patterns that are beautiful?”
1.1 Context of the Problem

While statements recognizing the connection between mathematics and music are plen-
tiful [7, 32], mathematical approaches to music have seen advances since the days of
Pythagoras. In the 1930s, the composer and music theorist Joseph Schillinger developed
a mathematically-based system for musical composition [138, 139, 140]. Schillinger de-
votes an entire book to aspects of music, such as rhythm, melody, and composition. He
begins with a book on rhythm, where he touches upon principles of periodicity and syn-
chronization, to generate new periodicities. Schillinger uses fundamental mathematical
functions such as the least common multiple and greatest common divisor for grouping
rhythmic structure [138]. Some viewed this work as a “cultural event of considerable im-
port” [112], while others criticized it as an “example of misplaced ingenuity” [112]. Never-
theless, the Schillinger system sparked interest by the famous American composer George
Gershwin who was a student of Schillinger for several years [112]. During this time, oth-
ers in the domain of music applied mathematics to music theory. In the 1940s, the French
composer Olivier Messiaen used mathematical properties of symmetry to explore musical
rhythm [109]. However, even as mathematical principles began to gain popularity among
music theorists and composers, there was one landmark event which strengthened the con-
nection between mathematics and music: the advent of the digital computer. With this new
technology, the foundations of mathematics could be used to analyze music in a new way.
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In fact, the computer had been readily applied to the comparative analysis of music
in 1949, by Bertrand Bronson from the University of California at Berkeley. He was the
first to analyze music using the computer when he compared tunes of the British-American
folk tradition [12]. Bronson coded elements from the musical pieces, such as melodic and
rhythmic features, and compiled a large corpus to enhance his research with a multitude
of ways for indexing the musical tunes for comparison [11, 12]. Work such as this lead
researcher Tobias Robison, of Princeton University, to pose questions: “How can musical
information be fed into a computer?” and ”[W]hat sorts of things can a computer be made to
do with this information?” [134] From questions such as these, many areas of music were
approached; e.g., systematic methods for style analysis (La Rue’s work [135] in 1962),
the analysis of theory regarding atonal music (Forte’s work [58] in 1965), and statistical
analysis regarding components of music (Mendel and Lockwood’s work [11] in 1967).

Since many computer-based music projects commonly share the need for information

from the music, perhaps the words of Milton Babbitt in 1965, are most fitting: “the al-
ready vast research on information retrieval is probably the first object to which the mu-
sic scholar should apply its techniques” [5]. However, perhaps Babbitt’s words and the
previously mentioned work of Mendel and Lockwood [11], as well as the work of oth-
ers [12, 58, 84, 135, 142], were a few decades ahead of their time. It wasn’t until about
the turn of the millennium that techniques from the field of Information Retrieval had be-
gun to be widely applied to music. The article by Bainbridge et al. [6] lit the fuse, so to
speak, of the now booming field of Music Information Retrieval (MIR) [13]. J. Stephen
Downie provides a definition for MIR: “a multidisciplinary research endeavor that strives
to develop innovative content-based searching schemes, novel interfaces, and evolving net-
worked delivery mechanisms in an effort to make the world’s vast store of music accessible
to all” [42]. Though, more recently, Tzanetakis et al. define MIR in a more general way:
“[MIR is] an emerging interdisciplinary research area that encompasses all aspects of ac-
cessing digital music material (emphasis added)” [177].

As MIR is a widely interdisciplinary field, powerful approaches from Machine Learn-
ing, such as those found in Pattern Recognition, are being incorporated into the MIR do-
main. Underlying these approaches is the extraction of features [53, 62, 63, 108]. In gen-
eral, a feature may be defined as, “a notable or characteristic part of something. . . something
that helps distinguish one thing from another (or one group of things from another group
of things)” [76]. Moreover, a feature must be chosen such that it is considered salient; i.e.,
evokes heightened attention [76]. The question now becomes: How does one know whether
or not some feature evokes heightened attention with regard to music? One possible way
to determine this, is to investigate what evokes attention from those who practice the schol-
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arly study of music; i.e., musicologists. However, as pointed out by musicologist Richard
Parncutt, “musicology today covers all disciplinary approaches to the study of all music in
all its manifestations and all its contexts” [115]. Since the field of musicology has such
breadth, as indicated by Parncutt’s definition, then it admits a wide variety of topics which
may be considered as a features of music.
1.2 Problem Statement

The feature of music considered in this thesis is complexity. Specifically, I am writing
about formal measures of the complexity of musical rhythm. However, first consider the
notion of complexity and how it can be applied to musical rhythm.

Depending on which academic field one considers, one may find a unique interpretation
of what complexity means. For instance, the computer scientist’s first thought may be that
of Kolmogorov complexity, which defines complexity of a string of characters as the short-
est program required to output (i.e., describe) that string [101]. The information theorist
may first think of Shannon’s information entropy, which describes complexity in terms of
the shortest possible representation of a message [143]. If neither of these definitions come
to mind, then perhaps one of the forty-two interpretations of complexity [103, 104], com-
piled by Seth Lloyd, would provide a suitable one. As Jeff Pressing states, “complexity is
multi-faceted”; and thus, perhaps some combination of the forty-two definitions would best
suit the broad notion that is complexity.

However, the application of such definitions of complexity, with respect to musical
rhythm, is not new. Work by psychologist R. H. Stetson in 1905, mentions that a rhythm
may be “more irregular, less ‘pure’ than that of the simple sound series” [154]. Thus, we see
early experimental studies and theoretical work regarding rhythm, along with a notion of
irregularity, which also may be considered to be an interpretation of complexity. Indeed, in
a study by the psychologist H. E. Weaver in 1939, he describes such rhythm irregularity to
be characteristic of musical syncopation [182]. Syncopation will be covered later; however,
consider it to be another (musically oriented) form of complexity [106, 125].

In addition to such early studies, research in the 1960s began to apply Shannon’s infor-
mation entropy to determine the complexity of rhythms. This is exemplified by the work
of Paul Vitz [179] in 1968, and one year later by Vitz and Todd [180] in 1969. The work
that followed these studies on rhythms presented a wide range of techniques and defini-
tions regarding the measurement of rhythm complexity. From the psychological literature,
studies comparing rhythm complexity measures to subjective human-based measures have
been presented by Povel and Essens [119], in 1985, Peter Essens [48] in 1995, Shmulevich
and Povel [146] in 2000, and most recently, Fitch and Rosenfeld [57] in 2007. Further-
more, measures of rhythm complexity have been seen in artificial intelligence [157, 158],

3



cognitive psychology [106, 125, 126, 150], computational geometry and computer sci-
ence [40, 67, 68, 86, 166, 173], engineering [145, 147], and psychology [48, 114, 121, 146].

Clearly, Pressing’s statement about complexity being multi-faceted rings true, as can be
seen by the multitude of approaches in the literature regarding musical rhythm. Thus, herein
lies the problem: how does one accurately, adequately, and robustly measure the complex-

ity of musical rhythm? This thesis studies formal measures of the complexity of musical
rhythm. We want to determine, out of the vast techniques, how to appropriately quantify
the complexity of musical rhythm. The rationale behind this study is to further understand
which techniques most accurately reflect the way humans interpret aspects inherent to the
complexity of musical rhythm. There are three main goals in this thesis.

1. Implement and validate formal rhythm complexity measures in the literature.
2. Evaluate rhythm complexity measures regarding human-based measures of rhythm

complexity gathered from previous psychological experiments; i.e., human percep-

tual complexity, human performance complexity, and human metrical complexity.
3. Demonstrate the performance of the rhythm complexity measures using rhythms

found in African and Indian cultures, and also using randomly generated rhythms.

1.3 Contribution
Each of the main goals presents a significant contribution to work regarding the com-

putational techniques of measuring musical rhythm complexity. First, implementing and
evaluating a wide range of rhythm complexity measures, is important because, while most
of the measures have previously been implemented, there is a handful which have not.
Moreover, one important measure by Longuet-Higgins and Lee [106] was discovered by
this thesis to be previously implemented [57, 150] incorrectly with respect to a rule speci-
fied by Longuet-Higgins and Lee. Thus a correct version is presented and discussed here.
In addition, many of the measures have been expanded and implemented to handle a wide-
variety of rhythms. But perhaps most importantly, since each of the complexity measures
has been implemented for this thesis, this is the first known instance where they have all
been compiled into one study, and also standardized and integrated into a wrapper program
for convenient use and testing. Those in the MIR field may find this code beneficial for
feature extraction tools or those for rhythm analysis, such as query by rhythm tools [18].

Second, evaluating the rhythm complexity measures regarding three types of human-
based measures of rhythm complexity, is perhaps most significant to musicologists and eth-
nomusicologists who study the complexity of music in regional contexts [47, 149]. Such
computational tools may, as Tzanetakis et al. remark, “provide the potential to assist” [177],
in their definition of Computational Ethnomusicology by allowing for large data sets to be
analyzed in little time, in a variety of ways. This thesis brings together the previous evalu-
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ations of Povel and Essens [119], Essens [48], and Shmulevich and Povel [146], regarding
human-based rhythm complexity measures. Additionally, this thesis incorporates the study
by Fitch and Rosenfeld [57], using their valuable data to further extend the previous eval-
uations of rhythm complexity measures. This is significant because no other known work
has presented a standard method for evaluating the numerous complexity measures in the
literature, and thus there has been no basis for direct comparison. Smith and Honing’s [150]
work is an exception since they compared, by linearly scaling, the complexity values from
a small subset of complexity measures. However, the exact method for scaling was not dis-
cussed in their work, and the measure they implemented and declared to perform best, was
found by this thesis not to follow the algorithm’s original definition. Another exception is
previous work by Gómez, Thul, and Toussaint [68], expanded upon here.

Third, demonstrating the performance of the complexity measures on rhythms found in
African and Indian cultures and on randomly generated rhythms, is significant because this
is the first know experiment to do so. Previous experimentation has been on rhythms which
were synthetically generated, as is the case with Povel and Essens’ data [119], Essens’
data [48], and Shmulevich and Povel’s data [146]. In the case of Fitch and Rosenfeld’s
data, they generated their rhythms without regard to those found in African and Indian cul-
ture; however, a few that they generated did correspond to rhythms from those cultures.
Regardless, they did not compare measures of complexity in their study. Hence, here we
present rhythms from two cultures and demonstrate how each measure performs. One ex-
ception is previous work by Thul and Toussaint [164], expanded on here.

The main result of this thesis is that none of the approaches for measuring rhythmic
complexity, accurately measured the complexity of musical rhythm on the whole. Instead,
the measures seem to most-closely reflect the human-based measure of metrical complex-
ity. Moreover, this thesis has shown that when using rhythms found in African and Indian
cultures, there is a need for normalization to handle the varied rhythms found in such cul-
tures. Additionally, improvements regarding some of the measures are proposed in light of
the diverse rhythms found in the experimental data of this thesis.

However, before such conclusions are drawn, Chapter 2 presents a preliminary dis-
cussion on definitions and notation. Chapter 3 presents the rhythm complexity measures,
providing a description of each. Chapter 4 describes the rhythms used to evaluate the com-
plexity measures, and discusses human-based measures of rhythm complexity. Chapter 5
develops the methodology for evaluating the measures. Chapter 6 presents the results from
our methods, and Chapter 7 provides a discussion of the results, and concludes the thesis.
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Chapter 2

Preliminaries

Consider the following discussion which includes definitions, notations, and conventions to
be held throughout the rest of this thesis. First, we will define musical terms used in this
thesis: rhythm, pulse, onset, meter, beat, and time signature. Second, we will review the
different representations of musical rhythm and meter used in the literature. Third, we will
define the notion of musical syncopation, which was mentioned in Chapter 1.
2.1 Definitions

Musical rhythm has alluded to precise definition for many years. In fact, the well-known
musicologist and author, Curt Sachs, states that rhythm is “a word without a generally
accepted meaning” [136]. For the computer scientist, this is bad news, because specific
definitions are generally a necessity when computationally modeling a phenomenon such
as musical rhythm. Thus, the working definition of rhythm used in this thesis is derived
from an article in Grove Music Online by Justin London [105]. We define rhythm to be the
description and understanding of the duration and durational patternings of musical notes.

In our definition of rhythm, the term duration is presented. A duration is the number
of time units between musical notes. In this thesis, we take the fundamental (and indi-
visible) time unit to be the pulse. Consider the following definition of pulse derived from
Cooper and Meyer. We define a pulse to be “one of a series of regularly recurring, precisely
equivalent stimuli” [29].

A pulse is similar to a pulsation generated by a metronome, and so a duration is com-
posed of some number of pulses. However, in order to mark where the durations begin,
we consider marked time units (pulses) of instantaneous attack; i.e., striking a drum or
sounding a musical note. This instantaneous attack is called an onset. The definition used
in this thesis is also derived from Cooper and Meyer [29]. We define an onset to be an
instantaneous attack which marks the beginning of a duration of pulses. Referring back to
our definition of rhythm, the onsets create the durational patternings, which are measured
in terms of the pulses contained in each duration.

Now consider a definitions of meter and beat. These definition are derived from Lon-
don [105]. We define meter to be the equal subdivision of the pulse, marked by strongly
accented pulses, which we define as beats. Thus, meter represents a structure of the pulses,
where this structure is realized by the beats. We define a time signature as notation which
suggests the structure of the meter; i.e., where the beats are. In this thesis we use time
signatures 4/4 to indicate 4 beats in 16 pulses, 2/4 to indicate 2 beats in 16 pulses, 3/4
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to indicate 3 beats in 12 pulses, and 6/8 to indicate 6 beats in 12 pulses [114]. These
definitions, as previously discussed, shall be used throughout the remainder of this thesis.
2.2 Representations

Consider the following ways in which a rhythm may be represented. There are five
main methods discussed below. The first two show musically oriented notation for display-
ing rhythm. Then we discuss two methods which are popular ways to describe the skeletal
pattern of the rhythm; i.e., removing musical aspects except the pattern of durational values.
Finally, the last representation discussed shows how rhythm may be visualized geometri-
cally.

Figure 2.1: The clave son rhythm in music notation.

The first method shown in Figure 2.1 is perhaps the most familiar to the musician.
This shows the famous Afro-Cuban rhythm, the clave son. The rhythm is presented in one
repeating measure of 4/4, or common time, thus, we have a total of 16 sixteenth-notes in the
measure. Throughout this thesis, rhythms are assumed to be repeated indefinitely, unless
otherwise specified, and the smallest music note value considered is the sixteenth note.
Both of these assumptions are due to the nature of the rhythm data presented in Chapter 4.
Taking such assumptions into account, consider the next representation.

Figure 2.2: The clave son rhythm in percussion music notation.

Figure 2.3 shows notation for striking a percussion instrument. Notice that the smallest
note is a sixteenth note, and that there is a mixture of sounded notes and silent notes (i.e.,
rests), totaling 16 pulses. Thus, by the definition of pulse, we have the sixteenth note
representing the smallest indivisible time unit in each example of music notation. As will
be seen, not all rhythms will have 16 pulses. The value of the pulse however, will remain
constant. We wish to remove all music notation from a rhythm and only present the duration
pattern. Thus, we consider a representation more fitting to the requirements of this thesis.

Figure 2.3 shows an example of the clave son rhythm in Time Unit Box System (TUBS)

notation, here-after referred to as box notation. Box notation was first used by musicologists
Philip Harland [166] and James Koetting [90] when studying African polyrhythms. This
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Figure 2.3: The clave son rhythm in box notation (Time Unit Box System).

notation removes the traditional music notation from the rhythm and clearly shows the
durational pattern, which nicely fits with the definition of rhythm in this thesis. The onsets
are marked by an “x” and the silent pulses are marked by a “.”. Thus, box notation shall be
the standard when discussing rhythms.

1 0 1 1 1 10 0 0 0 0 0 0 0 00

Figure 2.4: The clave son rhythm in binary notation.

Figure 2.4 shows the clave son rhythm as a binary string, presenting another notation
which describes duration patterns. This notation is used in the domain of computer sci-
ence [166], and some complexity measures in Chapter 3 will rely on a binary representation.
However, one may notice that this is the same as box notation, except the onsets are marked
by a “1” and the silent pulses are marked by a “0”. This notation shall be interchangeably
used with box notation when needed.

Binary notation, along with box notation are skeletal representations of the rhythm
which retain purely durational patterns. These are ideal for this thesis. However, from
such patterns, we may also consider a more visual approach to representing rhythms.
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(a) Points around the circle.
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(b) An inscribed polygon.

Figure 2.5: Geometric representations of the clave son rhythm, where (a) shows the
16 pulses evenly distributed around the circle with black dots marking the points cor-
responding to an onset. In (b), adjacent black dots are connected by straight line
segments inscribing a polygon inside the circle.

In Figure 2.5, there are two examples of ways to display a rhythm geometrically [172].
Figure 2.5(a) shows the clave son rhythm placed around a circle starting at zero (i.e., twelve)
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o’clock. Each numbered point represents a pulse of the rhythm, where the numbered points
marked with a black dot indicating an onset. Essentially one places a rhythm on an equally-
spaced subdivision of points around the perimeter of a circle, where the number of points
corresponds to the number of pulses. Figure 2.5(b) takes this one step further by inscribing
a polygon inside the circle. Such a polygon is inscribed by simply connecting the adja-
cent marked points (black dots; onsets) from the previous example in Figure 2.5(a). Such
geometric representations have been seen before, notably in the work of Godfried Tous-
saint [166, 168, 172]. Thus, we present such geometric forms since we include geometric
techniques to measure complexity in Chapter 3.
2.3 Syncopation

The notion of syncopation has various interpretations by music scholars [77]. The work-
ing definition chosen for this thesis has been selected to accord with the previous definitions
regarding rhythm. In The Harvard Dictionary of Music, syncopation is defined as “a mo-
mentary contradiction of the prevailing meter or pulse” [130].

Recall that the definition of meter used here is an equal subdivision of the pulse, and
the equal subdivisions are marked by beats. Now, there are many ways to subdivide the
pulse into equal parts; e.g., when there are 16 pulses, the equal subdivisions groups of: (a)
1, which means no dividing occurs. (b) 2, (c) 4, (d) 8, or (e) 16. In this example of 16
pulses, each equal subdivision is a power of two. To visualize this, consider Figure 2.6,
which shows where the beats are for each metrical level of a rhythm with 16 pulses.

40 1 2 3 5 6 7 8 9 10 11 12 13 14 15

(a) No subdivision.

40 1 2 3 5 6 7 8 9 10 11 12 13 14 15

(b) Two equal subdivisions.

40 1 2 3 5 6 7 8 9 10 11 12 13 14 15

(c) Four equal subdivisions.

40 1 2 3 5 6 7 8 9 10 11 12 13 14 15

(d) Eight equal subdivisions.

40 1 2 3 5 6 7 8 9 10 11 12 13 14 15

(e) Sixteen equal subdivisions.

Figure 2.6: The metrical levels of a rhythm with 16 pulses, where the pulses are
numbered 0 through 15. At each level, the pulses considered to be a beat are marked
above with a grey square.

For each level shown in Figure 2.6, if we count the number of times each pulse is marked
as a beat, and place that number of grey squares on the corresponding pulse, we arrive at
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Figure 2.7 below. For example, pulse 0 is marked as a beat in all five case, and thus has five
grey squares.

40 1 2 3 5 6 7 8 9 10 11 12 13 14 15

Figure 2.7: The metrical hierarchy with corresponding weights of a 16-pulse rhythm.
The weights are determined by joining all the metrical levels.

The importance of Figure 2.7 is that it represents a metrical hierarchy, which was estab-
lished in the authoritative text, A Generative Theory of Tonal Music, by Lerdahl and Jack-
endoff [99]. Also, this hierarchical model has been seen in work by Maury Yeston [185].
Regarding the metrical hierarchy, each pulse receives a metrical weight (the number of grey
squares above the pulse). When an onset is sounded at a pulse with a high weight, this is
considered to agree with the prevailing meter. However, when an onset is sounded at a pulse
with a low weight, the prevailing meter is contradicted, and therefore we consider this onset
to be syncopated [99, 161]. As an example, in Figure 2.7, the onset at pulse 3 is considered
more syncopated than at pulse 12.

This notion of syncopation in terms of going against the metrically salient pulses, is
the one adopted by this thesis. This is because some of the measures to be discussed in
Chapter 3 will rely on such a structure to measure syncopation, which is considered here
to be a form of rhythmic complexity in a metrical framework. Hence, this definition of
syncopation shall be applied, along with the other definitions associated with rhythm in the
complexity measures to be discussed.
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Chapter 3

Complexity Measures

In the following we review the rhythm complexity measures evaluated in this thesis. There
are six main categories into which the measures may be broken down. First, we present
rhythm syncopation measures that use metrical weights determined from the metrical hier-
archy to find syncopated onsets in a rhythm. Second, we discuss pattern matching measures
which chop up a rhythm as determined by the levels of the metrical hierarchy and search
each sub-rhythm for patterns which indicate the complexity. Third, distance measures are
covered, which measure how far away a rhythm is from a more simple rhythm composed of
beats. Fourth, we discuss purely mathematical measures which are based upon Shannon’s
information entropy [143]. Fifth, measures which pertain to the shape of histograms, which
are generated from a rhythm’s durational patterns, are presented. We call these, interonset

interval histogram measures. Finally, measures of mathematical irregularity are discussed,
which measure geometric properties of the rhythm when placed on a circular lattice.
3.1 Rhythmic Syncopation

The two complexity measures described in this section pertain to the metrical hierarchy
of Lerdahl and Jackendoff [99], which was previously mentioned in Chapter 2. Thus, the
measures below utilize a weighting system on this hierarchy and measure how syncopated
a rhythm is, in order to measure the complexity. Consider the following measures presented
by Toussaint [166] and Longuet-Higgins and Lee [106].
3.1.1 Toussaint’s Metrical Complexity

The Metrical Complexity measure proposed by Toussaint [68, 166] calculates a sum of
the metric weights for each onset in a given rhythm. Thus, the Metrical Complexity builds
on the previous definition of syncopation seen in § 2.3. Recall the image of the weighted
metrical hierarchy, reproduced below in Figure 3.1.

40 1 2 3 5 6 7 8 9 10 11 12 13 14 15
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Figure 3.1: The weighted metrical hierarchy for rhythms with 16 pulses.
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In Figure 3.1, we have the pulses along the x-axis, and the corresponding metrical
weight on the y-axis, so for any pulse, we know how metrically important it is in the hier-
archy. For example, the pulse at position 0 is the most important, followed by the pulse at
position 8. Let us now consider a general construction for this hierarchy described in the
five-step process below. This process is adapted from Toussaint’s description [166].

First, consider the number of pulses of a rhythm to be n. Find all prime numbers which
divide n, ignoring 1. Essentially one creates a prime factorization of n; e.g., when n = 16

we have a prime factorization of 2 · 2 · 2 · 2. Each unique permutation of the list of prime
factors will yield a distinct metrical hierarchy. Second, pick one permutation. When n = 16

we only have one choice. Let ` be an integer which corresponds to the current metrical level,
initialize ` = 1. Define a vector w to keep track of the metrical weight for each pulse, index
w by 0 ≤ i ≤ 15, setting each wi to zero. Third, loop through w by i, from i = 0 to 15

(inclusive), and add one to each weight wi where n/` is the step-size of the increment in
the loop. Hence, since ` is 1, we increment i by n/` = 16 at each iteration, adding one to
only index 0 of w. Fourth, set ` to be the product of ` multiplied by the first prime factor in
the prime factorization of n, then discard that prime factor. Here we would multiply ` by 2.
Fifth, repeat at step three with the new value `. Stop when there are no more prime factors
to multiply by. In the case of n = 16, we would have ` equal to 1, 2, 4, 8, and 16. Thus, the
step-size in the loop at step three would be 16, 8, 4, 2, and 1.

From the process above, one generates the hierarchy in Figure 3.1 when n = 16. How-
ever, in this case n = 16 conveniently admits only one hierarchy, since its prime factor-
ization is 2 · 2 · 2 · 2. Since the process is generally stated, consider the case for n = 12.
Here, there are three unique permutations of its prime factorization: (a) 2 · 2 · 3, (b) 2 · 3 · 2,
and (c) 3 · 2 · 2. Thus we perform the five step process above and generate three metrical
hierarchies. Consider Figure 3.2, which depicts each case.

Using the weighted metrical hierarchy, the Metrical Complexity measure is calculated
by looking up the weight of each onset in a rhythm. So, for each onset in a rhythm, take
its pulse index, and find the weight that pulse has in the corresponding metrical hierarchy.
The Metrical Complexity is the sum of the corresponding weights. For example, the clave

son, [x . . x . . x . . . x . x . . .] has onsets at positions: (0, 3, 6, 10, 12), corresponding to metrical
weights: (5, 1, 2, 2, 3). The Metrical Complexity is 5 + 1 + 2 + 2 + 3 = 13. However, since
the pulses with a higher weight are those which are less syncopated, a smaller value means
the rhythm is more complex. Moreover, when we have more than one metrical hierarchy
to pick from, as in the case when n = 12, we find the Metrical Complexity using each
hierarchy and then take the average to be the final Metrical Complexity. This measure is
abbreviated as metrical.
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(c) 3 · 2 · 2

Figure 3.2: The weighted metrical hierarchies for rhythms with 12 pulses.

The Metrical Complexity measure has been investigated further by applying two dif-
ferent weighting schemes, rather than the one corresponding to the metrical levels, as de-
scribed above. Moreover, we present three types of normalization. Below, we first consider
each new weighting scheme, and then consider each normalization method for comparing
rhythms with a different number of pulses and onsets.
Palmer and Krumhansl

Thus far the metrical weighting scheme used in the Metrical Complexity measure has
been the one proposed by Lerdahl and Jackendoff [99], in 1983. However, one might
question whether or not people listen according to the proposed weighting scheme. In fact,
Palmer and Krumhansl [114] did ask such a question. Their aim was “to determine whether
or not impoverished temporal contexts evoke hierarchically structured knowledge about
metrical structure, even when this structure is not contained in the sensory context” [114].
An experiment was devised to study musicians’ and non-musicians’ knowledge of meter. In
other words, Palmer and Krumhansl tested how each group empirically weighted the pulses
of metrical hierarchy (see Palmer and Krumhansl’s Figure 3 [114] and Table 2 [114]).

The empirical data from Palmer and Krumhansl’s study on metrical hierarchies [114]
has been applied to the Metrical Complexity measure. Smith and Honing [150] also utilized
the results from Palmer and Krumhansl. However, in this context, we apply the empirical
weights from the group of musicians and that of non-musicians for rhythms with 16 pulses
and 12 pulses. Moreover, in each case we have two sets of weights: those regarding 4/4 and
2/4 time signatures for 16 pulse rhythms, and those regarding 3/4 and 6/8 time signatures
for 12 pulse rhythms. Consider Figure 3.3 which shows graphs for the weights of each
pulse using the different empirical results.
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(b) Time signature 4/4.
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(c) Time signature 3/4.
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(d) Time signature 6/8.

Figure 3.3: The weighted metrical hierarchies for rhythms with 12 pulses and 16
pulses according to Palmer and Krumhansl’s study.
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Applying each weighting scheme, we arrive at eight measures, abbreviated metricalpk-

MUS-24, metricalpk-NMUS-24, metricalpk-MUS-44, metricalpk-NMUS-44, metricalpk-

MUS-34, metricalpk-NMUS-34, metricalpk-MUS-68, and metricalpk-NMUS-68.
Euler

A second weighting scheme proposed by Gonzalez [69] uses what he calls the Euler

Complexity of a number to determine the weight of each pulse in a rhythm. The procedure
for calculating the Euler Complexity proceeds as follows, this procedure is adapted from
Gonzalez’s work [69].

Let n be the number of pulses. For 0 ≤ i ≤ n − 1, we will determine its Euler
Complexity. At each iteration we must calculate the following values. First we determine
the ratio between least common multiple, denoted lcm, of i + n and n, and the greatest

common denominator, denoted gcd, of i + n and n. We denoted this ratio by m.

m =
lcm(i + n, n)

gcd(i + n, n)
(3.1)

Next we determine the prime factorization of m, and apply Euler’s formula for the com-
plexity of m using the prime factorization. Let c(m) be the complexity, p be a vector of
unique prime factors, and q be the corresponding vector of the number of times each prime
factor appears in the factorization. Consider Equation (3.2)

c(m) = 1 +
∑

p∈p,q∈q

(p− 1) · q (3.2)

 0

 5

 10

 15

 20

 25

 30

0 1 2 3 4 5 6 7 8 9 10 11

M
et

ric
al

 W
ei

gh
t

Pulse

(a) Weights for 12-pulse rhythms.
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(b) Weights for 16-pulse rhythms.

Figure 3.4: Euler metrical weights for rhythm with 12 pulses and 16 pulses, as de-
scribed by Gonzalez [69]. Note that a higher value in this case means the rhythm is
considered to be more complex.

Thus, we have two new weighting schemes which can be applied to the Metrical Com-
plexity measure. Consider Figure 3.4, which shows the resulting weights for rhythms with
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12 and 16 pulses. The Metrical Complexity (Euler Weighted) measure incorporating these
schemes is abbreviated: metricaleuler. Note that here, a higher value is more complex.
Onset Normalization

In addition to alternate weighting schemes, a normalization method is tested for the
Metrical Complexity measure, which was presented by Toussaint [166] in 2002. The basic
idea is to account for rhythms with a different number of pulses and onsets, thus mak-
ing the measure relative. To do this, there is one additional step when calculating the
complexity. Once we find the Metrical Complexity of a rhythm, we then look back at
the corresponding metrical hierarchy. Give that our rhythm has k onsets, we pick the k

largest metrical weights and sum them together. We then subtract the Metrical Complex-
ity value from this sum. This indicates how far away the rhythm is from one which has
its k onsets placed on pulses with the highest weight. We call this Metrical Complexity

(Onset Normalized), and abbreviate it metricalonorm. Also, for the weighting schemes,
we have metricalonormpk-MUS-24, metricalonormpk-NMUS-24, metricalonormpk-MUS-

44, metricalonormpk-NMUS-44, metricalonormpk-MUS-34, metricalonormpk-NMUS-34,

metricalonormpk-MUS-68, metricalonormpk-NMUS-68, and metricalonormeuler.
Pulse Normalization

The next form of normalization accounts for rhythms with a different number of pulses.
Assume that we calculate the Metrical Complexity as usual. Then, to normalize, we divide
the complexity value by the sum of all the metrical weights in the hierarchy. So, it is as if
one scales the Metrical Complexity of a rhythm with n pulses by the Metrical Complexity of
an imaginary rhythm with n pulses, which has an onset on every pulse. The Metrical Com-

plexity (Pulse Normalized) measure is abbreviated metricalpnorm, and for the weightings
we have, metricalpnormpk-MUS-24, metricalpnormpk-NMUS-24, metricalpnormpk-MUS-

44, metricalpnormpk-NMUS-44, metricalpnormpk-MUS-34, metricalpnormpk-NMUS-34,
metricalpnormpk-MUS-68, metricalpnormpk-NMUS-68, and metricalpnormeuler.
Pulse-Onset Normalization

The last normalization uses the result from the Metrical Complexity (Pulse Normalized)
measure and simply scales that value by the number of onsets in the rhythm. This normal-
ization is termed the Metrical Complexity (Pulse-Onset Normalized) measure with the ab-
breviation being metricalponorm. Concerning each of the different weightings schemes, we
have metricalponormpk-MUS-24, metricalponormpk-NMUS-24, metricalponormpk-MUS-

44, metricalponormpk-NMUS-44, metricalponormpk-MUS-34, metricalponormpk-NMUS-

34, metricalponormpk-MUS-68, metricalponormpk-NMUS-68, and metricalponormeuler.
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3.1.2 Longuet-Higgins and Lee Complexity
Longuet-Higgins and Lee [106] in 1984 proposed a context-free grammar for musi-

cal rhythm, similar to the grammars used to capture the syntactic structure of sentences.
They define a rule-set to, “designate ‘metrical units’ at various levels in a metrical hierar-
chy” [106].

We can describe the model of Longuet-Higgins and Lee by the familiar weighted met-
rical hierarchy previously described in §§ 3.1.1. The idea behind generating Longuet-
Higgins’ and Lee’s model is exactly the same, except it is formulated in terms of a tree
structure where the terminal nodes retain the metrical weight for each pulse. Let us de-
scribe the process of generating such a tree.

First, let n be the number of pulses of the rhythm in which we shall generate it’s metrical
hierarchy. Second, find the prime factorization of n where we ignore 1 (as we’ve done in
the last section). Keep the prime factors in a list. Again, of the unique permutations of
the prime factors in the list, pick one. Third, generate a tree by iterating over the selected
permutation of the list of prime factors. We start with a single node in the tree, called the
root. Then, at each iteration, we perform the following, where p is the current prime factor
in the list and ` (initialized to 1) is the current level (depth) in the tree.

1. For all the nodes m at level `, create p children whose common parent is m.
2. Increment ` by 1.
3. Check p off the list of prime factors, and pick the next prime factor in the list.

Following this process will generate a tree, and in the case of n = 16, we have the prime
factor list being 2·2·2·2, and so a binary tree with 5 levels is formed, shown in Figure 3.5(a).

The next series of steps determines the weight on each terminal node of the tree, such
as of the tree in Figure 3.5(a). We do this to determine the metrical weight of each pulse
of rhythm. To do so, we may again draw upon the process from §§ 3.1.1. Thus, in step
four, we recall the prime factorization list used to generate the tree. Again we iterate over
each prime factor. This time define ` to be metrical level and initialize it to 1. Also, define
the vector w to keep track of the weight of each pulse (i.e., terminal node), where all the
weights are initialized to zero. Note that scanning the terminal nodes from left to right in
the tree corresponds to indices 0 through 15 in w.

In step five, loop through w for 0 ≤ i ≤ 15. For each wi, we always subtract 1, unless
the i is 0 or i is a multiple of (n/`). After the loop, set ` to be the product of ` multiplied
by the next prime factor in the list; cross off that prime factor. For step six, we repeat step
five with the new value of `. We stop when there are no more prime factors by which to
multiply `. For example, when we have our prime factor list for n = 16; i.e., 2 · 2 · 2 · 2,
we have ` taking values 2, 4, 8, and 16 upon each repeat of step five. This means that we
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(a) Metrical hierarchy.

0 −1−2 −2−3 −3 −3 −3−4 −4 −4 −4 −4 −4 −4−4

(b) Weighted metrical hierarchy.

Figure 3.5: Binary tree representing the Longuet-Higgins and Lee metrical hierarchy
structure for a rhythm with 16 pulses both unweighted and weighted.

do not subtract a 1 from the weight vector when the index is 0 or a multiple of 8, 4, 2,
and 1, respectively, each time we repeat the loop process. Consider Figure 3.5(b), which
depicts the weights on the metrical hierarchy for n = 16. We also handle the case when
there is more than one unique permutation of the prime factorization of n, such as when
n = 12. Again, we may use the described procedure to generate different weighted metrical
hierarchies. Consider the three hierarchies for n = 12 in Figure 3.6 below.

Once the metrical hierarchy has been generated, the complexity of the rhythm is calcu-
lated by looking for silent pulses which have a higher weight than the onset which precedes
them [106]. Thus, for a rhythm in box notation with n pulses and with a weight vector
w, which carries a metrical weight for each pulse as described above, we may measure the
complexity as follows. First loop through each pulse of the rhythm, indexed by 0 ≤ i < n.
If the ith pulse is a silence (a dot), then search backwards to find the nearest onset; go back
to the end of the rhythm in the event the rhythm is cyclic [57]. Let the nearest onset be at
pulse j. Let s be the value of wi − wj . When s is greater than zero, Longuet-Higgins and
Lee say that a syncopation has occurred [106]. The sum of all values s is defined to be the
Longuet-Higgins and Lee Complexity (or LHL) measure.

We must note one important caveat in the algorithm just described. Consider that a
syncopation has just occurred between a silence at pulse i and and onset at pulse j; i.e.,
wi − wj > 0. Here, a check must be performed where we skip the silences after pulse i
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0 −1−2 −2−3 −3 −3−3 −3−3 −3−3

(a) 2 · 2 · 3
−2−2−3−1−3−2−3−2−30 −3 −3

(b) 2 · 3 · 2

0 −1 −1−2 −2−2 −3−3−3−3−3

(c) 3 · 2 · 2

Figure 3.6: Longuet-Higgins and Lee weighted metrical hierarchies for a rhythm with
12 pulses.

until the weight of a following silence is greater than wi. This implies that the check stops
if we encounter an onset. Once the check terminates, we continue with the algorithm as
defined. The reason for this, is the following rule stated by Longuet-Higgins and Lee, “any
divided metrical unit consisting entirely of rests, or of notes that are tied together, is replaced
by an undivided unit composed of a single rest, or of a single note that is sounded or tied
according to whether the first note of the replaced unit was sounded or tied” [106]. The
phrase tied together indicates that two notes (or rests) are read as a single note (or rest) with
the duration being the sum of the two. Thus, the rule implies that silences which follow
a silence with a higher metrical weight are considered to be an undivided metrical unit.
However, this only applies when there is a syncopation. When there is not a syncopation,
we need to check the silences at all metrical levels.

Aside from our implementation of the LHL measure, we consider two others: one by
Fitch and Rosenfeld [57], and another by Smith and Honing [150]. Fitch and Rosenfeld’s
version uses the method described for measuring the complexity; however, they do not

handle the caveat just described. To see the difference between our implementation and
theirs, consider the comparison in Figure 3.7.

In Figure 3.7, we can see that the implementation by Fitch and Rosenfeld in Fig-
ure 3.7(b) identifies an additional syncopation marked by s3, which is really part of the
metrical unit of s2. In the figures, the arrow points to the silence which yields a syncopa-
tion with the preceding onset, and the asterisks (*) indicate those silences which are to be
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0 −1−2 −2−3 −3 −3 −3−4 −4 −4 −4 −4 −4 −4−4

.x . x . . x . . . x x . . . .
* * * * *

s s s0 1 2

(a) Our implementation.

0 −1−2 −2−3 −3 −3 −3−4 −4 −4 −4 −4 −4 −4−4

.x . x . . x . . . x x . . . .
* * * * *

s s s0 1 2 3s

(b) Fitch and Rosenfeld’s.

Figure 3.7: Comparison of our implementation of the LHL complexity measure in (a),
versus Fitch and Rosenfeld’s implementation of the LHL complexity measure in (b).
The rhythm used here is the soukous, [x . . x . . x . . . x x . . . .].
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skipped since they are part of the metrical unit of the silence where the syncopation oc-
curred. In Fitch and Rosenfeld’s version we see that the silences with an asterisk are not
skipped and thus they add an additional syncopation at s3. This yields the complexity of
the soukous to be s0 + s1 + s2 + s3 = 2 + 2 + 2 + 1 = 7. On the other hand, our version
shown in Figure 3.7(a), respects the metrical unit and yields, s0 + s1 + s2 = 2 + 2 + 2 = 6.

Regarding Smith and Honing’s [150] version, their code is not available; however, from
a personal communication [151] the results of their algorithm were obtained. From this,
their measure is assumed to operate in the same manner as the one we describe here; how-
ever, the only difference is that they define a syncopation to occur if wi−wj +1 > 1. Thus
in the example with the soukous, the same syncopations are detected, but the values are
s0 + s1 + s2 = 3 + 3 + 3 = 9. Our version of the LHL Complexity measure is abbreviated
as lhl, Fitch and Rosenfeld’s implementation is abbreviated fitch, and Smith and Honing’s
implementation is abbreviated smith.
3.2 Pattern Matching

The next collection of measures is based on patterns within a musical rhythm which
determine its complexity. Here we present a measure introduced by Pressing [125, 126],
also a measure developed in the work of Tanguiane [157, 158], and finally a complexity
measure presented by Keith [86].
3.2.1 Pressing’s Cognitive Complexity

Similar to the idea of a metrical hierarchy, Pressing describes a measure which divides
a rhythm in a hierarchical way, and then searches each division for syncopated patterns,
which determine the rhythm’s complexity [125, 126].

First, consider how a rhythm may be divided in a hierarchical manner. The method
suggested by Pressing’s work [125, 126], is that a rhythm is split into its simplist divisions;
i.e., again we shall divide the rhythm based on the metrical hierarchy as seen in Toussaint’s
Metrical Complexity and the Longuet-Higgins and Lee measure. Thus, we find the prime
factorization of the number of pulses to yield our hierarchical division. For example, when
the number of pulses n = 16, our prime factorization is: 2 · 2 · 2 · 2, and so we first divide
the 16 pulses by 2, which yields two sub-patterns of 8 pulses. Then we divide those two
sub-patterns by 2 again, which yields four sub-patterns of 4 pulses, and so on, until we
use up the prime factors. Consider Figure 3.8, which shows how the clave son rhythm is
divided into hierarchical levels.

Once the rhythm is divided as seen in Figure 3.8, Pressing defines 6-types of patterns
which he weights according to how syncopated they are [125]. Pressing describes that such
patterns have a cognitive cost, and so we say that this is Pressing’s Cognitive Complexity

measure. In each sub-rhythm, we look for such patterns defined by Pressing. By sub-rhythm
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Figure 3.8: Example of metrical divisions in Pressing’s complexity measure on the
clave son, [x . . x . . x . . . x . x . . .].

we mean one of the chunks of the rhythm at a metrical level. For example, in metrical level
labeled by (d) in Figure 3.8, we see there are 8 chunks (i.e., 8 sub-rhythms) scanning left to
right. We consider each sub-rhythm to see if one of the following patterns is a match.

a. Filled: a pattern where each pulse of the sub-rhythm has an onset, or sub-sub-rhythms
below the current one all begin with an onset.

b. Run: a pattern where an onset starts the sub-rhythm and is followed by a sequence of
onsets.

c. Upbeat: a pattern where the last pulse in a sub-rhythm contains an onset and the first
pulse of the next sub-rhythm, to the right, also contains an onset.

d. Subbeat: this is stated, but not defined by Pressing [125, 126], and thus, we exclude
it here.

e. Syncopated: a pattern where an onset begins and ends off the beat, which means that
a sub-sub-rhythm of the current sub-rhythm does not begin with an onset.

f. Null: this is when there are no onsets in the sub-rhythm, or when there is only one
onset on the first pulse of the sub-rhythm.

For each syncopation type, a weight is assigned: filled is weight 1, run is weight 2, up-
beat is weight 3, and syncopated is weight 5. Also, null is weight 0. Referring again to Fig-
ure 3.8, we see that going across each metrical level, the weights are averaged for each sub-
rhythm. Then going down the metrical levels, the average weights are then summed. This
sum value is Pressing’s Cognitive Complexity. Pressing describes in his work [125, 126],
only a binary division of the rhythm, and presents no material for ternary divisions. Thus,
for this measure to accommodate rhythms with 12 pulses, we follow the same divisions as
seen in the Metrical Complexity and LHL measures, and so an average among the unique
permutations of the prime factorization is taken. Also, we abbreviate Pressing’s measure as
pressing.
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3.2.2 Tanguiane’s Complexity
Tanguiane introduces a rhythmic model that is based on low-level and high-level pattern

interactions during the perception of a rhythm. Low-level patterns represent the actual data,
thus in the case of a rhythm, this would be the onsets with their durations. High-level
patterns represent the relationships between the low-level patterns and other properties of
rhythm, such as tempo [158]. The goal of the proposed model is to represent a rhythm with
the least amount of overall complexity [158]. The term overall complexity is used in the
sense of memory; i.e., the model which represents the rhythm using the least amount of
memory, is the model with least complexity.

Here, we are only concerned with the low-level complexity which represents the amount
of redundancy in a rhythm [158]. At the low-level, patterns within a rhythm are reduced in
terms of musical elaboration. Those patterns which are not an elaboration of another are
known as root patterns. The number of such root patterns is the low-level complexity. The
more root patterns there are, the more complex the rhythm [157].

Let us refer to this low-level complexity as Tanguiane’s Complexity measure, and de-
fine some of the terms introduced in the previous paragraph. Thus, we consider musical
elaborations and root patterns. An elaboration is a subdivision of a rhythmic pattern [158],
which Tanguiane derives from Mont-Reynaud’s and Goldstein’s notion of an unconstrained
elaboration [110]. The pattern which is used for elaboration is called the root pattern [157].
Consider the following method to determine whether one pattern is an elaboration of an-
other, and which is the root pattern.

Since the rhythms Tanguiane describes are taken to be in the binary notation, where a 1
marks an onset and a 0 marks a silence, one way to check for root patterns is by using the
bitwise and operation. Here we denote this operation by ∧. The patterns are assumed to
both have the same length and start with an onset (a 1), because if there is no duration for
the pattern, there is nothing to elaborate [146]. Also, recall that bitwise and compares each
pattern, bit-by-bit and yields a 1 when both bits are one, 0 otherwise. Consider an example
where a binary strings r = 1000 and s = 1010.

1000 ∧ 1010 = 1000 (3.3)

If r∧s is equal to r then, without loss of generality, s is considered to be the elaboration
of r; moreover r is the root pattern. We see this is the case in Equation (3.3). To determine
Tanguiane’s Complexity, the operation described is used between all pairs of patterns to
count the number of root patterns at a given metrical level of the rhythm. The maximum
number of root patterns over each metrical division level is Tanguiane’s Complexity [157].

An implementation of this measure is presented by Shmulevich and Povel [146]. How-

23



ever, as they point out, “[Tanguiane’s] definition of complexity is problematic since some
structural [metrical] levels may not lend themselves to subdivision” [146]. Thus, they con-
strain the metrical levels by only considering those which subdivide the pattern such that
each division begins with an onset, in accordance with Tanguiane. As an example, consider
Figure 3.9. Here we see that only metrical levels (b) and (c) may be used. Level (d) may
not be used because there are sub-rhythms which begin with a 0.

(d)

(c)

(b)

(a)

1

1

1

1 1 1 1 1 1

1111

1 1 1 1

11110 0 0 0 0 0 0 0 0

0000000000

0 0 0 0 0 0 0 0 0 0

0000000000

0 1

1

1

Figure 3.9: Metrical levels and sub-patterns of an imaginary rhythm indicating that
Tanguiane’s Complexity measure cannot be used for each level.

Shmulevich and Povel term these levels, such as (b) and (c), allowable. In addition,
their method provides the option of further restricting the metrical levels by using a subset
of allowable levels determined a priori [146]. We follow this implementation abbreviating
it as tmmax when the allowable level with the maximum complexity is taken, and tmavg

when the average of each allowable level taken.
Though, to generalize Tanguiane’s Complexity measure, we also introduce a variant

which allows sub-rhythms to start with a 0, thus the constraint that an allowable level admits
sub-rhythms beginning with a 1, is dropped. In this variant we separate those sub-patterns
which start with a 1 from those which start with a zero, considering all possible metrical
levels. Once separated, Tanguiane’s Complexity is calculated as normal with those sub-
patters which start with a 1. However, for those which do not start with a 1, a preliminary
step is taken: complementation.

The complement is not new for rhythms (binary patterns) [129, 159, 172]. Thus, we
take the complement of a rhythm to be a new rhythm where all the 1s are replaced by 0s
and all the 0s are replaced by 1s. Essentially, we perform a bitwise not operation; e.g., the
complement of [0100] is [1011].

Using the complement operation, we find the complement of all sub-rhythms, which do
not start with a 1, and then apply Tanguiane’s Complexity as usual to the complemented
sub-patterns. Thus, we arrive at a value for Tanguiane’s Complexity for the sub-patterns
beginning with a 1 and also (with the complement operation) those sub-patterns beginning
with a 0. We then add the two values to determine Tanguiane’s Complexity for the metrical
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level. We call this variant Tanguiane’s Unconstrained Complexity. Also, when the maxi-
mum value from the metrical levels is taken, we abbreviate this as tmumax, and when an
average is taken, we abbreviate this as tmuavg. Also, note that to handle rhythms which will
yield more than one metrical structure, such as those rhythm with 12 pulses, the average
between the structures is taken for the complexity.
3.2.3 Keith’s Complexity

Keith proposes a measure for syncopation based on three rhythmic events: hesitation,
anticipation, and syncopation. A hesitation occurs when an onset begins on a beat and ends
off a beat, an anticipation occurs when an onset begins off a beat and ends on a beat, and
a syncopation occurs when an onset begins off a beat and ends off a beat [67, 86]. The
rhythmic event patterns are then used to compute the syncopation of a rhythm. Consider
the following five step procedure of Keith’s syncopation measure.

First, let r be a rhythm with n pulses, k onsets, and index each pulse of r from 0 to
n − 1. Second, pick any onset and let i be the pulse where that onset is sounded, let j be
the pulse of the onset following the one which was picked. Compute the duration δ = j− i

and define δ̂ to be δ rounded down to the nearest power of 2. The value n/δ̂ gives the
number of evenly spaced beats among the n pulses, i.e., the meter. Third, if i modulo δ̂ is
congruent to 0 then i is on a beat, otherwise i is off a beat. If j modulo δ̂ congruent to 0

then j is on a beat, otherwise j is off a beat. Fourth compute the value of syncopation s

as in Equation (3.4), weighting a hesitation as 1, anticipation as 2, and syncopation as 3.
Fifth, repeat at step two, picking an onset not already chosen, and once all onsets have been
picked, sum the weights s from step four to obtain Keith’s Complexity measure. Note that
Keith’s Complexity measure is abbreviated keith.

s =





0 if i is on beat and j is on beat
1 if i is on beat and j is off beat
2 if i is off beat and j is on beat
3 if i is off beat and j is off beat

(3.4)

As an example, consider r to be the clave son [x . . x . . x . . . x . x . . .] where n = 16 and
k = 5. Let i = 0 and j = 3, which represents the beginning and end of the first onset.
We have δ = j − i = 3 and so δ̂ = 2, since 21 is the closest power of two less than 3.
This tells us that there are n/δ̂, or 8, beats evenly spaced in the 16 pulses. Thus, beginning
with pulse 0, we have a beat every other pulse: 0, 2, 4, . . .. If we compute i modulo δ̂ to be
congruent to 0, then i begins on a beat. However, if computing j modulo δ̂ is congruent 1,
then j is off a beat; i.e., i does not end on beat. Using Equation (3.4), we have s = 1, which
is interpreted to mean a hesitation. This process is then repeated for each onset. Note the
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end of the last onset is taken to be where the first onset begins since our rhythm is cyclic.
Thus, when i > j, we take j + n for ease of computation. After computing the measure
for each onset, the total syncopation for r is 6. We had events: hesitation, anticipation, and
syncopation.
3.3 Distance

Here, the mathematical notion of distance is used to determine how complex a rhythm
is. Essentially, the following two measures compare rhythms to meters with even beat
distributions, and then use a measurement of distance to judge complexity. First we present
a measure introduced by Toussaint et al. [28, 40, 168, 169], and then one by Gómez et
al. [67].
3.3.1 Directed Swap Distance

The Directed Swap Distance has previously been shown to be useful for measuring
the similarity between rhythmic patterns [40, 168, 169]. Moreover, based on a study of
rhythm similarity measures [173], a reduced version of the Directed Swap Distance, the
Swap Distance, performed the best along with the chronotonic distance [40, 173]. Here,
the Directed Swap Distance is used instead of the swap distance because the rhythms being
compared may have a different number of onsets; the swap distance relies on rhythms with
the same number of onsets. In terms of complexity, one rhythm is said to be more complex
than another if the Directed Swap Distance of the first rhythm is greater than the second
when transforming both rhythms to a simple pattern, such as a meter. Thus, we have a
complexity measure based on the dissimilarity a rhythm compared to a fixed meter.

We will touch on complexity below, but first let us gain a flavor for the algorithm of
the Directed Swap Distance by considering the Swap Distance. In general, a swap may
be thought of as an interchange of position between elements. This notion is present in
sorting algorithms [37], as the shift operation in the Fuzzy Hamming Distance [10], and as
a one dimensional version of the Earth Mover’s Distance, where all points have an equal
weight [25, 176]. Thus, the term swap has a variety of interpretations.

Let us use the interpretation that a swap is an interchange between two adjacent ele-
ments. The Swap Distance is the minimum number of swaps required to transform one pat-
tern into another. More formally, consider the binary alphabet used to represent a musical
rhythm, A = {x, .}, where A∗ is the set of all binary strings over the alphabet. Let r, s ∈ A∗

be strings (in box notation), which represent the clave son and bossa nova rhythms, respec-
tively.

r = [x . . x . . x . . . x . x . . .] (3.5)

s = [x . . x . . x . . . x . . x . .] (3.6)
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Let each pulse be indexed 0 through 15, thus r0 is an ‘x’. If we swap r12, an ‘x’, with
r13, a ‘.’, then we arrive at pattern s. Since only one swap was required, the Swap Distance
is equal to 1. If we consider the index position of each onset (each ‘x’) in r and s, then we
can create two vectors p = (0, 3, 6, 10, 12) and q = (0, 3, 6, 10, 13) and define the Swap
Distance calculation as follows where k is the length of p and q.

dswap =
k−1∑
i=0

|pi − qi| (3.7)

The absolute difference between each onset position will yield the number of swaps it
takes to align all the onsets of one rhythm to the other. Now, we must consider when the
number of onsets k is different between two rhythms. Let u,v ∈ A∗ be rhythms where u

has more onsets than v. In this case, finding the minimum number of swaps required to
align each onset in u to some onset in v, where each onset in v must have at least one onset
from u aligned to it. This is known as the Directed Swap Distance [28]. This measure was
originally proposed by Toussaint, and applied to rhythm similarity by Báñez, et al. [40].

Colannino and Toussaint [28] propose an algorithm to compute the Directed Swap Dis-
tance which has a worst case running time of O(n2). The main idea of the algorithm is to
change the problem into finding the shortest path in a single source acyclic weighted graph.
The vertices represent possible assignment choices between the binary patterns, and the
edges are weighted by the cost of assigning the onsets of one pattern to the other [28]. Once
the graph is constructed, the shortest path may be found using Dijkstra’s algorithm [30], for
example. Additionally, Colannino et al. [26] reduced the time complexity of the computing
the Directed Swap Distance to O(n) for binary patterns, and O(n log n) for real numbers.
The correctness of such algorithms have been shown elsewhere [26, 28], but consider the
following which exemplifies how the Directed Swap Distance (ddswap) can be used as a
measure of rhythmic complexity.

Let r, s, t ∈ A∗ be strings in box notation, all with length n = 16. Take r to represent
the fixed meter where we have a beat at every fourth pulse, starting at pulse 0; i.e., at
positions 0,4,8, and 12. Also, take s to represent the shiko rhythm and t to represent the
gahu rhythm. These rhythms were chosen because the gahu rhythm is considered to be
more complex than the shiko rhythm [166].

r = [x . . . x . . . x . . . x . . .] (3.8)

s = [x . . . x . x . . . x . x . . .] (3.9)

t = [x . . x . . x . . . x . . . x .] (3.10)

27



Let u,v, and w be integer vectors which indicate the onset positions in r, s, and t.

u = (0, 4, 8, 12) (3.11)

v = (0, 4, 6, 10, 12) (3.12)

w = (0, 3, 6, 10, 14) (3.13)

By calculating the directed swap distance between v and u and then between w and u,
we arrive at ddswap(v,u) = 4 and ddswap(w,u) = 7. Thus, we see that the gahu rhythm
represented by the onset positions of w yields a larger Directed Swap Distance to a fixed
meter than the shiko rhythm which is represented by the onset positions of v. Therefore, the
gahu rhythm is more complex than the shiko rhythm by the Directed Swap Distance, which
agrees with previous analysis [166]. Thus, we implement the Directed Swap Distance using
fixed meters of 2 beats, 4 beats, and 8 beats for rhythms with 16 pulses, and fixed meters
of 2 beats, 3 beats, 4 beats, and 6 beats for rhythms with 12 pulses. In addition, we define
a version of the measure which takes the average over all corresponding fixed meters for a
given number of pulses. The abbreviation is dswap, for the average, and dswap#, where #

is the number of pulses between each beat, so dswap2 means there are 8 beats.
3.3.2 Weighted Note-to-Beat Distance

The Weighted Note-to-Beat Distance [67, 68] (or more simply WNBD) is a distance
measure for syncopation. The WNBD measure computes the distance between onsets and
nearest beats in a rhythm, and then assigns a weighted score based on that distance. The
sum of all such scores divided by the number of onsets is the measure of syncopation [67].
More formally, let r be a rhythm, with n pulses, k onsets, and m be the number of beats in
the meter. Let e be a vector of length m where each beat e ∈ e is evenly spaced among the
pulses of r, starting at pulse 0 in the interval [0, n), where [, ) is defined to be a left-inclusive,
right-exclusive interval.

Let x be an onset in r, then pick ei, ei+1, ei+2 to be beats. For cyclic patterns, we take i

(modulo m) [67]. Consider three steps to compute WNBD.
First, calculate the distance of (x, ei) and (x, ei+1). Pick the smaller distance. Let this be

T (x). The distance is measured as the number of pulses between the onset and the nearest
beat, which is then divided by m. Second, assign weight D(x) as follows.

D(x) =





1
T (x)

if x ends before or on ei+1

2
T (x)

if x ends after ei+1 but before or on ei+2

1
T (x)

if x ends after ei+2

0 if T (x) = 0

(3.14)
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Third, sum the weight D(x) for each onset x and then divided by the number of onsets
k. This value is the measure of syncopation for rhythm r [67]. Regarding the weights,
the highest value is given when the onset x ends after ei+1, but before or on ei+2. The
reason for this is because a beat (namely ei+1) is unsounded, which is theorized to produce
a strong syncopation. For the other two weight values, more weight is given to onsets that
are a small distance away from a beat. When an onset lands close-to, or on, the mid-point
between two beats, the lesser weight is given (greater than 0) [67].

Consider an example of the WNBD measure given the cyclic clave son rhythm in box
notation, [x . . x . . x . . . x . x . . .], with n = 16, k = 5, and m = 4. Hence, we have four
beats, (e1, e2, e3, e4) at pulses (0, 4, 8, 12). The first onset x0 is on the first beat, e0, and so
D(x0) = 0. The second onset is distance 3 from e0 and distance 1 from e1, so T (x1) =

1/4. We have that x1 ends after e1, but before e2. Therefore, according to Equation 3.14,
D(x1) = 2/T (x1). Onset x2 presents the same case, and so T (x2) = 1/2 and D(x2) =

2/T (x2). The onset x3 is equidistant from beats e3 and e4, which yields T (x3) = 1/2.
Also, x3 ends on e3 which yields D(x3) = 1/T (x3). Finally, the onset x4 gives D(x4) = 0,
since the onset is sounded on strong beat e3. Taking the sum and dividing by k, we arrive
at the following value shown in Equation 3.15.

WNBD(R) =
1

k

m−1∑
i=0

D(xi) = 14/5 (3.15)

Thus we implement the WNBD measure, and because the number of beats is a chosen
parameter, we use all appropriate values for meters of rhythms with 16 and 12 pulses. Thus
we have 2 beats, 4 beats, 8 beats, and an average of all three for rhythms with 16 pulses,
and we have 2 beats, 3 beats, 4 beats, 6 beats, and an average for rhythms with 12 pulses.
The abbreviations are wnbd for the average and wnbd#, where # denotes the number of
pulses between each beat, so wnbd6 means there are 2 beats.
3.4 Information Entropy

The complexity measures presented in this section rely on calculating the information
entropy, in the sense of Shannon’s entropy [64, 143]. Below, Equation (3.16) shows the for-
mula for calculating the information entropy of a discrete random variable. Equation (3.17)
shows the formula for calculating the joint entropy between two discrete random vari-
ables [31], and Equation (3.18), shows the formula for calculating the conditional entropy
of two discrete random variables.

The conventions used here are that we assume X and Y are discrete random variables
which take on values x ∈ X and y ∈ Y , respectively. Moreover, p(x) is written for Pr{X =

x} (i.e., the probability that X takes on x), p(x, y) is written for Pr{X = x and Y = y}
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(i.e., the joint probability that X takes on y and Y takes on y), and p(y|x) is written for
Pr{Y = y given X = x} (i.e., the conditional probability that Y takes on y, given that X
has taken on x). Consider the equations for information entropy, joint entropy, conditional
entropy, and then the following sections presenting three measures based on the notion of
information from Vitz [179] and Vitz and Todd [180]. Note that we define 0 log2 0 and
1 log2 1 to be 0.

H(X ) = −
∑
x∈X

p(x) log2 p(x) (3.16)

H(X ,Y) = −
∑
x∈X

∑
y∈Y

p(x) p(x, y) log2 p(x, y) (3.17)

H(X|Y) = −
∑
x∈X

∑
y∈Y

p(y, x) log2 p(y|x) (3.18)

3.4.1 H(k-span) Complexity
The H(k-span) Complexity presented by Vitz [179] in 1968 models the perception of

stimuli in the form of binary patterns, providing a measure of complexity. This model
assumes that a subject evaluates the uncertainty of the transition between sub-patterns of
the binary string [179]. The H(k-span) model evaluates uncertainty starting with H0 (order
zero) and then progresses to evaluate each sequential order: H1, H2, . . . , Hm, where Hm =

0 [179]. Thus, we can say that H(k-span) pattern complexity is the total of the average
uncertainties evaluated at each order up to Hm. Consider Equation 3.19.

H(k-span) =
m∑

k=0

Hk (3.19)

At each order, Hk, the uncertainty is evaluated in the following manner. Let r be a cyclic
(infinitely repeating) binary string of length n. First, find all 2k binary strings of length k

for 1 ≤ k ≤ m; e.g., when k = 2, then we have binary strings 00, 01, 10, and 11. Let the
set S contain these strings. Second, for each binary string s ∈ S, count the number of times
s appears as a substring of r, let this be u. Let v be the number of substrings length k, in
r. Thus, the probability of obtaining substring s is u/v. Third, since we are using a binary
alphabets of zeros and ones, we find the probability that the bit following substring s is a
zero or a one. So, for each instance of s found in r, look at the next bit. Count the number
of times the next bit is a one, let this be z. Count the number of times the next bit is zero,
let this be w. Now, we have the probability that the bit following s is a one, being z/u, with
probability that the next bit is a zero, being w/u.
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Fourth, we may use these probabilities to calculate the information entropy over each
substring s and each bit 1 or 0 that may follow s. Thus, the standard formulas for entropy
and joint entropy are used. Review Equations (3.16) and (3.17), respectively, which have
previously been derived from [8, 31, 143].

Equation (3.17) can be used to measure the entropy. In the equation, X is a discrete
random variable. Here we say that X may take on values which are binary strings, such as
s, also Y is a discrete random variable which may take on a one or a zero. Therefore in our
example, p(x) when X takes on s is p(s) = u/v, p(x, y) when X takes on s and Y takes on
1 is p(s, 1) = z/u, and p(x, y) when X takes on s and Y takes on 0 is p(s, 0) = w/u.

However, instead of this tedious calculation of entropy and joint entropy, it has been
observed that the H(k-span) is equivalent to log2 of the length of the binary string, as stated
by Vitz [179]. Thus this thesis implements this simpler computation for the H(k-span)
Complexity, which is abbreviated as hk.
3.4.2 H(run-span) Complexity

The H(run-span) Complexity measure is similar to the H(k-span), except a preliminary
step is taken which codes adjacent like elements into runs. A run is any event repeated
some number of times and preceded and followed by an event other than itself [179]. For
example, in the pattern 0001, the sequence 000 is a run. Once the preliminary step of coding
runs is complete, the H(run-span) is exactly the same as the H(k-span) measure, but here
the alphabet grows from a binary alphabet to one containing an element representing each
run in the binary string; e.g., 000 would be considered an element in the alphabet, as would
1, but not 0.

Again the H(run-span) may be calculated using the formulas for entropy and joint en-
tropy as shown in Equations (3.16) and (3.17), since it retains the same definition as H(k-
span), but again there is a simple computation for the H(run-span) complexity. Vitz points
out that the complexity may be found by taking log2 of the number of runs found in the
pattern [179]. Thus, we implement this measure using the computation on the number of
runs. Note that this measure is abbreviated as hrun.
3.4.3 Coded Element Processing System

Vitz and Todd [180] present a procedure that can be used to calculate the complexity of
cyclic binary patterns presented as a sequence of tones and non-tones [180], or in our case
onsets and silences. Their model specifies axioms which describe the perceptual encoding
process. This model is called the Coded Element Processing System or CEPS [180]. CEPS
is a parameter free model which makes the assumption that subjects closely approximate
this model when dealing with patterns of simple to moderate complexity [180].

CEPS examines each pattern in a hierarchical manner pertaining to levels of perceptual
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organization. The pattern is coded into stimulus elements and response elements, where the
response elements in-turn become the stimulus elements [180]. The processes of coding
the pattern from single elements to larger elements continues until the entire pattern is
constructed [180]. Consider the axioms below which summarize the model [180].

Axiom 3.4.1. The stimuli (1s or 0s) are represented as the Code Level 1 elements, and

denoted as e1.

Axiom 3.4.2. The e1 elements are coded into runs (adjacent 1s or 0s), which represent

Code Level 2 elements, denoted as en
1 where n is the number of elements in the run.

Axiom 3.4.3. Adjacent en
1 elements are grouped together to form a new element called a

composite, denoted as e2. Elements are grouped into a composite is until an e1 element is

encountered that already exists in the composite. At this point, a new composite is started.

Note that in the case of cyclic patterns, there may be different configuration of compos-

ites depending upon where one starts. To handle this, the configuration with the smallest

number of composites is chosen; otherwise, the system does not distinguish between con-

figurations [180].

Axiom 3.4.4. Group the e2 elements into runs called Code Level 4 elements, denoted as en
2 .

Axiom 3.4.5. Apply operations of Axioms 3.4.3 and 3.4.4 to form new composite elements

and new runs.

Axiom 3.4.6. The stopping criterion is when the pattern itself is formed as a coded element.

The axioms determine an algorithm for building a hierarchy of elements grouped into
larger structures, which depend on the characteristics of the pattern. Vitz and Todd state
that characteristics such as runs of like events, alternations, and runs of alternations, are
commonly coded by humans [180].

To calculate the complexity of the sequence, Vitz and Todd measure two uncertainty
values at each Code Level in the algorithm. Uncertainty in this case means information en-

tropy [31, 143]. The uncertainty values are the maximum uncertainty, Hmax, and the joint

uncertainty, Hjoint [64, 180]. Hmax measures the uncertainty of the occurrence of random
variables, with the assumption that each random variable is uncorrelated. Hjoint measures
the uncertainty of the occurrence of random variables given their actual correlation [64].
The following Equations (3.20) and (3.21), show Hmax and Hjoint. Let X , Y , Z , andW be
discrete random variables. Recall that H(·) and H(·|·) represent standard equations of en-
tropy and conditional entropy [31], as previously presented by Equations (3.16) and (3.18).
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Hmax(X ,Y ,Z,W) = H(X ) + H(Y) + H(Z) + H(W) (3.20)

Hjoint(X ,Y ,Z,W) = H(X ) + H(Y|X ) + H(Z|X ,Y) + H(W|X ,Y ,Z) (3.21)

Let the value Hk be the sum of Hk
max and Hk

joint at Code Level k. The sum of H

at each Code Level represents the complexity of the pattern. This value is termed Hcode.
Equation 3.22 shows this computation where there are n Code Levels [180].

Hcode =
n∑

k=1

Hk (3.22)

To gain a flavor for the CEPS algorithm, consider the following example of the binary
pattern [01101101]. Let X1 and X2 be discrete random variables taking on elements at each
Code Level. Let Y1 and Y2 be discrete random variables taking on integers greater than or
equal to zero. The random variable X1 takes on an element at the given Code Level, and
X2 takes on the element that follows X1. Hence, there is an implied dependence between
each variable. The random discrete variable Y1 takes on value for the length of element X1

takes on, and Y2 takes on a value for the length of the element X2 takes on. Hence there
is dependence between each X1 and Y1 and X2 and Y2. Table 3.1 provides what each term
means in the Equations (3.20) and (3.21).

Table 3.1: Meaning of each uncertainty value in Equations (3.20) and (3.21).

Uncertainty Value Meaning
H(X1) Uncertainty that X1 takes on an element of the pattern
H(X2) Uncertainty that X2 takes on an element of the pattern
H(Y1) Uncertainty that Y1 takes on a length where X1 is un-

known
H(Y2) Uncertainty that Y2 takes on a length where X2 is un-

known
H(Y1|X1) Uncertainty that Y1 takes on a length where the element

X1 is known
H(X2|X1,Y1) Uncertainty that X2 transitions to an element where the

previous element X1 is known with a known length Y1

H(Y2|X1,Y1,X2) Uncertainty of the length Y2 of the known transition to
element X2 from X1 with length Y1

Since the Hjoint requires calculating joint probabilities, consider the tables below. To
begin the process, we use Axiom 3.4.1 which takes each symbol in the pattern as an element
called Code Level 1. At this first step we want to calculate H1

max and H1
joint. In the patten

[01101101] we have 5/8 probability that X1 takes on a 1 and 3/8 that X1 takes on a 0.
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Similarly X2 has the same distribution as X1. Since each element is taken individually, the
lengths are 1. The probability that Y1 and Y2 take on one is 1. Now calculate H1

max.

H1
max(X1,Y1,X2,Y2) = H(X1) + H(Y1) + H(X2) + H(Y2)

= 2 ∗ (5/8 log 5/8 + 3/8 log 3/8) + 2 ∗ (1 log 1 + 0 log 0)

= 1.91

(3.23)

To find H1
joint we can use the tables below which show the joint distributions for each

calculation. The first value H(X1) is know from H1
max. To find H(Y1|X1), Table 3.2 (a).

This means that given a sequence element X1, we want to know the uncertainty of the
length of that element. Since we are on the first step, all lengths are one. Once we have
these value, we can find H(X2|X1,Y1) (see Table 3.2 (b)), which is the uncertainty of an
element following either a 1 or a 0 element in our pattern. Finally, using Table 3.2 (c), we
have the uncertainty value H(Y2|X1,Y1,X2), which calculates each transition probability
from an element X1 with a known length to an element X2 with an unknown length. Thus,
we have the following.

H1
joint(X1,Y1,X2,Y2) = H(X1) + H(Y1|X1) + H(X2|X1,Y1) + H(Y2|X1,Y1,X2)

= (5/8 log 5/8 + 3/8 log 3/8) + 0

+ (5/8 (3/5 log 3/5 + 2/5 log 2/5)) + 0

= 1.56

(3.24)

Table 3.2: Joint probability tables at Code Level 1 for [01101101].

(a) H1(Y1|X1)
p(x1) Y1

0 1
p(0) = 3/8 0 1
p(1) = 5/8 0 1

(b) H1(X2|X1,Y1)
p(x1, y1) X2

0 1
p(0, 1) = 3/8 0 1
p(1, 1) = 5/8 3/5 2/5

(c) H1(Y2|X1,Y1,X2)
p(x1, y1, x2) Y2

0 1
p(0, 1, 1) = 3/8 0 1
p(1, 1, 0) = 3/8 0 1
p(1, 1, 1) = 2/8 0 1

We follow Axiom 3.4.2 to produce Code level 2 where the pattern contains elements
joined to form runs. Thus we have [0 11 0 11 0 1]. Again we can compute H2

max and
H2

joint. The process is exactly the same as before, except each element is considered a run,
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and now we have elements of different lengths. Thus, we have the following.

H2
max = 2.92 (3.25)

H2
joint = 1.92 (3.26)

Table 3.3: Joint probability at Code Level 2 for [0 11 0 11 0 1].

(a) H2(Y1|X1)
p(x1) Y1

1 2
p(0) = 1/2 1 0
p(1) = 1/2 1/3 2/3

(b) H2(X2|X1,Y1)
p(x1, y1) X2

0 1
p(0, 1) = 1/2 0 1
p(1, 1) = 1/6 1 0
p(1, 2) = 1/3 1 0

(c) H2(Y2|X1,Y1,X2)
p(x1, y1, x2) Y2

1 2
p(0, 1, 1) = 1/2 1/3 2/3
p(1, 1, 0) = 1/6 1 0
p(1, 2, 0) = 1/3 1 0

The next step in the algorithm produces Code level 3, where we form composites,
which are essentially a grouping of runs. The algorithm produces two possible compos-
ites, [(0 11)(0 11)(0 1)] or [(11 0)(11 0)(1 0)]; however, each yields the same probabilities,
so let us choose [(0 11)(0 11)(0 1)] for our example. At this step, the elements are the
composites (in parentheses), and the length of a composite is the number of elements from
Code Level 2, which were used to construct the composite. For (0 11) we used two ele-
ments from Code Level 2: 0 and 11. Hence, (0 11) has length 2. We can calculate H3

max,
and using Table 3.4 below, we can find H3

joint.

H3
max = 1.84 (3.27)

H3
joint = 0.66 (3.28)

Table 3.4: Joint probability at Code Level 3 for [(0 11)(0 11)(0 1)].

(a) H3(Y1|X1)
p(x1) Y1

2
p(0 11) = 2/3 1
p(0 1) = 1/3 1

(b) H3(X2|X1,Y1)
p(x1, y1) X2

(0 11) (0 1)
p(0 11, 2) = 2/3 1/2 1/2
p(0 1, 2) = 1/3 1 0

(c) H3(Y2|X1,Y1,X2)
p(x1, y1, x2) Y2

2
p(0 11, 2, 0 11) = 1/3 1
p(0 11, 2, 0 1) = 1/3 1
p(0 1, 2, 0 11) = 1/3 1

Following Axiom 3.4.4 we produce runs of the composites. Thus we have Code Level
4 as the pattern [{(0 11)(0 11)}{(0 1)}]. The curly braces indicate the new runs that were
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formed from the composites. Similar to previous steps, we can calculate the H4
max and then

use Table 3.5 to find H4
joint.

H4
max = 4.00 (3.29)

H4
joint = 0.00 (3.30)

Table 3.5: Joint probability at Code Level 4 for [{(0 11)(0 11)}{(0 1)}].

(a) H4(Y1|X1)
p(x1) Y1

1 2
p({(0 11)(0 11)}) = 1/2 0 1
p({(0 1)}) = 1/2 1 0

(b) H4(X2|X1,Y1)
p(x1, y1) X2

{(0 11)(0 11)} {(0 1)}
p({(0 11)(0 11)}, 2) = 1/2 0 1
p({(0 1)}, 1) = 1/2 1 0

(c) H4(Y2|X1,Y1,X2)
p(x1, y1, x2) Y2

1 2
p({(0 11)(0 11)}, 2, {(0 1)}) = 1/2 1 0
p({(0 1)}, 1, {(0 11)(0 11)}) = 1/2 0 1

The next step will form the original pattern (by making a composite), thus we apply the
stopping criterion of Axiom 3.4.6. We can calculate the Hcode for [01101101].

Hcode =
4∑

k=1

Hk =
4∑

k=1

Hk
max + Hk

joint

= 1.91 + 1.56 + 2.92 + 1.92 + 1.84 + 0.66 + 4.00 + 0

= 14.81

(3.31)

Thus we’ve shown an example calculation for CEPS. This has been implemented in this
thesis as a complexity measure for musical rhythms. The abbreviation used is ceps.
3.4.4 Lempel-Ziv Coding

A popular method for data compression is the Lempel-Ziv algorithm [98, 186, 187, 31].
The compression of a sequence by the Lempel-Ziv algorithm asymptotically approaches the
information entropy of that sequence [31, 187]. Thus, compression may be used to judge
the complexity of a sequence. The notion is that a simple sequence will be compressed
more easily. The Lempel-Ziv algorithm has also been used to quantify the complexity of
a musical rhythm [144, 146, 166]. The main idea of the algorithm is to scan a sequence
from left to right, and add new substrings to a vocabulary. Once the scan is complete, the
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vocabulary size is the complexity [98]. The following describes the process of the Lempel-
Ziv algorithm.

Let A be the binary alphabet where Λ represents the null character. We have A∗ repre-
senting all possible binary strings and s ∈ A∗ representing a single binary string of length
`(s). Each string may be specified by s = s0, s1, . . . sn where n = `(s). If all the characters
in a sequence are the same then s can be represented by sn, which means to repeat character
s, n times. Also, the notation s(i, j) = si, si+1, . . . , sj will be used to denote a substring of
s from position i to position j, where i ≤ j ≤ n. If j > i then s(i, j) = Λ.

Consider a string r ∈ A∗, where we want to measure its complexity. To do this, we
must construct our vocabulary of words; i.e., substrings of r. The first step in the process
is to create a sliding window of variable size over r. Let q ∈ A∗ be this window where we
start with q = r(j, i) with i = 0 and j = 0. Also, let s ∈ A∗ be the concatenation of each
word in our dictionary in the order that each word was added. When there are no words in
the vocabulary, s = Λ.

With r, q, and s defined, we now begin an iterative process asking the question: Can
s generate the substring q? If the answer is no, then we add q to the vocabulary while
incrementing i and setting j = i, but if the answer is yes, then we let the window grow
by one character by incrementing i by one. The generation of q by s follows the copy
procedure described by Lempel and Ziv [98] in 1976. Essentially, the copy procedure
copies characters in s to form the string sq, where q is concatenated to s. However, the key
idea is that part of q may be assimilated into s in order to generate the rest of q. Consider
the following three cases to better understand this notion in which s is said to generate q,
when any of them hold.

1. If we are able to pick positions p and q where p ≤ q ≤ `(s), then q = s(p, q) =

sp, sp+1, . . . , sq and s can generate q.
2. If each qk ∈ q where 0 ≤ k ≤ `(q) is equal to the last character in s, i.e., s`(s). This

means that we can copy the last character of s as the first character of q and then the
copy the first character of q to be the second character of q, and so forth until q is
generated. So q = sm

n where n = `(s) and m = `(q).
3. If we can pick a positions p < `(s) and q = `(s), such that q = s(p, q)sm

q where
m = `(q) − q + p, then we can generate q from s. Note this case handles Cases 1

and 2, but all three are presented for clarity.

In the following example, let r = 0001101001000101 be a cyclic string, s = Λ, and
q = r(j, i) where i = 0 and j = 0. The first iteration examines the window q = 0. Since
s is empty, we cannot generate q from s, so let’s add q to the vocabulary. Now i = 1 and
j = 1 where q = r(1, 1) = 0. This presents Case 1 and so q is the same as substring
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s(p, q) where p = 0 and q = 0. Since s generates q we expand our window and set i = 2

and j = 1, thus q = r(1, 2) = 00. Here we see that Case 2 applies so that sn, where
n = `(s), is copied to q0 and q0 is copied to q1. So we have s generating q. Again we can
expand the window and so i = 3 and j = 1. Hence q = r(3, 1) = 001 and since the string
representation of our vocabulary is s = 0, there is no way we can generate 001. Thus we
must add q to the vocabulary where we have 0 · 001. At this stage, our vocabulary size is
2, which is the complexity so far. The finished vocabulary of r requires two cycles of r to
complete. The vocabulary is 0 · 001 · 10 · 100 · 1000 · 101000 of size 6. The Lempel-Ziv

Complexity has been implemented, and is abbreviated as lz.
3.5 Interonset Interval Histograms

Histograms have a long history in the field of statistics as an approach for estimating
the density of an unknown probability distribution[148]. The construction of a histogram
relies on a set of bins of a determined width, where each bin contains a certain number
of elements. The result is a distribution where the probability of a new element falling
into a bin is determined by the number of elements in a bin divided by the total number
of elements in all bins [148]. Here, a similar histogram approach will be used to create a
distribution of the frequency of the intervals between onsets (i.e., durations of the onsets) in
a rhythmic pattern. In the literature [33, 147, 172, 173], different approaches for generating
the interonset intervals (IOIs) histograms have been seen. Note that an IOI is computed by
counting the number of pulses between adjacent onsets. Below we discuss two methods:
histograms based on the frequencies of local IOIs and histograms based on the frequencies
of global IOIs.

First, consider histograms based on the frequencies of local IOIs. Measuring the IOIs
locally (or relatively) consists of measuring the duration between sequential pairs of on-
sets in a rhythm and then counting the number of times each duration occurs. In the
1970s, Regener [131], Lewin [100], and Clough [22] used the term interval normal form

to represent the directed distances between successive musical pitch classes in a set. In
the 1980s, Clough and Myerson [23] again used this form in their work relating classes
of musical chords. The interval normal form has additionally been used for rhythms.
Coyle and Shmulevich [33] and Shmulevich et al. [147] describe a difference rhythm vector
which is a vector of ratios between the intervals of sequential pairs of onsets. This form has
been used as a measure for rhythmic similarity [33, 147, 173].

However, in order to generate the local IOI histograms we use the IOIs of sequential
onsets. Thus, each bin of the histogram is a count of the number of times an IOI occurs.
This construction is considered a frequency histogram of local IOIs. In order to visualize
this, consider Figure 3.10, which shows the a polygon of the clave son rhythm along with
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Figure 3.10: In (a) a polygon of the clave son rhythm, [x . . x . . x . . . x . x . . .], with local
IOIs, (3, 3, 4, 2, 4), is shown. These durations are determined by counting the pulses
around the circle between adjacent onsets. The frequency of each IOI is captured in
the histogram depicted in (b).

the corresponding histogram of the frequencies of the IOIs. Each IOI may be determined
by counting the number of pulses around the circle between adjacent onsets in a clockwise
fashion. Each edge length of the polygon is labeled with the IOI.

Second, consider histograms based on the frequencies of global IOIs. Measuring the
IOIs globally consists of measuring the duration between all unique pairs of onsets in a
rhythm. Block and Douthett [9] and McCartin [107] measure intervals between all pairs of
pitch classes in a chord. Toussaint [172] has applied their methods to the rhythmic domain.

Given a cyclic rhythm with n pulses and k onsets, we have
(

k
2

)
unique interval pairs.

For each interval pair, we find the IOI between the onsets. A clear way to visualize this is
geometrically. Consider Figure 3.11 which shows an example of this method for the clave

son rhythm.
Once the rhythm is place on a circle, as seen in Figure 3.11(a), one may connect vertices

of each unique onset pair. This is depicted by the solid lines which form the polygon, and
also by the dotted lines which are all of the polygon diagonals; i.e., lines which connect
pairs of non-adjacent vertices [183]. Now the distance of each edge may be measured in a
geodesic manner (shortest path) by counting the pulses between onsets around the perimeter
of the circle. Figure 3.11(b) captures the frequencies of the global IOIs.

Both ways of constructing IOI histograms may be used to measure the complexity of a
musical rhythm. Below we discuss three methods. The first measures the standard deviation
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Figure 3.11: In (a) a polygon of the clave son rhythm, [x . . x . . x . . . x . x . . .], with
global IOIs, (3, 3, 4, 2, 4, 7, 6, 7, 6, 6), is shown. These durations are determined by
counting the pulses (in a geodesic fashion) around the circle between all unique pairs
of onsets. The frequency of each IOI is captured in the histogram depicted in (b).

of the bin heights, the second measures the information entropy of the bins after they are
normalized such that the sum of the frequencies is 1, and the third measure is based on the
height of the tallest bin, after bin normalization. Consider the following descriptions of each
complexity measure which may be applied to both techniques of histogram construction.
3.5.1 Standard Deviation

In order to measure the complexity of a rhythm’s IOI histogram, the standard deviation
is calculated. The standard deviation is the square root of the average squared deviations
for some set of values from their mean [111]. Below we show the formula for the standard
deviation, which may be found in any statistics textbook [111]; note that sd denotes the
standard deviation, X is some set of values, X is the mean, and n is the number of values.

sd =

√∑
x∈X(x−X)2

n− 1
(3.32)

The histograms present a set of values in which we may calculate the standard deviation.
Therefore, Equation (3.32) is computed where X is the set of frequencies for each bin.
However, we must take into account all possible bins. Thus when using the method for
local IOIs, if a rhythm with 16 pulses has one onset at pulse zero, and the rest of the pulses
are silences, then the histogram would have bin 16 with a frequency of 1. So, for each
histogram there are 16 possible bins. In the case of the clave son, we have frequencies
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Figure 3.12: Information entropy (uncertainty) in the case of two possible values
where the probability varies, note that the peak is when the probability of obtaining
both values is 0.5.

for bins two, three, and four, where the rest of the bins would have zero frequencies. This
method was also chosen for the global IOI histogram standard deviation calculation, which
is opposed to using a value of zero when a rhythm with a single onset occurs. Musically, a
duration of zero would mean that nothing has sounded, but here we do have an onset and
so something has sounded. However, during testing, both methods were found to be very
similar on the data used in this thesis. When a rhythm is found to have a low standard
deviation, the histogram is very even (i.e., flat), which means that a variety of IOIs are
present in the rhythm. Thus, we consider this to mean that the rhythm is more complex.
Using the standard deviation, we have two measures for complexity which are abbreviated
as: ioi-l-sd for the local IOI histogram, and ioi-g-sd for the global IOI histogram.
3.5.2 Information Entropy

Information entropy may also be used to measure the complexity of a rhythm from IOI
histograms. If we normalize the bins in the histogram such that the sum of the frequencies
is equal to 1, then such a normalized histogram may be considered a discrete probability
distribution. ConsiderX to be a discrete random variable which takes on the IOI of each bin
with probability corresponding to the normalized frequency. We may calculate the Shannon
information entropy [143], also referred to as the uncertainty [64, 141, 179], of X , by the
formula for information entropy, previously seen in Equation (3.16). The uncertainty will
be at its maximum when the probability distribution is uniform [141]. This can be seen in
the binary case of two possible values, by Figure 3.12.

Figure 3.12 shows that the uncertainty is highest when the probability distribution is
uniform in the case of two possible values. When there are more than two values, this
also holds, the uncertainty of a random variable is at its maximum in the case of a uniform
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underlying probability distribution [141]. Thus, we may use the measure of information
entropy to indicate the uniformity, or the flatness, of the normalized IOI histograms. The
more flat the IOI histogram, the more complex the rhythm, because our assumption is that
a rhythm, which admits a greater variety of onset durations, is more complex.

In our implementation we calculate the uncertainty as follows. Assume we have pre-
viously computed an IOI histogram for a given rhythm. Let X be the set of IOIs, where
each value in X represents a bin label of the histogram. Define a function f : X → Z,
which returns the frequency count for a given IOI based on the histogram. Note that Z is
the set of integers. Let c be the sum of all values f(x) where x ∈ X . Now we may define a
probability mass function p using f and c.

p(x) =

{
f(x)

c
when x ∈ X

0 otherwise
(3.33)

Let X be a discrete random variable which takes on values from X with probability mass
function p. We now calculate the uncertainty of X as follows.

H(X ) = −
∑
x∈X

p(x) log2 p(x) (3.34)

The value H(X ) is the uncertainty that X will take on IOI values, which are based on
probabilities from the mass function p. H(X ) will increase when the distribution is more
uniform. This means that the rhythm (from which the distribution was derived), will be
more complex. The uncertainty is calculated in this manner using both local IOI histograms
and global IOI histograms, which yields two measures: ioi-l-h for local IOI histograms and
ioi-g-h for global IOI histograms.
3.5.3 Tallest Bin

Another way to measure the flatness of the histogram to determine a rhythm’s complex-
ity is by looking at the height of the tallest bin. To do this, we follow the same normalization
procedure of creating a probability mass function described in §§ 3.5.2. Thus, assume that
p exists based on an IOI histogram of a given rhythm. Moreover, let X be the set of IOIs,
bin labels, of the histogram. Find the maximum value of p(x) over each x ∈ X .

max
x∈X

p(x) (3.35)

This value tells us the height of the tallest bin. If the tallest bin has a small height, this
means that the histogram is more uniform. Recall that we assume that rhythms, which are
more complex, have more uniform IOI histograms. Thus, we use this approach for both
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local IOI histograms and global IOI histograms to measure the complexity of a rhythm.
The abbreviations for this measure are: ioi-l-mm for local IOI histograms and ioi-g-mm for
global IOI histograms.
3.6 Mathematical Irregularity

Finally, complexity measures are presented which pertain to measuring how irregular a
rhythm is, by way of a geometric representation. Both measures have been discussed by
Toussaint [168, 169].
3.6.1 Toussaint’s Off-Beatness

The Off-Beatness Measure proposed by Toussaint [67, 68, 169], can be used as a mea-
sure for rhythmic complexity. In order to describe the Off-Beatness of a rhythm, consider a
geometric representation. Let r be a cyclic rhythm with n pulses and k onsets. First, place
r on a circle of fixed radius where each pulse is evenly distributed around the circumfer-
ence of the circle. Second, find each value i that is greater than 1, less than n, and which
evenly divides n. Third, for each i, inscribe a regular polygon with i vertices on the circle,
starting the inscription at pulse 0 and continuing clockwise [67, 169]. Fourth, mark each
pulse which corresponds to a vertex of an inscribed polygon a beat, and mark each pulse
which does not correspond to a vertex of any inscribed polygon an off-beat. Fifth, count
the number of onsets which occur on an off-beat [67, 169]. This value is the Off-Beatness
measure of r. Since we are looking for onsets around the circle which lie on a vertex not
shared by a regular inscribed polygon, we say this is a measure of irregularity.

As an example of Off-Beatness, let r be the bembé rhythm, [x . x . x x . x . x . x], where
n = 12 and k = 7. First, let us place r on a circle starting with pulse 0 numbering clockwise
to pulse 11. Second, the numbers in the range (1, 12) which evenly divide 12 are: 2, 3, 4,
and 6. For the third and fourth step, if we inscribe a regular bi-angle, triangle, square, and
hexagon, where we start drawing the polygon at pulse 0 and continuing clockwise, then
the beats (polygon vertices) fall on pulses 0, 2, 3, 4, 6, 8, 9, and 10. The off-beats (non-
polygon vertices) are thus 1, 5, 7, and 11. Counting the onsets which occur on an off-beat,
we arrive at the off-beatness for r to be 3. Figure 3.13 visualizes the example, and presents
an example on a 16-pulse rhythm. Note that we abbreviate this measure as offbeatness.

Off-Beatness also has group and number theoretic implications [67], which we briefly
touch on here. In group theory, let G be a group of the integers in the range [0, n− 1] under
the operator of addition modulo n. In other words, let G be Z/nZ. Let S be a subset of G,
such that for each s ∈ S, we have s and n are relatively prime. Each element in S generates
G and thus 〈S〉 = G. Additionally, in number theory, the order of S is precisely the result
of Euler’s totient function.
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(b) Clave son rhythm.

Figure 3.13: The Off-Beatness measure applied to the bembé rhythm in (a) as an
example of a rhythm with 12 pulses, and in (b) as an example of a rhythm with 16
pulses, the clave-son. Note that the off-beat onsets are marked with the corresponding
pulse in a box.

3.6.2 Rhythmic Oddity
The rhythmic oddity property was discovered by Simha Arom [4] and used to describe a

property that is characteristic of rhythms of the Aka Pygmies [17, 67, 169]. A rhythm is said
to have the rhythmic oddity property if there is no pair of onsets that partition the rhythm
into two sub-units with an equal number of pulses [67, 169]. Implied in this definition is
that the rhythm is cyclic, and also the rhythmic oddity property is only relevant to rhythms
with an even number of pulses, since an odd number of pulses implies the property [67].

In order to better understand the definition of the rhythmic oddity property, consider a
rhythm r with n pulses and k onsets. Place rhythm r on the perimeter of a circle of n evenly
spaced points, such that each pulse corresponds to a point. If a diameter of the circle cannot
be drawn between any onset pair, then r has the rhythmic oddity property [17].

Rhythmic oddity can also be used to measure complexity. Toussaint [67, 169] has devel-
oped an algorithm to measure the rhythmic oddity of a rhythm, called the Rhythmic Oddity

measure. Let r be a cyclic rhythm with an even number of n pulses and some k number
of onsets, where r is indexed from 0 to n − 1. The first step of the algorithm is to iterate
through all pairs of onsets (i, i + n/2) where 0 ≤ i < n/2. The second step is to check
if ri and ri+n/2 are both onsets. If so, then a partition with two sub-units having an equal
number of pulses can be created. Thus, add a 1 to total, which has been initialized to 0.
Once all such pairs have been checked, the total is the number of onset pairs which can
partition the rhythm. The smaller the number of onset pairs, the greater rhythmic oddity
(closer to having the rhythmic oddity property) and thus the greater the complexity of the
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rhythm [169]. This also presents a measure of irregularity because a diameter would split
the number of pulses equally in half. However, we are looking for irregular pairs of onsets
which do not equally partition the number of pulses.

As an example, consider the bembé rhythm where r = [x . x . x x . x . x . x], n = 12 and
k = 7, where we index r from 0 to 11. Let us now check the pairs: (0, 6), (1, 7), (2, 8),
(3, 9), (4, 10), and (5, 11). We see that one pair, (5, 11), has onsets at each position in r, and
hence, creates a partition where the number of pulses are equal. Thus the rhythmic oddity
is 1 for the bembé rhythm. Figure 3.14 provides and example for the bembé and clave son

rhythms. The clave son admits no diameters. Note that the abbreviation for this measure is
oddity.
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(b) Clave son rhythm.

Figure 3.14: The Rhythmic Oddity measure applied to the bembé rhythm in (a) as an
example of a rhythm with 12 pulses, and (b) presents and example of the Rhythmic
Oddity applied to a rhythm with 16 pulses, the clave-son. Note that the onset pair
which creates a diameter are marked with the corresponding pulses in a boxes.
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Chapter 4

Experimental Data

The experimental rhythm data used in the evaluation of the complexity measures described
in Chapter 3, shall be discussed. There are three main categories which organize the
rhythms. The first is termed Psychological, as the rhythms in this category have been
used in psychological experimentation. Here, human measures of rhythm complexity are
also described, which have been collected from four different psychological studies. The
second category is labeled Cultural, as the rhythms in this category have been gathered
from two different cultures: African and Indian. The third category is labeled as Random,
because the rhythms here have been generated at random. Below, each category of rhythms
will be described and tables of the rhythms are included.
4.1 Psychological

The rhythms in this section have been used in four different psychological studies. How-
ever, two studies use the same set of rhythms, and thus we present three rhythm data sets.
The subsections are grouped by rhythm data set, and so first we present the rhythms origi-
nating from a psychological study by Povel and Essens [119] in 1985. In this subsection, we
discuss the experimentation by Povel and Essens on human participants with the rhythms,
and also discuss a second study, conducted by Shmulevich and Povel [146] in 2000, where
the data set is used as well. Povel and Essens’ study yields a human measure of rhythm
performance complexity, whereas Shmulevich and Povel’s study yields a human measure
of rhythm perceptual complexity regarding the rhythms listed in Table 4.1. The second
rhythm data set originated from a psychological study by Essens [48] in 1995. As a result
of this study, human measures of rhythm performance complexity and rhythm perceptual
complexity are also obtained. The rhythms from Essens’ study are listed in Table 4.2. The
third rhythm data set is the most recent data set, from a study by Fitch and Rosenfeld [57]
in 2007. From this study, we obtain a human measure of rhythm performance complexity
and also two human measures of rhythm metrical complexity. The rhythms are listed in
Table 4.3.
4.1.1 Povel and Essens; Shmulevich and Povel

In 1985, Povel and Essens [119], conducted three experiments to gain insight regarding
the internal representation of rhythms. In 2000, Shmulevich and Povel [146] conducted
an experiment in order to gain “perceptual validity” [146] of three measures of rhythm
complexity [146]. Both studies used the data shown in Table 4.1. The results from Povel
and Essens’ Experiment 1 are used by this thesis as a baseline pertaining to the performance
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complexity of the rhythms. The results from Shmulevich and Povel’s experiment are used as
a baseline pertaining to the perceptual complexity of the rhythms. This subsection is divided
as follows: first, we list the rhythms along with the human-based complexity measures
in Table 4.1. Then we describe the method Povel and Essens used to obtain, what we
call, Povel and Essens’ Human Performance Complexity measure. Finally, we discuss the
method used by Shmulevich and Povel to obtain, what we term, Shmulevich and Povel’s

Human Perceptual Complexity measure.
Povel and Essens’ Experiment

The experiment by Povel and Essens [119] used synthetic rhythms (see Table 4.1) to
test the hypothesis, “temporal patterns [rhythms] that strongly induce an internal clock
[metrical representation] form better internal representations and are consequently better
reproduced than weaker clock-inducing patterns” [119]. These rhythms are labeled as syn-
thetic because they are all permutations of the IOI pattern {1, 1, 1, 1, 1, 2, 2, 3, 4}, which
admits only structural variations according to Povel and Essens [119].

The experiment to test their hypothesis is relevant to rhythmic complexity, because
Povel’s clock-model is related to the how humans form a metrical hierarchy when given a
rhythm, predicting its structure [120, 121]. Therefore, in Povel and Essens’ study, a method
of rhythm reproduction accuracy is used to test if a rhythm, which presents a clearer metrical
structure, can be more accurately reproduced [119].

Twenty-four subjects participated in the experiment where a rhythm was sounded and
then stopped, to allow the participant to tap back the rhythm just heard [119]. The rhythm
could be listened to for as long as the participant desired, and subjects were also encouraged
to tap along to the rhythm as it played. However, once they pressed the stop button, the
participants were asked to tap back the rhythm repeatedly four times. If the participants
were dissatisfied, they could repeat the process for the rhythm just heard. Otherwise, the
next rhythm was randomly presented [119].

After the experimentation, the reproduction accuracy was measured in terms of what
Povel and Essens call a mean deviation percentage [48, 119]. This value was calculated
by first finding the IOI values between all reproductions from the participants and from
computer sounded target rhythms. Second, the average over the four reproductions of each
rhythm, from each participant, was calculated. Third, the percent difference was found be-
tween the average IOIs for the reproductions, and corresponding IOIs for the target rhythms,
for each participant. Fourth, the average of the percent difference was found [48, 119]. This
value is the mean deviation percentage.

This thesis interprets the mean deviation percentage values as ordinal ranks and refers
to the values as the human-based performance complexity for the rhythms. Ranks are used
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Table 4.1: Rhythms originally from a study by Povel and Essens [119], which were
also used in a study by Shmulevich and Povel [146]. Along with the rhythms, two mea-
sures of complexity of the rhythms are also shown, a higher value means the human
participants found the rhythm more complex.

No. Rhythm
Human Human

Performance Perceptual
Complexity Complexity

1 x x x x x . . x x . x . x . . . 5 1.56
2 x x x . x . x x x . . x x . . . 1 2.12
3 x . x x x . x x x . . x x . . . 0 2.08
4 x . x . x x x x x . . x x . . . 2 1.88
5 x . . x x . x . x x x x x . . . 3 1.80
6 x x x . x x x . x x . . x . . . 9 2.44
7 x . x x x x . x x . . x x . . . 7 2.20
8 x x . . x x x x x . x . x . . . 4 2.56
9 x x . . x . x x x . x x x . . . 14 3.00

10 x . x x x . x x x x . . x . . . 18 2.04
11 x x x . x x . . x x . x x . . . 19 2.76
12 x x . x x x x . x . . x x . . . 15 2.72
13 x x . x x . x x x x . . x . . . 13 3.00
14 x x . . x x . x x . x x x . . . 17 3.16
15 x . . x x x . x x x . x x . . . 10 2.04
16 x x . x x x x . x x . . x . . . 11 2.88
17 x x . x x x . x x x . . x . . . 17 2.60
18 x x . x x x . . x x . x x . . . 22 2.60
19 x x . . x x . x x x x . x . . . 21 2.64
20 x x . . x x . x x x . x x . . . 25 3.24
21 x x x x x . x x . x . . x . . . 29 3.08
22 x x x x . x . . x x x . x . . . 20 3.04
23 x x x . . x x . x x x . x . . . 16 3.04
24 x . x x x . . x . x x x x . . . 6 2.56
25 x . x . . x x x x . x x x . . . 8 2.56
26 x x x x . x . x . . x x x . . . 26 2.84
27 x x . x x x . x . . x x x . . . 23 3.60
28 x x . x . . x x x . x x x . . . 32 2.68
29 x . x x x x . x . . x x x . . . 28 3.28
30 x . . x x x x x . x x . x . . . 21 3.08
31 x x x x . x x x . . x . x . . . 30 3.52
32 x x x x . . x x . x x . x . . . 31 3.60
33 x x . x x x x . . x x . x . . . 24 3.04
34 x x . x . . x x x x x . x . . . 33 2.88
35 x . x . . x x x . x x x x . . . 12 3.08
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since the exact values were unavailable, and so to avoid possible error, ordinal ranks were
obtained from Povel and Essens’ work [119]. In Table 4.1, the ordinal ranks can be seen
in the last column. A higher rank indicates that rhythm produced a higher mean deviation
percentage, and thus a higher complexity.
Shmulevich and Povel’s Experiment

Now consider Shmulevich and Povel’s [146] experimental method for obtaining the
human judgments of perceptual complexity shown in Table 4.1. Twenty-five subjects par-
ticipated in their study. The participants consisted of a mixture of graduate, undergraduate,
and faculty members from the University of Nijmegen. All the participants were musicians
with an average of 9.2 years of musical experience [146].

Each rhythm was sounded by a MIDI-synthesizer generating a marimba sound. Each
onset in the rhythm sounded the same, there were no accents or changes in pitch. Each
rhythm was played four times in a row, where the next rhythm was chosen at random [146].
This presentation was possible because Shmulevich and Povel used a computer program
to display, sound, and collect the user-responses for each rhythm. The responses were
in terms of a judgment on the complexity of the rhythm, where the participant could give
integer values starting at 1, meaning simple, up to and including a 5, meaning complex. The
instruction statement given to the participants was, “imagine how difficult it would be to
reproduce the rhythms” [146]. Hence, the participants were given a performance mindset.

The average among the resulting human complexity judgments for each rhythm are
presented by Shmulevich and Povel [146], and are also shown in Table 4.1, labeled hu-

man perceptual complexity. As a note on the average complexities, Shmulevich and Povel
tested the consistency with Cronbach’s alpha, a statistical test which shows reliability in the
complexity values [34].
4.1.2 Essens

In 1995, Essens [48] conducted three experiments which were focused on the structure
of rhythms. This thesis adopts the results from Experiment 2 and Experiment 3 of Essens’
work [48]. The results are used as another baseline measure for human-based performance
and perceptual complexity, but on a new data set of rhythms listed in Table 4.2.

The performance complexity is from Experiment 2 conducted by Essens. Here, the
reproduction accuracy of participants on the rhythms was measured again using the mean
percent deviation, which is calculated between the IOIs in the reproduced rhythms and
the IOIs of the computer-sounded target rhythms [48]. Perceptual complexity is derived
from Essens’ Experiment 3. Here, human judgments of the complexity for each rhythm is
determined, again based on a 1 to 5 scale.

Table 4.2 provides the rhythms, along with the Essens’ Human Perceptual Complexity
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values, and Essens’ Human Performance Complexity values as ordinal ranks. The reason
ordinal ranks for the performance complexity are used is again because exact values were
not available. Therefore, rankings were determined from Essens’ work [48]. Consider the
table of each of the values, and then consider descriptions of Essens’ Experiment 2 and 3.

Table 4.2: Rhythms from Essens [48], along with two measures of human-based com-
plexity for each rhythm from two experiments conducted by Essens [48].

No. Rhythm
Human Human

Performance Perceptual
Complexity Complexity

1 x x x . x x x . x x x . x x . . 0 2.2
2 x x x . x . x x x . x x x x . . 8 3.1
3 x . x x x . x x x . . x x x . . 4 3.2
4 x . x x x . . x x . x x x x . . 19 2.9
5 x x x . x x x . x x . x x . . . 2 2.2
6 x x x . x . . x x . x . x x . . 7 3.1
7 x x x x x x x . x x x . x x x . 10 2.6
8 x x x . x x x x x . . x x x . . 5 4.2
9 x x x x x x . x x . x x x . . . 13 2.9

10 x . x . x . x . x x x . x x . . 6 2.8
11 x x x x x x x . x x x . x . x . 1 3.1
12 x x x . x x . . x . x . x . . . 3 2.5
13 x . . x x x x . x x . . x x . . 20 3.5
14 x . x x x x . x x x . x x x . . 12 2.5
15 x . . x x x . x x x . x x x . . 14 2.4
16 x . . x x x . x x x x . x x . . 11 3.0
17 x x . x x x . x x x x . x . . . 17 3.0
18 x . . x x x x x x x . x x x . . 18 3.1
19 x . x . x x . x x x . x x x . . 22 2.4
20 x x . x x x x . x x . x x . . . 16 3.2
21 x x . x x x . x x x x x x . . . 15 2.4
22 x x . . x x . x x x x x x . . . 11 2.9
23 x . x . x x . x x x x x x x . . 21 2.7
24 x x . x x x x x x . x . x x . . 9 3.8

Experiment 2
Experiment 2 conducted by Essens involved six participants, where two of them played

a musical instrument for at least 5 years [48]. Each rhythm, as shown in Table 4.2, was
generated to vary how well the rhythms define a metrical structural based on Povel’s clock-
model [119, 120, 121].

Essens presented each rhythm cyclically four times. Participants were asked to listen to
each rhythm and tap along. Then, they stopped the computer generated rhythm, and had to
reproduce it. This was done by tapping the rhythm as accurately as possible four times [48].
This was the immediate reproduction task, where the results are shown in Table 4.2 in the
human performance complexity column. These data are the ranks of the mean deviation
percent from the top panel of Essens’ Figure 2 [48]. The mean deviation percentage was
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calculated in the same way as in Povel and Essnens’ study [119]. Thus, the higher the mean
deviation percentage, the more difficult it was to reproduce the rhythm, and thus the higher
the ranking of that rhythm.
Experiment 3

Experiment 3 conducted by Essens [48] had twenty participants, where five were musi-
cally trained for at least 5 years. The purpose of this experiment was to judge complexity of
the rhythms. For each rhythm, the participants judged the complexity on a five-point scale:
very simple, moderately simple, neutral, moderately complex, very complex [48]. The
rhythms were randomly ordered, and there was no definition of complexity given. These
values are listed in Table 4.2, labeled human perceptual complexity. They represent the
mean complexity over the participants for each rhythm.
4.1.3 Fitch and Rosenfeld

Most recently, Fitch and Rosenfeld [57] conducted an experimental study of rhythm
reproduction (i.e., performance complexity) and beat-tracking (i.e., rhythmic meter com-
plexity). The rhythms used for their study are shown in Table 4.3. These rhythms were
generated in such a way as to vary the amount of syncopation among the rhythms, as mea-
sured by Fitch and Rosenfeld’s implementation [56] of the Longuet-Higgins and Lee mea-
sure [106]. The 30 rhythms obtained, used in both the reproduction task and beat-tracking
task, where 16 participants with musical experience ranging from 0 to 15 years (and 6 of
them seriously involved in regular musical activities), were tested [57]. From both tasks,
we derive human-based complexity measures. Fitch graciously shared [55] data used here.
Reproduction Task

The experiment by Fitch and Rosenfeld for measuring the accuracy of rhythm repro-
duction involved asking the participants to reproduce (by tapping) the rhythm they had
just heard. That is, the subject must tap the rhythm, as the computer taps the beat of the
rhythm [57]. So, this experiment was combined with the beat-tracking experiment (to be
described next), in such a way that after the participant heard the computer play the rhythm
for the beat-tracking task, the roles switched. Here in the reproduction task, the participant
reproduces the rhythm just heard, while the computer plays the beat [57]. To measure the
rhythm reproduction accuracy, Fitch and Rosenfeld took the IOIs of both the target rhythm
sounded by the computer, and the IOIs from the reproduced rhythm by the participant. Then
they optimally aligned the IOIs of the reproduced rhythm to the target rhythm’s IOIs, and
computed the absolute value of the difference for each IOI. These error values where then
averaged for each IOI pair and then an average across the participants was taken for the
reproduction error for a rhythm [57]. We consider these values to be Fitch and Rosenfeld’s

Human Performance Complexity, as shown in Table 4.3.
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Beat-Tracking Task
In the beat-tracking experiment, a computer sounds a steady beat (which Fitch and

Rosenfeld call pulse), and then sounds a rhythm simultaneously along with the beat. Par-
ticipants were then asked to tap along with the beat and try to accurately follow the com-
puter’s beat. After two set periods of the beat and then two periods of the beat and rhythm
together, the computer-generated beat stops; however, the participant must keep tapping
(i.e., maintain) the beat [57]. The tempo was varied during this process, and the result was
termed the beat tapping error. Fitch and Rosenfeld also have a measure for the beat tapping
error adjusted for the tempo variations. We call this Fitch and Rosenfeld’s Human Metrical

Complexity (Beat Tapping Adj), as seen in Table 4.3.
An additional measure of human-based metrical complexity of was collected from the

beat-tracking experiment. This is termed as the number of resets [57]. Here, we use the
number of resents for Fitch and Rosenfeld’s Human Metrical Complexity (Number of Re-

sets) measure, as shown in Table 4.3.
Fitch and Rosenfeld describe a reset as an event when listeners alter their notion of

where the beats are in a rhythm; i.e., “they ‘rehear’ or reinterpret the pattern as less synco-
pated by shifting the inferred pulse [beat]” [57]. This was tested by counting the number of
times a participant tapped a beat half-way between where the beat should have been [57].
4.2 Cultural

The rhythms presented in this section consist of those rhythms from two different cul-
tures: African and Indian. First we discuss the rhythms from African culture, termed
African Timelines, and then we discuss the Indian rhythm. However, we have two data
sets of rhythms from Indian culture: the Indian Decitalas and the North Indian Talas.
4.2.1 African Timelines

The famous musicologist A. M. Jones writes that, “an interesting rhythmic pattern is the
spice of life to the African” [82]. Since rhythm is so characteristic in African culture [82],
we include a handful of rhythms collected from a variety of sources [1, 2, 181, 82, 124, 128,
165, 170, 171, 174] in this study. However, most notably are the sources by Toussaint [170,
171, 174], for providing such an extensive list of African Timelines.

The rhythms used have either 12 pulses or 16 pulses, and in fact are a collection of
African derived rhythms. Hence, Table 4.4 shows mostly African bell or clapping patterns,
but there are rhythms in the list which are considered to be derived or influenced from
Africa. For example, the flamenco clapping patterns guajira, seguiriya, and soleá, are
either identical to or rotations of African rhythms, and bulerı́a is a close relative to soleá.
Such patterns are thought to perhaps have originated in north Africa, later spreading to
Spain [85]. We include the macedonian rhythm because it is simply a rotation of the guajira
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Table 4.3: Rhythms from Fitch and Rosenfeld’s [57] study, along with a human-based
measure of performance complexity and two human-based measures of metrical com-
plexity.

No. Rhythm
Human Human Metrical Human Metrical

Performance Complexity Complexity
Complexity (Beat Tapping Adj) (Number of Resets)

1 x . . . . . x . x . . . . . x . 0.138 0.075 2.500
2 x . . . x . . . x . . . x . x . 0.145 0.082 2.250
3 x . x . x . . . . . . . x . x . 0.153 0.075 2.313
4 x . . . x x x . . . . . x . . . 0.257 0.119 8.750
5 . . x . . . x . x . x . x . . . 0.133 0.103 5.500
6 . . x . . . x . x . . . x . x . 0.235 0.082 3.063
7 x . . . . . x . . x . . . . x . 0.215 0.112 6.000
8 x . . x . . . x . . x . x . . . 0.208 0.110 5.188
9 x . . . . x . . . x . . . x x . 0.250 0.141 6.938

10 x . . . . x . . . x . . . x . . 0.171 0.144 10.375
11 . . x . . . x . . . x x . x . . 0.220 0.130 6.875
12 . x . . . x . . . x . . x . x . 0.226 0.124 6.438
13 . . x . . . x x . . . x . x . . 0.387 0.130 6.965
14 . . x . . x . . . . . x . . . x 0.239 0.159 11.688
15 . . . x . x . . . . x x . . . x 0.485 0.172 13.688
16 x . . . x . x x x . . . . . . . 0.173 0.085 2.625
17 x . x . x . . . . . x . x . . . 0.179 0.077 2.313
18 . . x . x . . . x . x . x . . . 0.182 0.077 2.438
19 x . x . . . x . x . . x . . . . 0.252 0.074 1.938
20 . . x . . . x . x . . . x . . . 0.142 0.098 3.375
21 x . . . . x . x . . x . x . . . 0.305 0.161 11.063
22 . . x . . . x . x . x . . . x . 0.321 0.129 8.500
23 x x . . . x . . . . x . . . x . 0.320 0.145 7.375
24 . x . . . x . . . x x . x . . . 0.265 0.134 7.188
25 . . x . . . x . . . x . . x . . 0.176 0.146 8.625
26 . . x . . . x . . . x x . . . x 0.326 0.118 6.500
27 . . x . . x . . . . x . . x . x 0.368 0.117 6.188
28 . . x x . . . x . . . x . x . . 0.344 0.154 10.813
29 . x . x . x . x . . . x . . . . 0.185 0.191 15.750
30 . x . x . . . x . . . x . . . x 0.158 0.164 11.938
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clapping pattern and thus, is closely related. Also, the tuareg from Lybia is included since it
is from north Africa. The persian rhythm is also included in the list because of its relation
to the African sorsonet by rotation; moreover, the Arab rhythm al-ramal is a rotation is
three African rhythms (e.g. tonada) and is thus included as well.

Since African derived rhythms also includes rhythms stemming from Afro-American
culture, rhythms from New Orleans such as the tipitina snare drum pattern is in the data
set. In addition, rap-style rhythms and two other snare drum rhythms are used. Two other
rhythms deemed experimental, have been included as well. The first, is a clapping pattern
from Steve Reich [132], steve-reich-clap, which is closely related to the African yoruba

rhythm [166, 167], being shown to in fact be a rotation [27]. The second, is a mathematical
cousin to Reich’s rhythm presented by Joel Haak [70, 71]. Haak provided a mathematical
explanation to how Reich arrived at his rhythm. Among all possible rhythms with 12 pulses
and 8 onsets (i.e.,

(
12
8

)
), Haak devised a set of rules for picking-out clapping rhythms, and

came up with only two: the rhythm termed joel-haak and Reich’s rhythm. Thus, because of
the mathematical properties these two rhythms share, joel-haak is also considered African
derived, and included in our list. However, for simplicity, we use the term African Timelines

to encompass all the rhythms listed in Table 4.4.
4.2.2 Indian Decitalas

The second set of rhythms is from Indian culture and are referred to as the Indian
Decitalas. These rhythms are significant to Indian music as they are notated according
to Ṡarṅgadeva, who wrote the thirteenth-century treatise, the Saṅgīta-Ratnākara, which is
considered to be the “crucial text of Indian musical history” [122]. Moreover, the famous
French composer Olivie Messiaen was greatly influenced by the Decitalas, as he discusses
his rhythmic technique in his treatise Technique de Mon Langage Musical [109].

Thus, we use a subset of the Decitalas presented by Ṡarṅgadeva. The rhythms are from
a text by R. S. Johnson [81] from 1975, where they’ve been replicated in Johnson’s Ap-
pendix II, page 194. Listed by Johnson are 132 rhythms, which we reduce to 97, removing
rhythms such as those containing only one onset, and those rhythms with a prime number
of pulses, for example. The reason for removing those with a prime number of pulses, is
because a majority of our complexity measures rely on prime factorizations of the number
of pulses, and when that number is prime, we have little to work with. Therefore, those
rhythms are removed and we present the reduced set Indian Decitalas in Table 4.5. Note
that these Decitalas present a wide range of pulse values, so in the results, we take the
full 97 rhythms, and also a subset taking only those rhythms with 12 or 16 pulses as an
additional comparison to the African Timelines. Regardless, consider the Indian Decitalas

below.
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Table 4.4: African Timelines.

Name Rhythm Name Rhythm
adangme x . x . x . x . x . . x . x . . kpatsa x . . . x . . . x . . x . x . .
akan-five x . . x . x x . x . . . kromanti x . x . . . x . . . x . x . . .
akan-four x . . x . . x . x . . . mambo-a x . . x . x . . x . x . . x . .
akom x . x . x . x . . x . x . . x . mambo-b x . x . . x . . x . . x . x . .
al-ramal x . x . x . x . x x . x macedonian x . . x . x . x . x . .
asaadua x . x . x . x x . x x . menjani x . x . x x . x x . x .
ashanti-seven x . x x . x . x x . x . mutuashi x x . x . x . x x . x . x . x .
ashanti-six x . x . x . . x . x x . nandom-bawaa x . . . x . . . . . x . . . . .
ashanti x . . x . x . . x . . . ngbaka x . x . x . x x . x . x . x x .
beat-four x . . x . . x . . x . . ngbaka-maibo x . x . x . x x . x . x . x . x
beat-six x . x . x . x . x . x . nyayito x . x x x x x x . x . x
beat-three x . . . x . . . x . . . oyaa x . x . x . x . x . x x . x x .
bemba-five x . . x . x . x . . x . persian x . x . x . x . x x x .
bemba-seven x . x x . x . x . x x . popcorn-snare x . x . x . . x . x . . . . x .
bembe-duple x . . x . . x x . . x . x . . x rap-drum x . . . x . . x . x . . x . . .
bembe-five-a x . x . . . . x . x . x rap-kick-drum-public-enemy x . x . . . . x . . x . . . x .
bembe-five-b x . . . x . . x . x . x red-white-blue-snare x . x . . x . . x . . x . . x .
bembe-four-a x . x . . . . x . x . . rumba x . . x . . . x . . x . x . . .
bembe-four-b x . . . x . . x . x . . rumba-palitos x . x x . x . x x . x . x x . x
bembe-seven-a x . x . x x . x . x . x salve x . x . . x . x . . x .
bembe-seven-b x x . x . x x . x . x . samba x . x . . x . x . x . . x . x .
bembe-three x . x . . . . . . x . . seguiriya-clap x . x . x . . x . . x .
bondo x x . x . x . x x . x . shiko x . . . x . x . . . x . x . . .
bossa-a x . . x . . x . . . x . . x . . sologon x . x x . x x . x x . x
bossa-b x . . x . . x . . x . . x . . . solea-clap . . x . . x . x . x . x
bossa-c x . . x . . x . . x . . . x . . son x . . x . . x . . . x . x . . .
buleria-clap . . x . . . x x . x . x sorsonet x x x . x . x . x . x .
central-cuba x . x . x . . . x x . . soukous-drum x . . x . . x . . . x x . . . .
columbia x . x . . x . x . x . . steve-reich-clap x x x . x x . x . x x .
domba x . x . . x . . . x . . . x . . takoe x . . x . x . . x . x . x . x .
dunumba x . x . x . x . x . . x tambu x . x . x . x x . x . x
eleggua x x x . x x . x . x . x timini x . x . . . x . x . . . x . . .
equatorial-african-rattle x . x . x . x . x . . x . . x . tipitina-snare x . x . x . . . . x . . . . x .
fume-fume x . x . x . . x . x . . tonada x . x x . x x . x . x .
funky-drummer-snare x . x . x . . x . x . . x . . . tresillo-a x . . . . . x . . . . . x . . .
ga x . x . x . x . . x . . tresillo-b x . . . . . x . . . x . . . . .
gahu x . . x . . x . . . x . . . x . tuareg x . . . x . x . x . . . x . . .
ghana-clap x . x . x . x . . x . x . x . . venda-a x . . x . x . . x . x .
guajira-clap x . . x . . x . x . x . venda-b x . x x . x . . . x . .
ibibio x . x . x . . x . x . x venda-clap-a x . x x . x . . x . x .
joel-haak x x x x . x . x x . x . venda-clap-b x . x . x . x x . x . .
kassa x x . x . x x . x . x . x . x . yoruba x . x . x x . x . x x .
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Table 4.5: Indian Decitalas.

Name Rhythm Name Rhythm
abhanga x . x . . . . . mantha1 x . x . x . . . x . x . x . x .
abhinanda x . x . x x x . . . mantha2 x . . . x . x . x . . . . . x . x .
ananga x . x . . . . . x . x . x . . . mudrita3 x . . . x . x . x . x . x . x .
bindumali x . . . x x x x x . . . mudrita4 x . x . x . x . x . . . x . x .
carabhalila x . x . x x x x x . x . mukunda x . x x x x x . . .
carngadeva x x x . . x . . . . x . . x . . x . nandana x . x x x . . .
caturasravarna x . . . x . x x x . . . nandi x . x x x . x . x . . . x . . .
caturmukha x . x . . . x . x . . . . . niccanka x . x . . x . . x . . . . x . . x . . x . . x .
crikirti x . x . x . . . x . . . nihsaruka x . . . . . x . . . . .
crinandana x . . . x . x . x . . . . . pratimanthaka x . x . x . . . x . . . x . x .
criranga x . x . x . . . x . x . . . . . pratitala x . x x
darpana x x x . . . pratyanga x . . . x . . . x . . . x . x .
dhatta x . x . x x x . x . . . rajacudamani x x x . x . x . x x x . x . . .
dhenki x . . . x . x . . . rajamriganka x x x . x . . .
dipaka x x x . x . x . . . x . . . rajanarayana x x x . x . . . x . x . . .
dombuli x . . x . . rajatala x . . . x . . . . . x x x . . . x . x . . . . .
dvitiya x x x . rajavidyadhara x . x . . . x x
gaja x . x . x . x . ranga x x x x x . . .
gajalila x . x . x . x . . rangabharana x . . . x . . . x . x . x . . . . .
gauri x . x . x . x . x . rangapradipaka x . . . x . . . x . x . . . x . . . . .
hamsalila x . . x . . rangodyota x . . . x . . . x . . . x . x . . . . .
hamsanada x . x . . . . . x x x . . . . . rati x . x . . .
jaya x . x . . . x . x . x x x . . . . . ratilila x . x . x . . . x . . .
jayacri x . . . x . x . . . x . x . . . rayavankola x . . . x . x . . . x x
jayamangala x . x . x . . . x . x . x . . . sarasa x . x x x x . x .
kaladhvani x . x . x . . . x . x . . . . . sarasvatikanthabharana x . . . x . . . x . x . x x
kandarpa x x x . x . . . x . . . shattala x x x x x x
kanduka x . x . x . x . x . . . simha x . x x . x . x .
kankalakhanda x x x . . . x . . . simhanada x . x . . . x . . . x . x . . .
kankalapurna x x x x x . . . x . skanda x . . . x . x . . . x x x . . . x . . .
kankalasama x . . . x . . . x . tribhangi x . x . x . . . x . . .
kankalavishama x . x . . . x . . . tribhinna x . x . . . x . . . . .
karanayati x x x x tryasravarna x . x . x x x . x .
kirti x . x . . . . . x . . . x . x . . . . . udikshana x . x . x . . .
kokilapriya x . . . x . x . . . . . utsava x . x . . . . .
kollaka x . x . x . . . x . . . x . x . vanamali x x x x x . x x x . . .
kudukka x x x . x . vardhana x x x . x . . . . .
kumuda1 x . x x x . x . x . . . varnabhinna x x x . x . . .
kumuda2 x . x x x x x . . . varnamanthika x . x . x x x . x x
kuvindaka x . x x x . . . x . . . . . varnayati x . x . x x
lalita x x x . x . . . vasanta x . x . x . x . . . x . . . x . . .
lalitapriya x . x . x . . . x . x . . . vijaya x . . . . . x . . . x . . . . .
lila x x . x . . . . . vijayananda x . x . x . . . x . . . x . . .
madana x x x . . . vilokita x . . . x x x . . . . .
makaranda x x x . x . x . viravikrama x . x x x . . .
mallikamoua x . x . x x x x
candrakala x . . . x . . . x . . . x . . . . . x . . . . . x . . . . . x .
janaka x . x . x . x . x . . . x . . . x . . . x . x . x . . .
dvandva x . x . x . . . x . . . x . . . x . x . . . . .
parvatilocana x . . . x . . . x . . . x . x . . . . . x . . . x . . . x x
simhavikrama x . . . x . . . x . . . x . x . . . . . x . . . x . . . . .
simhavikridita x . x . . . . . x . . . x . . . . . x . . . . . x . . . x . x . . . x . . . . . x . x . . . . .
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4.2.3 North Indian Talas
The final cultural set of rhythms is also from India. However, these are from North

India, called the North Indian Talas. These rhythms are from Martin Clayton [20], who
describes them as the most popular rhythms in North India. Thus we use all the rhythms
indicated by Clayton, except those which have a prime number of pulses (discarding only
two). Also, we use the clapping patterns to for the North Indian Talas in Table 4.6.

Table 4.6: North Indian Talas.

Name Rhythm
ada cautal x . x . . . x . . . x . . .
adi tal x . . . x . . . . . . . x . . .
brahma tal x . x x . x x x . x x x x .
cautal x . . . x . . . x . x .
dhamar tal x . . . . x . . . . x . . .
dipcandi tal x . x . x . . . . . . . x . . .
ektal x . . . x . . . x . x .
jhaptal x . x . . . . x . .
jhumra tal x . . x . . . . . . x . . .
matta tal x . x x . x x x .
pancam savari tal 1 x . . . x . . . . . . . x . .
pancam savari tal 2 x . . . x . . . . . . . x x .
sultal x . . . x . x . . .
tintal x . . . x . . . . . . . x . . .

4.3 Random
The rhythms presented in this section, have not been used in psychological studies and

are not taken from a specific cultural region. The rhythms here are arbitrary in nature as
they’ve been generated at random. Thus, a data set of random rhythms with 12 pulses and
another set of random rhythms with 16 pulses are presented below.

The process by which the data sets have been generated can be thought of by a well-
known example in probability: flipping a fair coin. Consider generating a rhythm with n

pulses. To do so, we simply flip a coin n times, sequentially writing down the result of each
coin flip, whether it was heads or tails. After we flip the coin n times we look back at our list
of outcomes. Then we make a new list, which will be our random rhythm. Thus, for each
outcome of the coin flip, we mark an onset in the new list when the flip resulted in heads,
and we mark a silence in the new list when the flip resulted in tails. This is done n times,
and when we have finished, a random rhythm of onsets and silences has been created. Now
we can repeat this process for as many rhythms as we would like to create and also for any
number of pulses n.

However, here we generate rhythms this way first fixing the number of pulses at 12.
Thus we have a list of 50 random rhythms with 12 pulses listed in Table 4.7(a). Also, we
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fix the number of pulses at 16 and repeat the random rhythm generation process to create
another list of 50 rhythms. This list is presented in Table 4.7(b) below.

Table 4.7: Random rhythm data sets of 12 pulses in (a) and 16 pulses in (b).

(a) 12 pulse rhythms, 6.02 average onsets.
No. Rhythm No. Rhythm

1 . x . . x . x x x . . x 26 . x x . x x x x x x x .
2 . x x x . x . x . x . . 27 . . x . x . . . . x x .
3 x x x . x . x x . x . . 28 x . . x x . x . x . . x
4 x x . x . x x . . . . . 29 . . . x . x x . . . . x
5 x x . x x . x . x x . . 30 . x . x x x . . . . x .
6 x x x x x . . x . . x x 31 . . x . x . . . . x . .
7 x x . x x . . . x x x . 32 . x x x x . x . x x . .
8 x . . x . x . . . x x x 33 x x . x x . x x x x x .
9 . . x . x . x x . x . x 34 x . x x . . x x x x x x

10 x . . . . . x . x . x x 35 . . x . . x . . . . . x
11 . . x x . . . x . . x x 36 . . x . x x x x x . x .
12 . x x . x . . . x . . . 37 x x . . x . x x . . x .
13 x x x x x x x . . . x x 38 . . x . x x . . x x . .
14 . x . x x x x x . . . . 39 . . x . . . . x . . . .
15 x x . x . x . x x x x . 40 . . x x x . . . . x x .
16 . . . x . x x x x . x x 41 . x . . x . x x x . x x
17 . x x x . x . . x . x x 42 . x . . x x . . . x . x
18 x . . . . . . . . . . x 43 . . . . . x x . x x x .
19 x . x x x . . x x x . . 44 . . . . x . x x . . . .
20 . x x x x . x . x . . . 45 x x x x x . . . x x x x
21 x . x x x x . . . x . . 46 . . x . x . . x x x . .
22 x . . . x . x . x x x . 47 x x . x . . x x . . x .
23 . x x x . . . . x x . . 48 . x . x x . . x x x x x
24 x . . x . . x x x . x . 49 . x . x x x x x . x x .
25 . x x . x x x . x x . x 50 . x . . x . . x x . x x

(b) 16 pulse rhythms, 7.94 average onsets.
No. Rhythm No. Rhythm

1 x x x x . . x x . x x x x x . x 26 x . . . . . . . . . x x x . . .
2 . x x . x x x x . . x . x x x . 27 . . . x x x . x . . x x x . . .
3 x . . . x . x . . x x . x . x x 28 x x . . x . . x . . . x x . x .
4 x . . x x . x . . . x . x x . x 29 x . x . x . x . . x . . . x x .
5 . x . . . . . . . x x x . x . x 30 x x x x x . . . x x . x . . . .
6 x x x x x . x . x x x x . x x . 31 x . . . x x . x . . x . . . x .
7 x x x . x x x . x x . . x x x . 32 . x x x x . x . . . x . x x x x
8 . . x . x x . . x x . . . . . . 33 . . . . . x x . x . x x . . x x
9 x x x . x . x x x . x x . . . . 34 x . x x x x x . . . x . . . . .

10 . . . . . x x x . x x . . . . x 35 x x . . x . x . x . x . . x x .
11 x x . x x x . x x . x . . . . . 36 . x x . x . x . x x . . x x . .
12 . . . x x . x x x . x x . . x . 37 . x x . . x x x x x . . . . x x
13 x . . x . x . x . x . . . x . x 38 x x x . . x . x . . . x . . . x
14 . x . . x x x . x x . x x x x . 39 x . . . . x . x . . x . . x x x
15 . x x . x . . . . . . . . x x x 40 x . . x x . . . . . x . x x . .
16 x x x x x . . . . x x . . x x . 41 . . . . x x . x x . . x . x x x
17 x . . x . . . . x . x x . x x x 42 . x x x x x . x x x . . x . x .
18 . x x . . x x . . . x . x x . x 43 x x . x x x x . . x x x . x x .
19 x . . x x x . . . . . . . x . x 44 x x . . . . x x x . x . x x . .
20 x x x x . x . x . x x x . . x . 45 . . . . x x . . . x x x x . x x
21 . . x x x . . . . x x . . x . x 46 . x x x . . . . x x . x . x x x
22 x x . . . x . x . x . x x x x x 47 . . . . x . . x . x x . x x . .
23 . x x . x x . . . . x . x . x x 48 x . x . x . . . . x x . x x . .
24 x . x x x . x . . x . . . . x . 49 . x x x . x . . . . . . x . . .
25 x . . x x x x . x . x . . . . x 50 . x x x . . x . . x x x x . x x

Granted that generating 100 rhythms by this coin-flipping process would prove to be
a bit tedious, thus the rhythms used in this thesis and shown in Tables 4.7(a) and 4.7(b),
have been generated in this manner described by a computer program which outputs a 0
or 1 at random, where the probability that a 0 is output is 1/2 and the probability that a 1
is output is also 1/2; i.e., using a uniform distribution. There are many uniform random
number generators to choose from; however, the authors of Numerical Recipes in C [123],
point to Pierre L’Ecuyer’s work [93, 94, 95]. Thus, an implementation by L’Ecuyer hosted
(and also recommended) by Luc Devroye [39, 92], was used.
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Chapter 5

Methodology

The methodology is now described, which uses the complexity measures and experimental
data previously presented. The first section describes the evaluation process of the complex-
ity measures regarding the human-based measures of rhythm complexity, and the variety
of data sets already seen. The second section discusses the visualization of the evaluation
process for analysis purposes. The third section then presents an implementation developed
to incorporate the evaluation technique and prime the results for the visualization method.
5.1 Evaluation

Since one of the goals in this thesis is to determine the overall performance of the
rhythm complexity measures, a suitable method for evaluation must be devised. In order
to attain the overall performance, there are two aspects in the evaluation which must be
considered. First, each complexity measure is validated against psychological experimen-
tation, which takes human-based measures of rhythm complexity as a baseline. Second,
all pairs of complexity measures are compared to determine if the measures attain similar
or different results. In other words, we want to gauge the relationship among all pairs of
rhythm complexity measures, and in some cases, this includes human-based measures of
rhythm complexity.

Taking into consideration that there is a mix between empirical (i.e., human-based mea-
surements) and computational rhythm complexity measures, a general evaluation method
is followed. Thus, this thesis follows the method of correlation analysis [24] to determine
the relationship between the complexity measures. By using such a general method, which
is common among the behavioral sciences (e.g. psychology), we may adequately evaluate
the wide-range of rhythm complexity measures, which include psychological and compu-
tational approaches.
5.1.1 Correlation Analysis

As stated by John Carroll in 1961, the correlational method is used “as a way of mea-
suring something called ‘relationship’ between variables” [15]. Indeed, this notion of a
relationship between variables can be explored by statistical correlation [75, 87, 152]. In
this work, each rhythm complexity measure is considered such a variable, whose relation-
ship shall be explored. In fact, Chen and Popovich state that “[to] evaluate if one assess-
ment tool . . . is superior to others” [19], is appropriate practice for using correlation [19].
Here, we want to determine which measure of rhythm complexity performs best regarding
human-based measures of complexity. Thus using correlation to discover such performance
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is ideal. In addition, calculating the correlation between all pairs of complexity measures
provides our second evaluation criterion of evaluating whether measures perform similarly
or not.

The literature on correlation reveals the Pearson product-moment correlation coeffi-

cient [116, 117] to be the most widely used [19] and well-known [19] method for measur-
ing the correlation between two sets. Consider Equation (5.1), which gives the formula for
computing the Pearson product-moment coefficient (denoted by r) for sets X and Y . Let
there be n total elements in each set, and let X to be the mean of the values in X and Y to
be the mean of the values in Y .

r =

∑n−1
i=0 (xi −X)(yi − Y )√∑n−1

i=0 (xi −X)2
∑n−1

i=0 (yi − Y )2

(5.1)

However, before choosing the Pearson product-moment correlation coefficient, let us
explore whether such a method will adequately meet our goals. First we must consider the
nature of our variables, and whether the values are suitable for calculating Pearson’s r. For
instance, if the values were continuous, then Pearson is indeed the obvious choice; however,
if there are variables containing ordinal values, then this choice is not so clear [19].

In our case, there are variables which contain ordinal values. The reason for this is
because the precise human measurements were not available (e.g. Povel and Essens [119])
and so in order to avoid discrepancies, ordinal values were obtained. Based on this alone, it
seems unreasonable to apply the method of calculating the Pearson product-moment corre-
lation coefficient. Moreover, as pointed out by Charles Spearman in 1904, this coefficient
assumes that a linear relationship exists between the variables [152]. This linear relation-
ship may or may not exist; however, since we are using complexity measures for our vari-
ables which present a wide variety of calculations, generality in our correlation coefficient
is preferred. To attain such generality, a special case of correlation, termed rank correla-

tion [60, 61, 75, 87, 88, 152], shall be used.
5.1.2 Rank Correlation Analysis

Rank correlation is a method for comparing how different processes arrange objects in
an order [87]. More formally, let P be a set of objects. A binary relation ≤ placed on P is
referred to as an order such that the following three properties hold: (1) reflexivity, x ≤ x

for all x ∈ P , (2) antisymmetry, x ≤ y and y ≤ x implies x = y for all x, y ∈ P , (3)
transitivity, x ≤ y and y ≤ z implies x ≤ z for all x, y, z ∈ P . In this thesis an in-depth
discussion regarding order theory is not necessary; however, an insightful book by Davey
and Priestley [36] is recommended for those who are curious. The previous definition
presented was from that text.
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To put the definition of order into context, let us define the previously mentioned term
process, to be a systematic series of actions used to quantify some property of an object.
Hence, the processes here are the algorithmic measures presented in Chapter 3, the prop-
erty being measured is complexity, and the objects are musical rhythms. Since the algo-
rithmic measures yield real values representing the complexity of a musical rhythm, when
a measure is applied to a set of rhythms, a set of real complexity values is produced. This
naturally admits an order. Therefore, we may use rank correlation coefficients to quantify
the relationship between how two such subsets are ordered.

The interpretation of what such a rank correlation coefficient means can have different
interpretations. For instance, in our case, we artificially convert all the scores to ranks,
so that all the rhythm complexity measures can be equally compared. This avoids the
need for scaling or developing a method for comparing ordinal to continuous values; as
would be the case if rank correlation had not be chosen. In addition, the advantages of
converting all scores to ranks can be seen when outliers are present. When data sets are
small, outliers can potentially have a large impact, and since the rhythm data sets we are
working with can potentially be labeled as small, the outlier problem is important. By
converting to ranks, outliers are avoided [19]. Moreover, with artificial conversion to ranks,
a monotonic relationship becomes apparent between the random variables, thus they can be
described more generally (positively or negatively) in a non-linear way. However, a main
disadvantage to using purely ranked data is that the quality of ranking is limited [87]. This
is because no information about the distance between adjacent objects in the ranking is
known. Although, in a sense, this disadvantage can be seen as an advantage relating to the
problem of outliers previously discussed.

The advantages to using rank correlation analysis over Correlation Analysis are clear;
however, the literature [19, 75, 87, 88, 91, 117, 152, 153], presents two main choices for
rank correlation coefficients: the Spearman rank correlation coefficient and the Kendall tau

rank correlation coefficient. At the most basic level, the Spearman rank correlation coef-
ficient uses the sum of squared differences in the rank values between the two variables,
and the Kendall tau rank correlation coefficient assesses the agreement (concordant pairs)
between the ranks [87, 88, 111]. Choosing between the coefficients is not clear in the litera-
ture. Some argue that Spearman’s coefficient has the advantage by being a direct derivation
of the Pearson’s r, thus retaining the interpretability of Pearson’s coefficient. Others argue
that Kendall’s tau retains the advantage because the proportion of the concordant and dis-
cordant pairs in the method lends a more direct interpretation [111]. This thesis uses the
Spearman rank correlation coefficient as the method for rank correlation analysis because of
its natural derivation from the Pearson product-moment correlation coefficient, and because
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it is the most widely used coefficient [19].
The most common formula for calculating the Spearman rank correlation coefficient,

denoted by rs, is shown in Equation (5.2) [75]. Also, n denotes the number of values, and
d contains the differences between the rankings of corresponding values from one variable
compared to another, or in our case, from one complexity measure compared to another.

rs = 1− 6
∑n−1

i=0 d2
i

n3 − n
(5.2)

However, there is a case that this equation, as originally formulated, does not accurately
handle. Namely, the Spearman rank correlation coefficient must be adjusted in the case
that the ranking has ties, i.e., two or more items have the same rank. Adjusting for ties
is common [87] among the rank correlation coefficients, and shall be discussed in § 5.3.
Next we describe a method for visualizing the correlation given by the Spearman rank
coefficients. Since we have a large number of complexity measures, we compute rs between
all pairs of the complexity rankings of the rhythms according to the measures. For example,
if we have complexity values from Toussaint’s Metrical Complexity measure, the Longuet-
Higgins and Lee Complexity measure, and Pressing’s Cognitive Complexity measure, on
some list of rhythms, we calculate rs between the all pairs of complexity rankings from
these measures. This yields a symmetric square matrix of coefficients we denote as Rs,
which tells us the relationship between any pair of complexity rankings from two measures.
Consider how such relationships are visualized below.
5.2 Visualization

In the previous section, we calculated Spearman rank correlation coefficients between
all pairs of rhythm complexity measures and composed a square symmetric matrix. This
matrix reveals the relationships between the complexity measures; however, such a relation-
ship is perhaps not clearly depicted. To illustrate the relationships, the coefficient matrix
is first converted into a distance matrix and then this distance matrix is visualized as a
phylogenetic tree, as used in the field of bioinformatics for phylogenetic analysis.
5.2.1 Distance Matrix

A Spearman rank correlation coefficient may be considered as a distance by applying
the following formula. Below, consider Rs to be a symmetric matrix of coefficients and the
matrix Ds to be the corresponding distances.

Ds = 1−Rs (5.3)

Equation (5.3) is a typical approach which has been used by clustering software and the
open-source C Cluster Library [38]. Moreover, this approach is supported more generally
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where Rs may be subtracted from any constant [21]. In addition, another approach, which
is mentioned by Everitt et al. [49], is to divide Equation (5.3) by two in order to normalize
to an interval between zero and one (inclusive). However, we choose to avoid scaling, and
hence follow the approach of de Hoon, et al. [38] and Cliff et al. [21] (see Equation (5.3)) to
convert the matrix of Spearman rank correlation coefficients to their corresponding distance
values. Moreover, Rs lends itself to comparing distances because of its invariance under
monotone transformations [41]. Upon the conversion to Ds, the range of the distances lies
in the inclusive interval [0, 2]. We arrive at a distance of zero when there is perfect rank
correlation (a positive one), and we arrive at a positive two when there is perfect inverse
rank correlation (a negative one). Converting the Spearman rank correlation coefficients
to a distance is sufficient [3, 118] for a visualization method, which is typically applied to
distance values; i.e. cluster analysis.
5.2.2 Cluster Analysis

Up to this point we have Spearman rank correlation coefficients which have been con-
verted to distances, and thus compose the distance matrix Ds. Moreover, recall that these
distances represent dissimilarity between rhythm complexity measures; i.e., the closer the
distance value is to zero, the more similar (more correlated) the performance of the com-
plexity measures. Given this, we want to present the information inherent to the distance
matrix, depicting the relationship between all the complexity measures. Cluster Analysis
can be used to convey the relationship between complexity measures by revealing the un-
derlying structure of the data [44]. Thus, we first consider different clustering approaches
and then evaluate which method most suits the data under consideration.

Cluster analysis is a widely used technique found in many different fields; e.g., in bi-
ology as numerical taxonomy, psychology as Q analysis, and artificial intelligence as un-

supervised pattern recognition [49]. Hence, there is an array of methods which can be
applied to analyze data by way of clustering. However, the goal of cluster analysis remains
the same:

“[To explore] data sets to assess whether or not they can be summarized mean-
ingfully in terms of relatively small number of groups or clusters of objects
which resemble each other and which are different in some respects from the
objects in other clusters” [49].

In order to determine a suitable method for cluster analysis, perhaps we should turn to
our data. Given our distance matrix Ds of dissimilarities, we would like a method which
fits points into a two-dimensional space where the distance between the points match (as
closely as possible) to the dissimilarities in Ds. This, in a sense, can generally be termed
as multidimensional scaling; to embed variables as points in a coordinate space such that
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the distances between the points represent the observed proximity [49]. A common cluster
analysis technique which can provides a two-dimensional planar embedding from a distance
matrix is hierarchical clustering [44]. Specifically, the use of dendrograms provides a
way to visualize corresponding distances [49]. However, other techniques such as relative

neighborhood graphs [80] may also be used as a graphical way to cluster data on a planar
surface [96, 97].

As Everitt et al. point out, “no particular clustering method can be recommended” [49],
thus choosing requires a deeper investigation of the data at hand to determine the most suit-
able approach. From above, we know that because of our choice of formulating Spearman
rank correlation coefficients as distances, methods such as hierarchical clustering can ap-
propriately be used. In addition to this, the nature of our data is culturally based; rhythm
is undoubtably cultural. As Ian Cross states, “. . . a clean dissociation between culture and
biology–or between music and evolution–is unfeasible” [35]. Because of the proposed
intrinsic connection among music, culture, evolution, and biology, perhaps the most appro-
priate method for cluster analysis may be found in the biological domain.

One method stemming from bioinformatics and computational biology is phylogenetic

analysis [16, 43, 65, 72, 73, 78, 79], which has been applied to rhythms [40, 68, 164,
165, 166, 168, 169], as well as other cultural phenomena (e.g. textile patterns [102, 113,
160]). In fact, phylogenetic analysis is a generalization of the dendrogram technique in
hierarchical clustering [49]. Essentially, it is an additive tree [49] where the lengths of the
edges between notes represent the distances in a dissimilarity matrix, such as our Ds. Here
we analyze such trees produced from phylogenetic analysis, and thus we term this approach
to be phylogenetic tree analysis.
5.2.3 Phylogenetic Tree Analysis

In bioinformatics and computational biology, a phylogenetic tree, “depicts the evolu-
tionary relationships of a target set of sequences” [72]. In this thesis, we shall be depicting
the relationships between musical rhythm complexity measures as determined by calculat-
ing Spearman rank correlation coefficient distances using sequences of musical rhythms.
The construction of such a phylogenetic tree generally involves a four-step process: (1)
selecting of the variables to be compared (musical rhythm complexity measures), (2) mea-
suring the relationship (in terms of rhythm complexity by way of Rank Correlation) of
the variables, (3) creating a distance matrix based on the measurement of relationship, (4)
applying a clustering technique to generate the tree [72].

The clustering techniques available for step four vary in nature; however, they all main-
tain a minimalist ideal. That is, they strive for the simplist pathway from one node in the
tree to the next [72]. The earliest method for phylogenetic tree construction known as the
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Parsimony method was proposed by Edwards and Cavalli-Sforza [16, 45, 46] and imple-
mented by Camin and Sokal [14]. The process behind the Parsimony method is to begin
by placing the internal-most nodes in the tree and then working outwards, placing nodes
which have the minimum distance compared to the internal nodes [14]. By doing so, each
node’s placement is examined and thus when the number of variables is large, the num-
ber of topologies grows quite quickly. Moreover, the Parsimony method is rather specific
to those variables which are closely related diverging from a common source [72]. In the
case of biology, this means biological sequences, like DNA, which evolve from the same
lineage. Thus, when there is large evolutionary change in different lineages, the Parsimony
method converges to the wrong phylogenetic tree [51]. Since we do not consider lineages
or the meaning of this for musical rhythm, we prefer a more general method to constructing
a phylogenetic tree.

Robust alternatives include the Maximum-Likelihood method [50], Fitch-Margoliash

method [54], and Neighbor Joining (NJ) method [137]. The Maximum-Likelihood method
calculates the probability of obtaining the data under consideration, given a phylogenetic
tree of a certain topology using information from a general evolutionary model [50]. Thus,
the topological space of trees is searched to maximize the likelihood for obtaining the given
data. The Maximum-Likelihood method can be computationally expensive with large data
sets, and may fall into a local maxima, therefore not arriving at the true maximized likeli-
hood [72]. This method also does not seem appropriate for this thesis because of the poten-
tially expensive computational costs and also because we do not develop an evolutionary
model for musical rhythms.

The Fitch-Margoliash method is a more general approach, which is a bottom-up tech-
nique for creating a phylogenetic tree [54]. The data is first clustered into small subsets,
then each subset is joined based on the two subsets which admit a minimum distance,
found by taking the average among pairs of elements between each subset [54]. Thus,
the Fitch-Margoliash method follows the Unweighted Pair-Group Method with Arithmetic

mean (UPGMA) [49], to join clusters. In addition, this method strictly uses the distance
matrix and does not rely on evolutionary information. However, in the words of Fitch and
Margoliash, “because average mutation distances are now being used, the solutions ob-
tained [in terms of phylogenetic trees] are very unlikely to permit an exact reconstruction
of the input data” [54]. Therefore, even though this method fits our requirement of purely
using the distance matrix for phylogenetic tree construction, perhaps there is a more robust
method to handle all distance-types. In fact, the NJ method proposed by Saitou and Nei is
just that, and is praised in the Bioinformatics/Computational Biology community [72].

The Neighbor Joining (NJ) method is a robust way to construct a phylogenetic tree, by
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joining pairs of nodes which minimize the total branch length of the entire tree at each stage
in the clustering [137]. Each variable is represented by a node in the tree, and is termed a
neighbor if they are joined by an internal node in the tree. This process of joining neighbors
is continued until the tree is generated. At each step in the process, nodes are joined in a
way to minimize the total branch length of the tree [137]. The NJ method produces a
correct, purely additive tree, and also out-performs the other method discussed above [137].
However, in 1997, Olivier Gascuel proposed an improved version of the NJ method called
the BIONJ method [65]. The main advantage of BIONJ is that the algorithm does not make
the assumption that the total branch length of the tree should be minimized. By making this
assumption, the NJ method produces an under-estimate of the real phylogenetic tree [65].
Since the BIONJ method avoids this assumption, the algorithm outperforms the NJ method.
Moreover, BIONJ still retains all of the benefits of the NJ method, such as high reliability
and low time complexity of O(n3), c.f. O(cn) of the Parsimony method [72, 83]. Therefore,
we use the BIONJ method for constructing the phylogenetic trees in this thesis.
5.3 Implementation

The details of the implementation for our method is discussed. The implementation of
the rhythm complexity measures is first described. Then the graphical user interface devel-
oped for computing the Spearman rank correlation coefficients and significance matrices is
described. Finally, the program used to visualize such matrices is discussed.
5.3.1 Rhythm Complexity Measures

Each of the rhythm complexity measures were programmed in the C programming lan-
guage [89] on the Gentoo Linux [66] platform, complied with GCC v4.1.2 [59]. The C pro-
gramming language was chosen for performance and also because this language is widely
accepted and practiced in the programming community. Each complexity measure has been
individually coded for modularity to be used by the graphical user interface.
5.3.2 Python GUI

The Python programming language [127] and the Python graphics toolkit [162] were
used to develop a GUI (graphical user interface) to act as a wrapper for the rhythm complex-
ity measures. This provided a convenient way for calculating Spearman rank correlation
coefficients. Figure 5.1 illustrates the GUI.

The interface consists of three main steps. First, musical rhythm data (in box notation)
must be imported to the application’s data table, either one at a time or by loading a comma

separated value (CSV) file. Figure 5.1 shows 15 rhythms, which have already been loaded.
Additionally, as seen in the figure, columns may be present in the CSV file containing
human-based rankings. Second, one must compute the complexity of the rhythms using the
rhythm complexity measures. The user may select measures to include in the computation.
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Figure 5.1: GUI for measuring rhythm complexity.

Each selected measure will appear as a columns next to the rhythms. Thus, one may see for
any measure the complexity of a give rhythm. Third, statistical analysis is performed. This
process is detailed below.
Spearman Rank Correlation

Spearman rank correlation coefficients are computed between all pairs of rankings of
the rhythms of the selected measures. The calculation of rs is modified from the version
presented before. Here we adjust for tied rankings (i.e., two rhythms have the same com-
plexity according to one measure), and we account for large sample approximation [74].
The modified version for calculating the Spearman rank correlation coefficient follows from
Hollander and Wolfe [74]. Equation (5.4) shows the formula denoted by r∗s .

r∗s =
n(n2 − 1)− 6

∑n−1
s=0 d2

s − 1
2

{∑g−1
i=0 [ti(t

2
i − 1)] +

∑h−1
j=0 [uj(u

2
j − 1)]

}

{
[n(n2 − 1)−∑g−1

i=0 ti(t2i − 1)][n(n2 − 1)−∑h−1
j=0 uj(u2

j − 1)]
}1/2

(5.4)

In the equation, n is the number of values in ranked lists and g is the number of tied
groups, where vector t contains the number of elements in each tied group for the first
ranked list. Similarly, h and vector u represent the information regarding the tied groupings
for the second ranked list. We should note that the adjustment for ties produces an average
rank value for all those ranks in a tie group [74].
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Statistical Significance
In addition to the Spearman rank correlation coefficients, corresponding significance of

each coefficient is computed. Here we test the null hypothesis that the population Spearman
rank correlation coefficient, denoted ρrs, is zero. This significance is an approximation
of the Student’s t-distribution [19]. This is a stable approximation because it does not
depend on the original distributions of the variables [123]. Thus we calculate a two-sided
significance level, which tests the null hypothesis for positive and negative coefficients. The
code used for this calculation is from Gary Strangman [155], who is a member of the Neural
Systems Group at Harvard Medical School. Note that he derived his Python implementation
from Numerical Recipes in C by Press et al. [123]. The significance calculated shows the
confidence level, where a higher value means higher confidence that the null hypothesis
may be rejected. The p-values may be found by subtracting the confidence level from 1.
5.3.3 SplitsTree

The Python GUI generates a distance matrix from the Spearman rank correlation co-
efficients to be used for phylogenetic tree analysis. The BIONJ method is used for the
construction of such phylogenetic trees. Since this is a well-known and popular method,
there are many existing programs [52] which may be used. The program we chose for phy-
logenetic Tree generation is SplitsTree [78, 79]. SplitsTree was developed by Daniel Huson
who is a Professor of Algorithms in Bioinformatics at the University of Tübingen, and
David Bryant who is an Associate Professor of Mathematical Biology at the University of
Auckland. In addition, Bryant was previously a Professor at McGill University. We support
their software as it is one of the leading tools in computing evolutionary networks [178].

We use SplitsTree4 version 4.9.1, released April 15, 2008, which we refer to as Split-

sTree in this thesis. SplitsTree implements the BIONJ method for phylogenetic tree con-
struction according to the algorithm proposed by Gascuel [65]. In order to quantify the ac-
curacy of a phylogenetic tree construction, the method of least-squares fit [16, 43, 156, 184]
is used within SplitsTree. The method of least-squares fit was proposed by Tanaka and
Huba [156], where we use the definition by Winkworth et al. [184] as follows in Equa-
tion (5.5). Let D be the distance matrix and P be a matrix of edge distances between all
terminal nodes in the phylogenetic tree generated; we sum over all pairs i, j.

Least-Squares Fit =

[
1−

∑
i,j(Pi,j −Di,j)

2

∑
i,j D2

i,j

]
∗ 100 (5.5)

Thus, the methodology of this thesis is implemented by combining the rhythm com-
plexity measures, the Python GUI, and SplitsTree. These tools are used to generate the
results to be discussed.
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Chapter 6

Results

The results presented consist of three main parts. The first part describes phylogenetic
trees regarding the psychological data of human performance complexity, human perceptual

complexity, and human metrical complexity. These human-based complexity measures are
derived from psychological experimentation of Povel and Essens [119], Essens [48], and
Fitch and Rosenfeld [57]. The second part of the results compares the rhythm complexity
measures to rhythmic patterns of African and Afro-Cuban Timelines which contain either 12

or 16 pulses. Thus, we are testing whether the complexity measures are robust to rhythms
with a different number of pulses. Indian Decitalas and North Indian Talas are also used
for testing the measures of a varying number of pulses. The third part presents the results
of data which are random. Stemming from the previous part of the results, the robustness
of the measures are tested on randomly generated rhythms with different number of pulses.
The goal is to validate the cultural robustness in a more general sense.
6.1 Psychological

The results discussed below pertain to the human-based performance complexity, per-
ceptual complexity, and metrical complexity. These measures have be acquired from four
psychological studies, as previously described.
6.1.1 Povel and Essens; Shmulevich and Povel

Results using the data set from Povel and Essens [119], permit validation of the com-
plexity measures against two types of human-based complexity measures from psychologi-
cal experimentation. Povel and Essens studied human rhythm reproduction and determined
how difficult it was to reproduce each of the rhythms in their data set. We use this as
a human-based performance complexity measure where each rhythm obtains an ordinal
rank of complexity, according their study. In addition, the second type of complexity seen
here is a human-based measure for perceptual complexity. This is from Shmulevich and
Povel’s [147] psychological study on human judgments of rhythm complexity. We use
this as a measure for human-based perceptual complexity of the rhythms in this data set,
where ordinal ranks are obtained from their study. Figure 6.1 shows a BIONJ phylogenetic
tree visualizing the Spearman coefficient distance matrix. Nodes labeled human perfor-

mance complexity [povel and essens] and human perceptual complexity [shmulevich and

povel], correspond to Povel and Essens’ Human Performance Complexity and Shmulevich

and Povel’s Human Perceptual Complexity. Each other node corresponds to a complexity
measure.
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The phylogenetic tree in Figure 6.1 reveals a separation, as shown by the dotted line.
Those measures above the line have an average Spearman rank correlation coefficient to
the Human Performance and Perceptual complexity measures which is r̄∗s ≥ 0.500. The
only complexity measure which is placed below the line, but fits this criterion is tmavg

with r̄∗s = 0.534. Moreover, all measures above the line have significant Spearman rank
correlation coefficients for both human measures at the p < 0.05 level.

To clearly see how these measures perform with regard to the Human Performance
and Perceptual Complexity, consider Figure 6.2(a), which shows those measures above the
dotted line in Figure 6.1.

We can see that the measures which are based on the Lerdahl and Jackendoff [99],
and Yeston [185] metrical hierarchy are closest to the human judgments. Those measures
are: lhl, fitch, smith, and the measures prefixed with metrical. Another measure which
performs well is the wnbd measure and pressing. In addition, it is noteworthy that all of
the metrical complexity measures using the Euler weighting scheme [69] or the weight-
ing scheme of the musicians from Palmer and Krumhansl’s [114] study for time signa-
tures 4/4 and 2/4, perform closely to the Lerdahl and Jackendoff weighting scheme. As
Figure 6.2(a) shows, the metrical complexity with the three different metrical weighting
schemes is arranged such that the Lerdahl and Jackendoff scheme (metrical) is in the mid-
dle of the path of the Euler (metricaleuler) and Palmer and Krumhansl (metricalpk-MUS-

24 or metricalpk-MUS-44) schemes. The correlations between the pairs are: metrical to
metricaleuler is r∗s = 0.666, metrical to metricalpk-MUS-24 is r∗s = 0.882, metrical to
metricalpk-MUS-44 is r∗s = 0.901, metricaleuler to metricalpk-MUS-24 is r∗s = 0.661,
metricaleuler to metricalpk-MUS-44 is r∗s = 0.588, and metricalpk-MUS-24 to metricalpk-

MUS-44 is r∗s = 0.898. Moreover, a more general observation is that both weighting
schemes of the musicians from Palmer and Krumhansl’s study significantly outperform
that of the non-musicians.

To provide a better sense of how each complexity measure performed, Table 6.1(a) con-
tains a sorted list of the Spearman rank correlation coefficients of each complexity measure
paired with the Human Performance Complexity where r∗s ≥ 0.500. Similarly, Table 6.1(b)
contains those complexity measures with correlation r∗s ≥ 0.500 when paired with the
Human Perceptual Complexity. These tables closely reflect the phylogenetic tree in Fig-
ure 6.2(a).

Finally, Figure 6.2(b), contains those measure which did not perform well with respect
to the human judgments of Human Performance and Perceptual Complexity. However,
because the rhythms in this data set each had the same number of onsets and pulses,
measures based on entropy are expected to yield poor results. Moreover, since these
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(a) BIONJ phylogenetic tree of the complexity measures in the top of the cut, least-squares fit 98.5.

(b) BIONJ phylogenetic tree of the complexity measures in the bottom of the cut, least-squares fit 98.0.

Figure 6.2: BIONJ phylogenetic trees of the complexity measures in the top and bot-
tom of the cut (see Figure 6.1).
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Table 6.1: Complexity measures with r∗s ≥ 0.500 and significance p ≤ 0.05 compared
to Povel and Essens’ Human Performance Complexity and Shmulevich and Povel’s
Human Perceptual Complexity.

(a) Performance.
Complexity Measure r∗s
smith 0.800
fitch 0.787
lhl 0.787
wnbd 0.747
wnbd4 0.700
metricalpnormpk-MUS-24 0.687
metricalpk-MUS-24 0.683
metricalonormpk-MUS-24 0.683
metrical 0.682
metricalpnorm 0.682
metricalonorm 0.682
metricalponorm 0.682
wnbd2 0.680
keith 0.680
metricalponormpk-MUS-24 0.679
metricalponormpk-MUS-44 0.601
wnbd8 0.600
metricalpnormpk-MUS-44 0.599
metricalonormpk-MUS-44 0.597
metricalpk-MUS-44 0.597
metricalponormeuler 0.595
metricalpnormeuler 0.588
metricaleuler 0.588
metricalonormeuler 0.588
pressing 0.576
offbeatness 0.570
tmavg 0.523

(b) Perceptual.
Complexity Measure r∗s
fitch 0.755
lhl 0.755
wnbd 0.738
smith 0.737
metrical 0.694
metricalpnorm 0.694
metricalponorm 0.694
metricalonorm 0.694
wnbd4 0.690
metricalponormpk-MUS-24 0.682
metricalpnormpk-MUS-24 0.677
metricalpk-MUS-24 0.673
metricalonormpk-MUS-24 0.673
wnbd8 0.669
pressing 0.630
metricalpk-MUS-44 0.626
metricalonormpk-MUS-44 0.626
metricalpnormpk-MUS-44 0.625
metricalponormpk-MUS-44 0.605
tmavg 0.545
wnbd2 0.511
keith 0.511
metricalpnormpk-NMUS-44 0.508
metricalpk-NMUS-44 0.506
metricalonormpk-NMUS-44 0.506
metricaleuler 0.503
metricalpnormeuler 0.503
metricalonormeuler 0.503
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rhythms were also composed of the same onset intervals, but simply re-arranged, mea-
sures based on the interonset intervals also did not perform well. This is why they are
shown in a fan shape off the main tree. Additionally, the weighting scheme from Palmer
and Krumhansl’s study [114] from non-musicians (nmus) performed poorly compared to
the weighting scheme from the musicians. The average correlation to the two human com-
plexity measures combined with the two meters (2/4 and 4/4) for musicians is r̄∗s = 0.645

and for non-musicians is r̄∗s = 0.273.
6.1.2 Essens

The data set from Essens’ study [48], provides two human measures from psychological
experimentation. The first measure is termed Essens’ Human Performance Complexity, and
the second measure is Essens’ Human Perceptual Complexity. Hence, Essens provides a
secondary data set for validating the measures of complexity against human-based perfor-
mance and perceptual complexity.

Consider Figure 6.3 below which depicts a phylogenetic tree for the complexity mea-
sures along with both human measures. The distances for generating the tree were derived
from the Spearman rank correlation coefficients between all pairs of measures, and the
BIONJ algorithm in SplitsTree was used for tree construction.
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In Figure 6.3, we make two cuts in order to provide a clearer view of the relationships
of the top-performing complexity measures to both human-based measures. The first cut is
the horizontal line which separates the lower branch of the tree. The second cut is a vertical
line, which separates the right-most branch of the tree. Each separated segment contains
one of the human complexity measures: Figure 6.4(a) shows those measures closest to
Essens’ Human Performance Complexity and Figure 6.4(b) shows those measures closest
to Essens’ Human Perceptual Complexity. Two cuts were chosen because the correlation
between the human complexity measures was r∗s = 0.015. Thus, one cut would not suffice.

Regarding Essens’ Human Performance Complexity, consider Table 6.2(a), which lists
the coefficients greater than or equal to 0.500 and having p ≤ 0.05. Note that wnbd and
metricalponorm were included by the cut in the tree shown in Figure 6.4(a); however, they
have been excluded from the table because their p-value was not at the 0.05 significance
level.

The top-performer regarding the human-based performance measure, is Toussaint’s
Metrical Complexity (Onset Normalized) weighted by Palmer and Krumhansl’s musicians-
4/4 scheme. Also, the top-performers from the previous data set performed worse using
this data set. The lhl, fitch, smith, and wnbd, correlations are just over 0.670, compared to
0.750 using the previous data.

Table 6.2: Complexity measures with r∗s ≥ 0.500 and a significance level of p ≤ 0.05
compared to Essens’ Human Performance Complexity in (a), and since no correlation
coefficients were higher than 0.500, when compared to Essens’ Human Perceptual
Complexity, the measures which correspond to the cut, shown in Figure 6.4(b), are
listed in (b), note that oddity is the only significant r∗s with p ≤ 0.05.

(a) Human Performance Complexity
Complexity Measure r∗s
metricalonormpk-MUS-44 0.687
keith 0.687
wnbd2 0.681
fitch 0.672
lhl 0.672
smith 0.672
metricalonorm 0.637
metricalponormpk-MUS-44 0.602
wnbd4 0.565
lz 0.562
offbeatness 0.532

(b) Human Perceptual Complexity
Complexity Measure r∗s
oddity 0.397
metricalonormpk-NMUS-44 0.392
metricalonormeuler 0.382
metricalponormeuler 0.353
metricalonormpk-NMUS-24 0.344
tmumax 0.339
metricalponormpk-NMUS-24 0.315
tmavg 0.298
metricalponormpk-NMUS-44 0.273
tmuavg 0.205
tmmax 0.163

Regarding Essens’ Human Perceptual Complexity, Table 6.2(b) reveals that the corre-
lation of the measures is quite low, where the best correlation being r∗s = 0.397 (p ≤ 0.05),
obtained by oddity. From the table, one can see that the other measures do not retain much
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(a) BIONJ phylogenetic tree of the bottom of the horizontal cut, least-squares fit 97.7.

(b) BIONJ phylogenetic tree of the right of the vertical cut, least-squares fit 96.2.

Figure 6.4: BIONJ phylogenetic trees of the complexity measures in the bottom of
the horizontal cut along with Essens’ Human Performance Complexity, and the tree
of the right of the vertical cut along with Essens’ Human Perceptual Complexity, see
Figure 6.3 which shows the cuts.
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correlation to the human-based perceptual complexity.
However, even if the coefficients do not indicate strong correlation, the phylogenetic

tree yields useful information. Consider Figure 6.4(b) which shows the result from the
vertical cut of the tree in Figure 6.3. One noteworthy aspect of the sub-tree in Figure 6.4(b)
is the cluster of the three Metrical Complexity measures using the Palmer and Krumhansl
non-musicians 2/4 and 4/4 weighting schemes. Note that in the psychological experiment
conducted by Essens, only 25% of the participants were musically trained [48]. Compare
this to the 100% of participants musically trained in Shmulevich and Povel’s study [146].
Essens’ 25% seems rather small in comparison. Therefore, it is noteworthy that the weights
which, performed best compared to the human-based perceptual complexity, were those of
the non-musicians.
6.1.3 Fitch and Rosenfeld

The most current psychological study involving the complexity of rhythm is by Fitch
and Rosenfeld [57] in 2007. Their work measures human-based performance complexity
and metrical complexity. Fitch and Rosenfeld measured performance complexity in terms
of a play-back error, and so we term their measure to be Fitch and Rosenfeld’s Human Per-

formance Complexity. As for the metrical complexity, two methods were used. Therefore
we have Fitch and Rosenfeld’s Human Metrical Complexity (Beat-Tapping) and Fitch and

Rosenfeld’s Human Metrical Complexity (Number of Resets).
Consider Figure 6.5 depicting a phylogenetic tree the results. The BIONJ algorithm

was used to construct the tree in the program SplitsTree. The cut in the tree separates
the two measures of human-based metrical complexity from the human-based performance
complexity. This was done because of the dense cluster near the human complexities, and
differences are hard to see. Figure 6.6(a), shows the measures on the right of the cut.
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However, before looking at the sub-trees created from the cut, let us look at Figure 6.5.
Since there are human measures of metrical and performance complexity, consider the
computational measures which have a close relationship to Fitch and Rosenfeld’s Human
Metrical Complexity (Beat-Tapping) and Fitch and Rosenfeld’s Human Metrical Complex-
ity (Number of Resets). Surrounding the human measure, there is a large cluster. The
cluster consists of those measures which use the metrical hierarchy. For example, the
Metrical Complexity measure with normalization, and the versions which use Palmer and
Krumhansl’s weights, along with the Euler weights can be seen in this cluster. Moreover,
the Longuet-Higgins and Lee implementations: lhl, fitch, and smith are also present in the
cluster. We also see familiar top-performers such as keith, pressing, and wnbd. However,
from this dense picture it is difficult to see some of the more subtle relationships in the
cluster. Now turn to Figure 6.6(a), which depicts the measure to the right of the cut from
Figure 6.5.

In Figure 6.6(a), note that dotted box. The complexity measures inside the box have very
high intercorrelation: r∗s > 0.900 with p-values at the p ≤ 0.001 level for each. Therefore,
we have a strong, significant relationship between these measures, and these measures also
have high performance compared to Fitch and Rosenfeld’s Human Metrical Complexity
(Beat-Tapping and Number of Resets). For those complexity measures which are outside
the box, a noteworthy separation is present. Towards the top and bottom of the tree, we see
the Metrical Complexity measure using variants of the non-musicians weighting scheme,
whereas the weighting scheme of the musicians is inside the tight cluster of the dotted box.
For the precise correlation values, consult Table 6.3 (a) and (b) which show all measures
retaining a coefficient r∗s > 0.600 and significant p-values of p < 0.001. Note that we
raised the r∗s criterion to 0.600 from 0.500 because of the large number of measures which
performed well with respect to the human-based metrical complexity measures.

Regarding Fitch and Rosenfeld’s Human Performance Complexity, the picture is not so
clear. Looking back to Figure 6.5, we can see that Human Performance Complexity is rather
far from the computational measures of complexity. Therefore, we cannot conveniently
cut the tree to see those computational measures with a strong relationship to the human
measure. However, in order to gain some sense of the relationship, we picked measures
using the criteria r∗s > 0.500 and p < 0.01. This gave a handful of measures which are
shown in Figure 6.6(b).

In Figure 6.6(b), we can more clearly see that Fitch and Rosenfeld’s Human Perfor-
mance Complexity resides far away from the measures which perform best. Moreover,
the highest correlation is that of the tmuavg measure (r∗s = 0.613), which is quite sur-
prising since this measure has retained low accuracy regarding other human measures (c.f.
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(a) BIONJ phylogenetic tree of the complexity measures in the right of the cut along with Fitch
and Rosenfeld’s Human Metrical Complexity (Beat-Tapping Adj) and (Number of Resets), least-
squares fit 97.7.

(b) BIONJ phylogenetic tree of the complexity measures measures closest to Fitch and Rosenfeld’s Human
Performance Complexity, least-squares fit 99.4.

Figure 6.6: BIONJ phylogenetic tree of the complexity measures in the right of the cut
in (a) from Figure 6.5 along with the two human-based metrical complexities (Beat-
Tapping and Reset Number), and a tree of those measures closest to the human-based
performance complexity, since a clear cut was not present.
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Figures 6.1 and 6.3). In fact, the top three closest computational measures to the human-
based performance complexity are each surprising in their own right. As mentioned, we
have tmuavg as the closest, then metricalonormpk-NMUS-44 which uses the non-musician’s
weighting scheme, and finally ioi-g-h which uses an interonset interval histogram and cal-
culates the entropy of each normalized bin. Also, the best measures of the previous psycho-
logical data sets: lhl, fitch, smith, wnbd, and keith, have moderate correlation (r∗s ≈ 0.500

with p ≤ 0.01), which is inconsistent with previous results.
6.1.4 Summary

The first set of results concern evaluating and validating the computational rhythmic
complexity measures from psychological studies on three different data sets. The first data
set is from Povel and Essens [119] in 1985, which studied measuring human-based perfor-
mance complexity, this same data was then later used by Shmulevich and Povel [146] in
2000, to study human-based perceptual complexity. The second data set is from Essens [48]
in 1995, where human-based performance and perceptual complexity were studied. Finally
the third data set is from Fitch and Rosenfeld [57] in 2007, where human-based perfor-
mance complexity and two types of human-based metrical complexity were studied. Below
we present the findings by each type of human measure.
Human Performance Complexity

All three data sets gave a human measure for rhythm performance. The best measures
with respect to their correlation values are listed in Table 6.4 for each data set.

In Table 6.4, there is little in common between all three data sets. The only complexity
measure which remains in the top-five across the three is a version of the Metrical Complex-
ity measure which uses the Palmer and Krumhansl weighting scheme. However, it should
be noted that in Povel and Essens’ data, as seen in Table 6.4(a), the weighting scheme of
the time signature 2/4 was preferred, and in Fitch and Rosenfeld’s data (Table 6.4(c)) the
non-musicians scheme was preferred.

Measures which did not correlate well with human-based performance complexity, but
still had significant coefficients are the Metrical Complexity measures using Palmer and
Krumhansl’s metrical weighting of non-musicians for both Povel and Essens (r∗s ≈ 0.400),
and Essens (r∗s = −0.400). For Fitch and Rosenfeld, Tanguiane’s Unconstrained Complex-
ity measure (r∗s = 0.381) was least correlated followed by the measure based on finding the
tallest bin in the local IOI histogram, ioi-l-mm with r∗s = 0.387.

Overall, there does not appear to be a clear best rhythm complexity measure for human-
based performance complexity. We can say that measures such as the Longuet-Higgins and
Lee yield high results in the Povel and Essens data set and Essens data set. The results of
Fitch and Rosenfeld’s data does not present a separation for the best measure.
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Table 6.3: In (a), the measures correlate to the beat tapping adjusted, with r∗s > 0.600
and p ≤ 0.001. In (b), the measures correlate to the number of resets, with r∗s > 0.600
and p ≤ 0.001. In (c), the measures correlate to human-based performance having
r∗s > 0.500 and p ≤ 0.01.

(a) Beat-Tapping Adj
Complexity Measure r∗s
metricalponorm 0.834
metricalonorm 0.826
metricalponormpk-MUS-44 0.813
metricalpnorm 0.812
metrical 0.812
wnbd 0.808
wnbd2 0.807
lhl 0.802
smith 0.802
metricalonormpk-MUS-44 0.801
offbeatness 0.800
wnbd4 0.797
fitch 0.793
syncopation 0.793
metricalponormeuler 0.792
metricalponormpk-MUS-24 0.789
metricalonormeuler 0.781
metricalonormpk-MUS-24 0.779
keith 0.766
pressing 0.764
wnbd8 0.761
metricalpnormeuler 0.745
metricaleuler 0.745
metricalpnormpk-MUS-24 0.725
metricalpk-MUS-24 0.724
metricalpk-MUS-44 0.722
metricalpnormpk-MUS-44 0.722
metricalponormpk-NMUS-44 0.718
metricalonormpk-NMUS-44 0.670

(b) Number of Resets
Complexity Measure r∗s
metricalponorm 0.793
metricalonorm 0.786
metrical 0.781
metricalpnorm 0.781
wnbd 0.777
wnbd4 0.765
wnbd2 0.762
metricalponormpk-MUS-44 0.760
lhl 0.757
smith 0.757
syncopation 0.748
fitch 0.748
metricalonormpk-MUS-44 0.747
metricalponormeuler 0.744
offbeatness 0.743
metricalponormpk-MUS-24 0.734
keith 0.731
metricalonormeuler 0.730
wnbd8 0.730
metricalonormpk-MUS-24 0.724
pressing 0.723
metricalpnormpk-MUS-24 0.697
metricalpk-MUS-24 0.696
metricalpk-MUS-44 0.694
metricalpnormpk-MUS-44 0.693
metricalpnormeuler 0.688
metricaleuler 0.688
metricalponormpk-NMUS-44 0.681
metricalonormpk-NMUS-44 0.620

(c) Performance
Complexity Measure r∗s Complexity Measure r∗s
tmuavg 0.613 fitch 0.521
metricalonormpk-NMUS-44 0.596 lhl 0.520
ioi-g-h 0.573 metricalponorm 0.520
metricalponormpk-MUS-44 0.551 smith 0.520
metricaleuler 0.548 metricalponormpk-MUS-24 0.519
metricalpnormeuler 0.548 metricalonormpk-MUS-24 0.516
metricalonormpk-MUS-44 0.543 metricalonorm 0.515
wnbd 0.534 keith 0.511
metricalponormpk-NMUS-44 0.527 pressing 0.509
wnbd4 0.526
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Table 6.4: In (a), we have the top-five individual complexity measures with respect
to human-based performance complexity from Povel and Essens’ data set. In (b), we
have the top-five individual complexity measures with respect to human-based per-
formance complexity from Essens’ data set. In (c), we have the top-five individual
complexity measures with respect to human-based performance complexity from Fitch
and Rosenfeld’s data set.

(a) Povel and Essens
Complexity Measure r∗s
smith 0.800
fitch/lhl 0.787
wnbd/wnbd4 0.747/0.700
metricalpk-MUS-24 0.687
metrical 0.682

(b) Essens
Complexity Measure r∗s
metricalonormpk-MUS-44/keith 0.687
wnbd2 0.681
lhl/fitch/smith 0.672
metricalonorm 0.637
metricalponormpk-MUS-44 0.602

(c) Fitch and Rosenfeld
Complexity Measure r∗s
tmuavg 0.613
metricalonormpk-NMUS-44 0.596
ioi-g-h 0.573
metricalponormpk-MUS-44 0.551
metricaleuler 0.548

Human Perceptual Complexity
For the human-based perceptual complexity, there are two data sets which yield human

measurements: Shmulevich and Povel in 2000 and Essens in 1995. Table 6.5 below in-
cludes the complexity measures which have the highest correlation. However, as can be
seen in Table 6.5(e), even the best correlations are not very strong.

(d) Shmulevich and Povel
Complexity Measure r∗s
lhl/fitch 0.755
wnbd/wnbd4 0.738/0.690
smith 0.737
metrical 0.694
metricalponormpk-MUS-24 0.682

(e) Essens
Complexity Measure r∗s
oddity 0.397
metricalonormpk-NMUS-44/24 0.392/0.344
metricalonormeuler 0.382
metricalponormeuler 0.353
tmumax 0.339

Table 6.5: In (d), we have the top-five individual complexity measures with respect
to human-based perceptual complexity from Povel and Essens’ data set and Shmule-
vich and Povel’s experimentation. In (e), we have the top-five individual complexity
measures with respect to human-based performance complexity from Essens’ data set.

From Table 6.5(d) alone, those measures based on the metrical hierarchy such as the
Longuet-Higgins and Lee measure and the Metrical Complexity measure have a high cor-
relation to Shmulevich and Povel’s Human Perceptual Complexity with r∗s = 0.755. The
WNBD measure also gives a high correlation. While no complexity measure gives a high
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correlation to Essens’ Human Perceptual Complexity, as seen in Table 6.5(d), of the mea-
sures with the highest correlation, variants of the Metrical Complexity measure using alter-
nate weighting schemes are present. This result agrees with Shmulevich and Povel’s Human
Perceptual Complexity in that the measures based on the metrical hierarchy resulted as top
performers.

Regarding the complexity measures which did not perform well, we shall only mention
those for Shmulevich and Povel’s Human Perceptual Complexity. This is because the Es-
sens’ data did not yield high correlations. However, with respect to Shmulevich and Povel,
Tanguiane’s (Maximum) measure (r∗s = 0.331), Rhythmic Oddity (r∗s = 0.342), and the
Directed Swap (Four Beat) Distance (r∗s = 0.346), all had low correlations. Note that their
p-values were p < 0.05.
Human Metrical Complexity

Fitch and Rosenfeld’s study [57] provides a human measure which has not been seen
in the literature thus far: a measure for human metrical complexity. Table 6.6 shows the
highest correlations regarding Fitch and Rosenfeld’s Human Metrical (Beat-Tapping and
Number of Resets) Complexity measures.

Table 6.6: In (a) and (b), we have the top-five individual complexity measures with
respect to each type of human-based metrical complexity from Fitch and Rosenfeld’s
data set.

(a) Fitch and Rosenfeld, Beat-Tapping
Complexity Measure r∗s
metricalponorm 0.834
metricalonorm 0.826
metricalponormpk-MUS-44 0.813
metricalpnorm/metrical 0.812
wnbd 0.808

(b) Fitch and Rosenfeld, Number
of Resets

Complexity Measure r∗s
metricalponorm 0.793
metricalonorm 0.786
metrical 0.781
metricalpnorm 0.781
wnbd 0.777

In both Tables 6.6(a) and 6.6(b), the most highly correlated complexity measures are
variants on the Metrical Complexity measure. As can be seen from the tables, not only do
the Metrical Complexity measure variants dominate the top-five results, but the correlations
are the highest we’ve seen so far with r∗s = 0.834. In addition to this, we have the WNBD’s
results just under the Metrical Complexity’s results. One notable difference between the
two human-based metrical complexity comparisons is that in the case of Beat-Tapping, the
weighting scheme of Palmer and Krumhansl’s musicians in 4/4 time is present in the list,
whereas this is not so in the second case of the Number of Resets.
6.2 Cultural

Here we discuss musical rhythm complexity in terms of two cultures: African and In-
dian. Below we first detail the results of using African Timelines, and second we detail
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results of using Indian Decitalas and North Indian Talas. Phylogenetic trees are use to vi-
sualize the results. From the results, we aim to show which measures of complexity are
robust between rhythms with a different number of pulses (12 or 16), and also between
different cultures.

In order to determine the robustness of the complexity measures among and between
cultures, we investigate how the phylogenetic trees change. For example, we can look at
the correlations between all pairs of measures when using African Timelines of 12 pulses
and then look at correlations between all pairs of measures using African Timelines of 16
pulses. However, since there are such a large number of pairs, one way to see a change
between the trees is to look at how the clustering between complexity measures changes.
The hypothesis is that if a complexity measure is robust, then the intercorrelation will be
stable. That is, robust complexity measures will cluster similarly in one phylogenetic tree
compared to another, showing consistent (i.e., stable) intercorrelation.

We test this hypothesis by looking for complexity measures whose Spearman rank cor-
relation coefficients are not stable between phylogenetic trees. Therefore, we can readily
pick-out the unstable measures, and assume the others attain relatively stable performance.
A method for determining which measures are not stable is to plot the change in coeffi-
cient values with a boxplot [175], as introduced by J. W. Tukey in 1977. More specifically,
the data we plot with this method are the Spearman rank correlation coefficients between
complexity measures according to one data set, subtracted from the coefficients of the same
pairs, in a second data set. Additionally, since we are only interested in the magnitude of
change in the correlation coefficient between pairs of measures, we take the absolute value
of the calculated difference.

For example, consider the correlation between the Longuet-Higgins and Lee Complex-
ity measure, and Pressing’s Cognitive Complexity measure on African Timelines with 12
pulses. Let this correlation be αrs. Now, consider the correlation between the same two
complexity measures, but this time, on African Timelines with 16 pulses. Let this correla-
tion be βrs. We define the absolute value of the change in correlation by Equation (6.1) as
follows. The value |∆rs| is found for all pairs of measures between two sets of correlation
values. It is these values, ∆rs, which we use for the boxplot.

|∆rs| = |αrs − βrs| (6.1)

The goal of the boxplot visualization is to determine whether there is a significant
change in correlation of pairs of measures between the two trees. We consider a signifi-
cant change to represent an outlier in the data. Thus, by using the boxplot, we may discover
outliers without making any assumptions about the underlying distribution of the data [175].
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Below, we discuss outliers found by the boxplots; i.e., those complexity measures which
are not robust. We do this for rhythms within the same culture, and also between different
cultures. Note that all boxplots are made using MATLAB R© [163].
6.2.1 Intra-Cultural Comparison

Here we make a comparison between African Timelines with 12 pulses to those with 16
pulses, and then we show the Indian Decitalas with 12 pulses compared to those with 16
pulses.
African Timelines

The results here show the robustness (or stability) of the complexity measures between
African Timelines with 12 pulses and African Timelines with 16 pulses. Thus, the robust-
ness criterion we are testing is the length (in terms of pulses) of the rhythms. Below, we
use the boxplot to visualize any outlier complexity measures which we consider to not be
robust with respect to the length of the rhythm. However, first consider two phylogenetic
trees shown in Figure 6.7.

In Figure 6.7(a), we have a phylogenetic tree depicting the relationships among com-
plexity measures on African Timelines of 12 pulses. In Figure 6.7(b), we have a tree show-
ing those same measures on African Timelines of 16 pulses. Note that we chose measures
which are applicable to rhythms which have 12 or 16 pulses. Between the figures, one
may notice that there are clusters which are similar and different. For example, one cluster
common to both the trees is the one containing the measures: fitch, lhl, metricalonorm,
and smith. One cluster which is different is in Figure 6.7(a) we have dswap2 is moderately
correlated with dswap4; however, in Figure 6.7(b) this is clearly not the case as dswap2

and dswap4 are almost on opposites ends of the tree. Differences between the trees, such
as the one just discussed, are what we aim to discover, because we hypothesize that those
differences reveal measures that are not robust. In order to visualize such outliers, consider
the following boxplot in Figure 6.8.

The boxplot shows a box which represents the interquartile range of the distribution.
The line which vertically cuts the box represents the midpoint of the distribution. The
horizontal dotted lines which end with a vertical line are the whiskers of the diagram and
mark the cutoffs where any point beyond the vertical lines are considered outliers. It is
those points which are further right (or left) than the vertical lines extending from the dotted
horizontal lines which we are interested in. Figure 6.8 shows that any point; i.e., any |∆rs|
which is greater than 0.680 is considered to be an outlier. Now, we use this as a cutoff and
find the pairs of complexity measures which have a change in coefficient greater than 0.680.
For convenience, these pairs are listed in Table 6.7.

The complexity measures listed in Table 6.7 are considered to be the outliers for com-

87



(a) BIONJ phylogenetic tree of the complexity measures on African Timelines with 12 pulses,
least-squares fit 93.2.

(b) BIONJ phylogenetic tree of the complexity measures on African Timelines with 16 pulses,
least-squares fit 92.4.

Figure 6.7: BIONJ phylogenetic trees of the complexity measures which may be used
on African Timelines with 12 and 16 pulses.
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Figure 6.8: Boxplot of the absolute value of the change (|∆rs|) between correspond-
ing pairs of Spearman rank correlation coefficients of complexity measures from the
African Timelines with 12 pulses to the African Timelines with 16 pulses, outlier cutoff
|∆rs| > 0.680.

Table 6.7: Outliers (as indicated by the boxplot in Figure 6.8) with an absolute-
value change, |∆rs| > 0.680, in Spearman rank correlation coefficient going from
the African Timelines with 12 pulses (Figure 6.7(a)) and African Timelines with 16
pulses (Figure 6.7(b)).

Complexity Measure Pair |∆rs|
dswap4 dswap2 0.985
wnbd2 offbeatness 0.858
dswap4 hrun 0.855
wnbd4 keith 0.793
wnbd2 keith 0.778
wnbd2 metricalponorm 0.762
wnbd2 smith 0.760
wnbd2 metricalonorm 0.742
ioi-l-sd dswap2 0.741
wnbd2 lhl 0.717
wnbd2 fitch 0.710
wnbd2 metricalonormeuler 0.691
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paring the intercorrelation of the measures on African Timelines with 12 pulses to the inter-
correlation for African Timelines with 16 pulses. Thus, we see that the difference between
the dswap2 and dswap4 is indicated to be the largest outlier, which we noted to be a distinct
change from investigating the phylogenetic trees. Another noteworthy difference between
the trees is the wnbd2 performance. We can see from the table that this measure has signif-
icant differences compared to eight different measures. Also, note that keith is listed twice
in the table. Thus, we have dswap2, dswap4, keith, and wnbd2 listed in more than one
outlier pair.
Indian Decitalas

As in the above, we test for robustness of the complexity measures for Indian Decitalas

with 12 pulses compared to those with 16 pulses. Again our criterion is the length of the
rhythmic pattern; however, we use Indian Decitalas. Consider Figure 6.9 which shows the
relationships of the measures using Decitalas with 12 pulses, seen in Figure 6.9(a), and
Decitalas with 16 pulses, shown in Figure 6.9(a).

Visual inspection for measures, which may not be robust, shows a few possibilities;
however, we turn to the boxplot in order to discover the true outliers among the differences
between coefficients. Consider Figure 6.10 which shows a boxplot of the the distribution
of the |∆rs| values.

In the boxplot of Figure 6.10, we see that the cutoff for outliers is |∆rs| > 1.217, and
we see a few values which are above that cutoff. These are marked by a + symbol. If we
lookup these values, we find the following pairs of complexity measures along with their
|∆rs| values, as shown in Table 6.8 below.

Table 6.8: Outliers (as indicated by the boxplot in Figure 6.10) with an absolute-
value change, |∆rs| > 1.217, in Spearman rank correlation coefficient going from the
Indian Decitalas with 12 pulses (Figure 6.9(a)) and Indian Decitalas with 16 pulses
(Figure 6.9(b)).

Complexity Measure Pair |∆rs|
keith wnbd4 1.539
keith smith 1.281
keith lhl 1.280
keith fitch 1.280
tmuavg wnbd4 1.256
keith wnbd 1.246

From Table 6.8, we can see that keith and wnbd4 are the most frequent measures among
the outlier pairs. Looking back at the trees, we can clearly see in Figure 6.9(b) that keith

is very close to the cluster: fitch, lhl, and smith. However, looking at Figure 6.9(a), keith is
quite distant from that cluster.
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(a) BIONJ phylogenetic tree of the complexity measures on Indian Decitalas with 12 pulses, least-squares
fit 90.1.

(b) BIONJ phylogenetic tree of the complexity measures on Indian Decitalas with 16 pulses, least-squares
fit 89.6.

Figure 6.9: BIONJ phylogenetic trees of the complexity measures which may be used
on Indian Decitalas with 12 and 16 pulses.
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Figure 6.10: Boxplot of the absolute value of the change (|∆rs|) between correspond-
ing pairs of Spearman rank correlation coefficients of complexity measures from the
Indian Decitalas with 12 pulses to the Indian Decitalas with 16 pulses, outlier cutoff
|∆rs| > 1.217.

6.2.2 Inter-Cultural Comparison
Now we validate the complexity measures based on their robustness when comparing

data sets which have rhythms from different cultures. First, we compared African Timelines

with 12 or 16 pulses to Indian Decitalas with 12 or 16 pulses. Second, we compare African
Timelines with 12 or 16 pulses to all of the Indian Decitalas. Third, we compare the African
Timelines with 12 or 16 pulses to all of the North Indian Talas.
African (12,16)-Timelines vs. Indian (12,16)-Decitalas

The first comparison is between the African Timelines and Indian Decitalas, both sets
having rhythms with 12 or 16 pulses. Figure 6.11 shows phylogenetic trees for the complex-
ity measures on each set, the Timelines in Figure 6.11(a) and the Decitalas in Figure 6.11(b).

We are looking for measures where the coefficient between two complexity measures
significantly changes from Figure 6.11(a) to Figure 6.11(b). We use a boxplot of the coef-
ficients from pairs of measures in both trees in order to discover the cutoff for any outliers.
Figure 6.12 below shows the boxplot.

Figure 6.12 shows that the cutoff |∆rs| is 0.874. We list all pairs above the cutoff, along
with their |∆rs| values, in Table 6.9 below.

From Table 6.9, we can see that the complexity measures most frequent in the outlier
pairs are: hrun, ioi-g-mm, metricalponorm, and oddity. As an example, consider the mea-
sure metricalponorm. In Figure 6.11(a) we can see that the measure resides near the middle

92



(a) BIONJ phylogenetic tree of the complexity measures on African Timelines with 12 or 16 pulses,
least-squares fit 94.2.

(b) BIONJ phylogenetic tree of the complexity measures on Indian
Decitalas with 12 or 16 pulses, least-squares fit 92.7.

Figure 6.11: BIONJ phylogenetic trees of the complexity measures which may be used
on African Timelines with 12 and 16 pulses, and Indian Decitalas with 12 or 16 pulses.
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Figure 6.12: Boxplot of the absolute value of the change (|∆rs|) between correspond-
ing pairs of Spearman rank correlation coefficients of complexity measures from the
African Timelines with 12 or 16 pulses to the Indian Decitalas with 12 and 16 pulses,
outlier cutoff |∆rs| > 0.874.

Table 6.9: Outliers (as indicated by the boxplot in Figure 6.12) with an absolute-
value change, |∆rs| > 0.874, in Spearman rank correlation coefficient going from the
African Timelines with 12 and 16 pulses (Figure 6.11(a)) and Indian Decitalas with
12 and 16 pulses (Figure 6.11(b)).

Complexity Measure Pair |∆rs|
oddity tmavg 1.210
oddity tmmax 1.190
hrun offbeatness 0.974
ioi-g-mm tmavg 0.964
metricalponorm lhl 0.959
metricalponorm fitch 0.958
metricalponorm smith 0.951
hrun metricalonorm 0.932
ioi-g-mm tmmax 0.908
hrun wnbd4 0.905
dswap4 metrical 0.890
dswap2 wnbd4 0.890
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of the tree close to measures like lhl, fitch, smith, etc. However, Figure 6.11(b) shows
metricalponorm far from the lhl cluster, residing at the bottom of the tree.
African (12,16)-Timelines and Indian Decitalas

Here we compare the African Timelines to the Indian Decitalas. Note that this collec-
tion of Decitalas has an average number of pulses of 13.320 with a standard deviation of
6.748. Figure 6.13 shows the relationship among the complexity measures for the African
Timelines of 12 and 16 pulses, Figure 6.13(a), and the Indian Decitalas, shown in Fig-
ure 6.13(b).

The two phylogenetic trees in Figure 6.13 reveal quite a few similarities among the
clustering of the complexity measures. However, since we are looking for measures which
may not be robust between the data sets, let us construct a boxplot of the |∆rs| values and
look for any outliers. We can see the boxplot in Figure 6.14 below.

The boxplot in Figure 6.14 shows that there are very few outliers to the right of the cutoff
of |∆rs| > 0.737. By looking at the trees, this seems like a reasonable result, because many
of the complexity measure do in fact remain in similar clusters. However, to find out which
pairs are the outliers, consider Table 6.10.

Table 6.10: Outliers (as indicated by the boxplot in Figure 6.14) with an absolute-
value change, |∆rs| > 0.737, in Spearman rank correlation coefficient going from the
African Timelines with 12 and 16 pulses (Figure 6.13(a)) and Indian Decitalas with
12 and 16 pulses (Figure 6.13(b)).

Complexity Measure Pair |∆rs|
offbeatness metricalponorm 0.937
offbeatness hrun 0.855
offbeatness smith 0.829
offbeatness lhl 0.826
offbeatness fitch 0.825
offbeatness keith 0.795

The outlier pairs listed in Table 6.10, pick out one measure in particular whose coeffi-
cients between the two data sets was significant. As can be seen, this measure is offbeatness.
From Figure 6.13, the dramatic change in position of offbeatness can readily be seen.
African (12,16)-Timelines and North Indian Talas

Another set of data are the North Indian Talas. Here, we compare the African Timelines

with the North Indian Talas. Figure 6.15 shows the corresponding phylogenetic trees.
The phylogenetic trees in Figure 6.15 depict changes which are a bit more subtle. Per-

haps the boxplot in Figure 6.16 will reveal outliers in the data. In fact, there are outliers, as
show in the figure. Consider the boxplot in Figure 6.16 below.

Figure 6.16 shows outliers in the change in coefficients between the African Timelines

and North Indian Talas. Table 6.11 lists theses outlier pairs.
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(a) BIONJ phylogenetic tree of the complexity measures on African Timelines with 12 and 16
pulses, least-squares fit 94.0.

(b) BIONJ phylogenetic tree of the complexity measures on Indian Decita-
las, least-squares fit 95.5.

Figure 6.13: BIONJ phylogenetic trees of the complexity measures which may be used
on African Timelines of 12 and 16 pulses and Indian Decitalas.
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Figure 6.14: Boxplot of the absolute value of the change (|∆rs|) between corre-
sponding pairs of Spearman rank correlation coefficients of complexity measures from
the African Timelines with 12 and 16 pulses to the Indian Decitalas, outlier cutoff
|∆rs| > 0.737.

Table 6.11: Outliers (as indicated by the boxplot in Figure 6.16) with an absolute-
value change, |∆rs| > 0.825, in Spearman rank correlation coefficient going from the
African Timelines with 12 and 16 pulses (Figure 6.15(a)) to all of the North Indian
Talas (Figure 6.15(b)).

Complexity Measure Pair |∆rs|
keith metricalonorm 1.278
pressing metricalonorm 1.205
wnbd metricalonorm 1.020
wnbd lhl 0.932
wnbd fitch 0.931
wnbd smith 0.922
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(a) BIONJ phylogenetic tree of the complexity measures on African Timelines with 12 and 16 pulses, least-
squares fit 94.0.

(b) BIONJ phylogenetic tree of the complexity mea-
sures on North Indian Talas, least-squares fit 93.2.

Figure 6.15: BIONJ phylogenetic trees of the complexity measures which may be used
on African Timelines with 12 and 16 pulses and North Indian Talas.

98



0 0.2 0.4 0.6 0.8 1 1.2
Absolute change between Spearman coefficients

A
fr

ic
an

 T
im

el
in

es
 c

om
pa

re
d 

to
 N

or
th

 In
di

an
 T

al
as

Figure 6.16: Boxplot of the absolute value of the change (|∆rs|) between correspond-
ing pairs of Spearman rank correlation coefficients of complexity measures from the
African Timelines with 12 and 16 pulses to the North Indian Talas, outlier cutoff
|∆rs| > 0.825.

Table 6.11 shows two measures which show up frequently in the outlier pairs: met-

ricalonorm and wnbd. From the trees in Figure 6.15, we can see that these measures are
indeed outliers. In Figure 6.15(a), the metricalonorm measure is tucked into the clus-
ter with fitch, lhl, and smith. However, metricalonorm gets pulled out of this cluster in
Figure 6.15(b). Moreover, we have wnbd close to measures fitch, lhl, and smith in Fig-
ure 6.15(a), but in Figure 6.15(b), wnbd is far from those measures.
6.2.3 Summary

In Part 2 of the results, we observed the relationships between the complexity measures
in two ways. First we looked at the relationship of the measures on data from the same
culture where the number of pulses changed. This was shown for the African Timelines

for rhythms with 12 and 16 pulses. Moreover, this was shown for the Indian Decitalas for
rhythms with 12 and 16 pulses. Second we looked at the relationship of the complexity
measures on rhythms between different cultures. Hence, we made three comparisons with
the African Timelines: (1) the Indian Decitalas of 12 and 16 pulses, (2) the Indian Decita-

las, and (3) the North Indian Talas. Below we provide a table which summarizes which
complexity measures are in a pair of at least two of the outliers in the boxplots, and outlier
tables for each respective comparison.
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Intra-Cultural
Table 6.12 below consists of those complexity measures which are considered to be in

an outlier pair for the robustness test within the African Timelines data set and the Indian
Decitalas data set.

Table 6.12: Summary table of complexity measures which are listed as outliers in
more than one pair from the boxplots of the comparison of African Timelines with 12
pulses to African Timelines with 16 pulses (a), and Indian Decitalas with 12 pulses to
Indian Decitalas with 16 pulses (b).

(a) African Timelines
Complexity Measure
dswap2
dswap4
keith
wnbd2

(b) Indian Decitalas
Complexity Measure
keith
wnbd4

Inter-Cultural
Table 6.13 contains those measures which appear in more than one outlier pair for the

inter-cultural comparisons made with the African Timelines to both the Indian Decitalas

and the North Indian Talas.

Table 6.13: Summary table of complexity measures which are listed as outliers in
more than one pair from the boxplots of the comparison of African Timelines with 12
or 16 pulses to: (a) the Indian Decitalas with 12 or 16 pulses, (b) all of the Indian
Decitalas, and (c) the North Indian Talas.

(a) Indian Decitalas with
12 or 16 pulses.

Complexity Measure
hrun
ioi-g-mm
metricalponorm
oddity

(b) Indian Decitalas
Complexity Measure
offbeatness

(c) North Indian Talas
Complexity Measure
metricalonorm
wnbd

6.3 Random
The third part of the results applies the same method as discussed in § 6.2; however,

here random rhythms are used to test for robustness among the complexity measures. In the
first subsection, we investigate the stability of the complexity measures between random
rhythms with 12 pulses, compared to random rhythms with 16 pulses. The second sub-
section performs a comparison of the combined data set of all the random rhythms to the
three cultural data sets: (1) African Timelines, (2) Indian Decitalas, and (3) North Indian
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Talas. The aim of the results in this part is to compare the performance of the complexity
measures according to randomly generated rhythms and rhythms from different cultures.
6.3.1 Random vs. Random

Here we compare rhythms of 12 pulses with those of 16 pulses. For each data set, we
calculated the complexity with a handful of measures. The phylogenetic trees are shown in
Figure 6.17. Figure 6.17(a) shows the complexity measures on the random rhythms with
12 pulses, and Figure 6.17(b) shows the complexity measures on the random rhythms with
16 pulses.

Figure 6.17, presents general similarities in the clustering, along with differences. Some
of the differences are more dramatic than others, such as the clustering of dswap4, which
dramatically switches from a cluster with dswap2 in Figure 6.17(a), to a cluster with
dswap in Figure 6.17(b). However, a more subtle difference among the trees is press-

ing, which switches from a cluster with keith in Figure 6.17(a), to a cluster with wnbd2 in
Figure 6.17(b). However, the position of the cluster of pressing and wnbd2 is still quite
close to keith. In order to quantify what constitutes a significant change in position in the
tree, we use a boxplot of the change in coefficients, |∆rs|, to discover outliers. Again, these
outliers are hypothesized to not perform robustly (i.e., are unstable) between data sets. Fig-
ure 6.18 shows the boxplot, which contains outliers past the cutoff of |∆rs| > 0.509. We
list the pairs which significantly change cluster positions between the trees, which we label
as outliers in the data, in Table 6.14.

Table 6.14 lists the measures which are considered outlier pairs. Frequent among the
pairs is the wnbd2 measure, as well as the ioi-l-h measure. Visually, we can see that in
Figure 6.17(a) wnbd2 does not cluster with any measure, and is in a branch far from the
other measures. However, in Figure 6.17(b), this is not the case; wnbd2 moves quite close
to keith.
6.3.2 Random vs. Cultural

Using the randomly generated rhythms, we take the combined set of random rhythms,
and compare this set to the African Timelines, the Indian Decitalas, and the North Indian
Talas. The goal of this subsection is to test the complexity measures for robustness (i.e.,
stability) across data sets of rhythms from different cultures. Below we present the phy-
logenetic trees for the random rhythms and for each cultural data set. Moreover, we show
boxplots of each comparison and list the outliers, which indicate unstable performance.
African Timelines

The first test of the random rhythms to a cultural data set, is seen here with the African
Timelines. The African Timeline data set containing rhythms of 12 and 16 pulses is used.
Consider the two phylogenetic trees in Figure 6.19 which shows the tree for the random
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(a) BIONJ phylogenetic tree of the complexity measures on random
rhythms with 12 pulses, least-squares fit 92.8.

(b) BIONJ phylogenetic tree of the complexity measures on random rhythms with 16 pulses, least-
squares fit 94.2.

Figure 6.17: BIONJ phylogenetic trees of the complexity measures which may be used
on random rhythms of 12 and 16 pulses.
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Figure 6.18: Boxplot of the absolute value of the change (|∆rs|) between correspond-
ing pairs of Spearman rank correlation coefficients of complexity measures between
random rhythms with 12 and 16 pulses, outlier cutoff |∆rs| > 0.509.

Table 6.14: Outliers (as indicated by the boxplot in Figure 6.14) with an absolute-
value change, |∆rs| > 0.509, in Spearman rank correlation coefficient going from
the random rhythms with 12 pulses (Figure 6.17(a)) to those with 16 pulses (Fig-
ure 6.17(b)).

Complexity Measure Pair |∆rs|
wnbd2 keith 0.894
wnbd2 wnbd 0.804
wnbd2 metricalponorm 0.782
dswap4 pressing 0.769
wnbd2 metricalonorm 0.749
wnbd2 offbeatness 0.739
wnbd2 smith 0.734
dswap dswap2 0.720
wnbd2 lhl 0.694
wnbd2 fitch 0.691
wnbd2 metricalponormeuler 0.684
dswap4 dswap 0.679
wnbd2 pressing 0.652
wnbd2 metricalonormeuler 0.651
tmumax ceps 0.647
ioi-l-h ioi-g-h 0.608
dswap4 wnbd 0.607
dswap4 metricalonorm 0.604
dswap4 metricalonormeuler 0.579
dswap4 metricalponorm 0.578
ioi-l-h ioi-g-mm 0.568
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rhythms in Figure 6.19(a), and then shown again for convenience in visual comparison, is
the tree for the African Timelines in Figure 6.19(b).

Between the phylogenetic trees in Figure 6.19, there are similarities among how the
measures are clustered. For example, we can see that measures fitch, keith, lhl, pressing,

smith, and wnbd cluster towards the middle of the tree in Figure 6.19(a). Those same mea-
sures also cluster toward the middle of the tree (with metricalonorm moving a bit closer)
in Figure 6.19(b). We can discover similarities like the one just discussed by inspecting the
tree, but we are interested in finding differences which are significant between the two trees.
Generating a boxplot reveals any outliers which have this significant change. Figure 6.20
depicts this boxplot.

From the boxplot in Figure 6.20, the cutoff for outliers is |∆rs| > 0.417. Moreover, we
can see the outliers marked with a plus symbol. Consider Table 6.15 which lists the outliers
found by this method.

Table 6.15: Outliers (as indicated by the boxplot in Figure 6.20) with an absolute-
value change, |∆rs| > 0.417, in Spearman rank correlation coefficient going from the
random rhythms with 12 and 16 pulses (Figure 6.19(a)) to African Timelines with 12
and 16 pulses (Figure 6.19(b)).

Complexity Measure Pair |∆rs|
hrun ioi-l-mm 0.840
hrun ioi-l-h 0.774
tmavg oddity 0.592
hk ioi-g-h 0.540
hrun ceps 0.503
pressing oddity 0.490
tmuavg ioi-g-sd 0.485
lz ioi-l-sd 0.476
hrun ioi-l-sd 0.475
lz hrun 0.470
lz ioi-g-sd 0.468
tmumax ioi-g-sd 0.463
tmmax oddity 0.460
hk offbeatness 0.449
lz ioi-g-mm 0.439
hk ioi-g-mm 0.420
lz ioi-g-h 0.418

From the list of outlier pairs in Table 6.15, we can see that measures hk, hrun, ioi-g-h,

ioi-g-mm, ioi-g-sd, ioi-l-sd, lz, and oddity are the most frequent in the outlier pairs. Taking
hrun for example, in Figure 6.19(b), the measure clusters quite close to ceps, and is in a
larger cluster with ceps, ioi-l-h, ioi-l-mm, lz, tmavg, and tmmax. However, Figure 6.19(b),
shows hrun quite far from ceps and in a larger cluster of hk, tmavg, tmmax, and wnbd2.
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(a) BIONJ phylogenetic tree of the complexity measures on random
rhythms, least-squares fit 90.4.

(b) BIONJ phylogenetic tree of the complexity measures on African Timelines with 12 and 16
pulses, least-squares fit 94.2.

Figure 6.19: BIONJ phylogenetic trees of the complexity measures which may be used
on random rhythms of 12 and 16 pulses and African Timelines with 12 and 16 pulses.
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Figure 6.20: Boxplot of the absolute value of the change (|∆rs|) between correspond-
ing pairs of Spearman rank correlation coefficients of complexity measures of random
rhythms and African Timelines with 12 and 16 pulses, outlier cutoff |∆rs| > 0.417.

Indian Decitalas
We now turn to comparing the random rhythms to the Indian Decitalas. Figure 6.21

depicts the phylogenetic trees of the random rhythms in Figure 6.21(a), and also the Indian
Decitalas in Figure 6.21(b). Note that both are repeat for convenience in visually comparing
the trees.

Inspecting the phylogenetic trees in Figure 6.21 shows similarities in clustering, and
also differences. However, perhaps the most noticeable difference is with the offbeatness

measure which is tucked into the upper part of the tree in Figure 6.21(a), but is quite distant
residing at the top of the tree in Figure 6.21(b). However, even though this appears to be a
significant deviation, we quantify this change with a boxplot of all the significant changes
in coefficients between the two data sets. Consider this boxplot shown in Figure 6.22.

From the boxplot in Figure 6.22, we can see that the cutoff for outliers is |∆rs| > 0.695.
Moreover, the plus symbols indicates there are significant outliers in the data. In order to
find out if the offbeatness measure did in fact have a significant change corresponding to
the visual deviation in the phylogenetic trees, consider Table 6.16 which lists those pairs of
measures with a significant deviation (i.e., the outliers) among all the |∆rs| values.

Table 6.16 in fact shows that the offbeatness measure is an outlier and appears in most
of the outlier pairs. Thus we have a clear outlier in terms of change in coefficient between
the random rhythms and the Indian Decitalas.
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(a) BIONJ phylogenetic tree of the mea-
sures on random rhythms, least-squares
fit 87.3.

(b) BIONJ phylogenetic tree of the complexity measures on In-
dian Decitalas, least-squares fit 95.5.

Figure 6.21: BIONJ phylogenetic trees of the complexity measures which may be used
on random rhythms with 12 and 16 pulses and Indian Decitalas.
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Figure 6.22: Boxplot of the absolute value of the change (|∆rs|) between correspond-
ing pairs of Spearman rank correlation coefficients of complexity measures of random
rhythms with 12 and 16 pulses and Indian Decitalas, outlier cutoff |∆rs| > 0.695.

Table 6.16: Outliers (as indicated by the boxplot in Figure 6.22) with an absolute-
value change, |∆rs| > 0.695, in Spearman rank correlation coefficient going from the
random rhythms with 12 and 16 pulses (Figure 6.21(a)) to all of the Indian Decitalas
(Figure 6.21(b)).

Complexity Measure Pair |∆rs|
offbeatness hk 0.973
offbeatness metricalponorm 0.864
offbeatness dswap 0.849
offbeatness tmumax 0.804
offbeatness hrun 0.768
offbeatness tmuavg 0.719
metricalpnorm metrical 0.715
offbeatness fitch 0.703
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North Indian Talas
The North Indian Talas are now used as the data set of cultural rhythms for comparison

to the random rhythms. Figure 6.23 shows the phylogenetic tree of the complexity measures
on the random rhythm data set in Figure 6.23(a), along with the tree of the North Indian
Talas data set in Figure 6.23(b). These figures have been previously shown; however, they
are placed together here in order to compare the similarities and differences in the trees.

(a) BIONJ phylogenetic tree of the
measures on random rhythms, least-
squares fit 87.3.

(b) BIONJ phylogenetic tree of the complexity measures
on North Indian Talas, least-squares fit 93.2.

Figure 6.23: BIONJ phylogenetic trees of the complexity measures which may be used
on random rhythms with 12 and 16 pulses and North Indian Talas.

From Figure 6.23, we can see that there are a few notable differences between the trees.
Take for example the wnbd measure. In Figure 6.23(a), we see this measure towards the top
of the tree clustered near fitch, keith, lhl, pressing, and smith. However, in Figure 6.23(b),
we see the measure at the top of the tree again clustered with keith, pressing, but quite far
from fitch, lhl, and smith. Consider the boxplot in Figure 6.24 which show outliers in the
data.

The boxplot in Figure 6.24 shows that there are outliers in the distribution of change in
coefficient between the random rhythms and the North Indian Talas. Consider Table 6.17
which shows these outlier pairs.
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Figure 6.24: Boxplot of the absolute value of the change (|∆rs|) between correspond-
ing pairs of Spearman rank correlation coefficients of complexity measures of random
rhythms with 12 and 16 pulses and North Indian Talas, outlier cutoff |∆rs| > 0.919.

Table 6.17: Outliers (as indicated by the boxplot in Figure 6.24) with an absolute-
value change, |∆rs| > 0.919, in Spearman rank correlation coefficient going from
the random rhythms with 12 and 16 pulses (Figure 6.23(a)) to all of the North Indian
Talas (Figure 6.23(b)).

Complexity Measure Pair |∆rs|
keith metricalonorm 1.120
hrun ceps 1.041
pressing metricalonorm 1.032
wnbd metricalonorm 0.991
wnbd lhl 0.979
wnbd fitch 0.970
wnbd smith 0.967
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In Table 6.17, we can see that wnbd is in fact an outlier and is frequent in the pairs.
Also, this points to the metricalonorm which has significant coefficient change with three
other measures.
6.3.3 Summary

We observed the relationships between the complexity measures in two ways. First we
looked at the relationship of the measures on random rhythms where the number of pulses
changed. This was shown for random rhythms with 12 and 16 pulses. Second we looked at
the relationship of the complexity measures on these random rhythms compared to different
cultures. We made three comparisons of the random rhythms: (1) African Timelines, (2)
Indian Decitalas, and (3) the North Indian Talas. Below we provide a table that summarizes
which complexity measures are in a pair of at least two of the outliers in the boxplots, and
outlier tables for each respective comparison.
Random vs. Random

Table 6.18 below consists of those complexity measures which are considered to be in
an outlier pair for the robustness test within the random rhythm data.

Table 6.18: Summary table of measures listed as outliers in more than one pair from
the boxplot of the random rhythms with 12 pulses compared to 16 pulses.

Complexity Measure
dswap4
ioi-l-h
wnbd2

Random vs. Cultural
Table 6.19 contains those measures appearing in more than one outlier pair comparing

the random rhythms to the African Timelines, Indian Decitalas, and North Indian Talas.

Table 6.19: Summary table of complexity measures which are listed as outliers in
more than one pair from the boxplots of the comparison of random rhythms with 12
or 16 pulses to the cultural data.

(a) African Timelines
Complexity Measure
hk
hrun
ioi-g-h
ioi-g-mm
ioi-g-sd
ioi-l-sd
lz
oddity

(b) Indian Decitalas
Complexity Measure
offbeatness

(c) North Indian Talas
Complexity Measure
metricalonorm
wnbd
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Chapter 7

Discussion

This chapter presents a discussion of the results previously reviewed. First, the human-
based complexity measures are discussed and general conclusions are drawn. Second, the
culturally-based comparisons are discussed and conclusions are made based on such re-
sults. Third, the random-based comparisons are reviewed and discussed, and conclusions
are drawn. Finally, concluding remarks are made and open problems for future work are
presented.
7.1 Human Complexity

The first goal of this work has been to validate the complexity measures presented
against human-based measures of rhythm complexity. Computational measures were com-
pared to measures of human-based performance complexity, human-based perceptual com-
plexity, and human-based metrical complexity, as well as to each other. We discuss the
results obtained regarding each human complexity measure from Chapter 6 and propose
open problems for future work. Consider each discussion in the following subsections.
7.1.1 Performance

We have compared the complexity measures to human-based performance complexity
from all three of the psychological data sets. From the comparison we have similarities and
differences regarding which measures of complexity performed most closely to the human
measures. Using the data from Povel and Essens, we have Smith and Honing’s version of
the Longuet-Higgins and Lee measure performing best (r∗s = 0.800). For the Essens data
set, Toussaint’s Metrical Complexity (Onset Normalized) using Palmer and Krumhansl’s
musicians-4/4 weighting scheme performed best (r∗s = 0.687). For Fitch and Rosenfeld’s
data set, we have our unconstrained version of Tanguiane’s Complexity using the average
across metrical levels, performing best (r∗s = 0.613). To see this, consider Figure 7.1 which
depicts phylogenetic trees of the top measures in Table 6.4 in Chapter 6.

In Figure 7.1, it is clear that the human-based performance complexity in each tree does
not cluster with any of the measures. This means that the intercorrelation between measures
are higher than the correlation of the complexity measure to the human-based measure.
First, look at the tree in Figure 7.1(a). Even though the correlation of fitch,lhl, and smith are
all moderately high (r∗s > 0.750), the measures still appear to have a large distance from
Povel and Essens’ human performance complexity. This is because the intercorrelations are
quite high; i.e., r̄∗s > 0.9. Therefore, the measures are more closely clustered to each other
than to the human-based measure.

112



(a) Povel and Essens, least-squares fit 99.0.

(b) Essens, least-squares fit 99.1.

(c) Fitch and Rosenfeld, least-squares fit 99.9.

Figure 7.1: Phylogenetic trees using the BIONJ method of the complexity measures
which obtained the highest performance indicated from Table 6.4 in Chapter 6. Here,
we have the computational measures along with the human-based performance com-
plexity from Povel and Essens in (a), Essens in (b), and Fitch and Rosenfeld in (c).
Note that the coefficients in each tree are significant at the p ≤ 0.001 level.
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Among the top-performing measures in Figure 7.1(a), all of them except wnbd and
wnbd4 use the metrical hierarchy. Also, Palmer and Krumhansl’s weighting scheme of
the musicians with a 2/4 metrical structure has better performance than the 4/4 weight-
ing scheme. In addition, consider the data which was used to arrive at these results. The
rhythms in the data set from Povel and Essens consisted of patterns which had: the same
number of pulses, the same number of onsets, and the same distribution of interonset inter-
vals. This suggests three possible conclusions:

1. Under controlled data human-based performance complexity may be best measured
by algorithms which use the metrical hierarchy with the original weighting scheme.

2. Such restricted data (same IOIs, number of onsets and pulses) may not provide ade-
quate data for the accurate validation of the complexity measures against the human-
based performance complexity.

3. The complexity measure may be evaluating some other property that is related to
human-based performance complexity, since the measures are so highly intercorre-
lated.

Let us now consider the phylogenetic tree in Figure 7.1(b). Here, the data set from
Essens was used to compute the complexity using the measures shown in the tree. Each are
the top performers listed in Table 6.4 from Chapter 6. Again the measures which occur in
this tree are those which use the metrical hierarchy. However, keith and wnbd2 stand out
as those which are not based on this hierarchy. Note that keith is among the top-performers
for the Essens data set, but not for the Povel and Essens data.

Taking into consideration the data from Essens, the rhythms all have the same number
of pulses and have a high number of onsets (10.375 on average). Moreover, they were tested
on a small number of participants in the study (6 participants [48]). In any case, the measure
which performed most closely to the human-based measure is metricalonormpk-MUS-44

with r∗s = 0.687. What is noteworthy, is that even though the top performers are still those
using the metrical hierarchy, the best performing measure is when the hierarchy uses Palmer
and Krumhansl’s musicians 4/4 weighting scheme. Moreover, keith, which also has r∗s =

0.687 is tied for top-performance, and does not rely on the metrical hierarchy weighting
scheme. Though, the measure does use an arbitrary weighting scheme for musical events:
1 for hesitation, 2 for anticipation, and 3 for syncopation. So perhaps this is why the
measure is pulled into the cluster of the measures using the metrical hierarchy with original
weights; i.e., the cluster of fitch, lhl, metricalonorm, and smith. These results suggest the
following conclusions.

1. The metrical hierarchy with Palmer and Krumhansl’s musicians 4/4 weights, most
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accurately measures human-based performance complexity of rhythms with variation
in the number of onsets.

2. The fitch, keith, lhl, metricalonorm, smith, and wnbd measures tightly cluster away
from the human-based measure, because they may be measuring some other aspect
of the rhythms, related to how difficult they are to perform.

Finally, examination of the phylogenetic tree in Figure 7.1(c) reveals a different story
than the previous two trees. However, we do see a similarity in that the Metrical Com-
plexity measures, which use the Palmer and Krumhansl weights, for both musicians and
non-musicians in 4/4, cluster together near the top of the tree. The main difference is
that no measures using the original metrical weights are present among the top performers.
In fact, two measures which previously obtained poor performance are seen here as top
performers: tmuavg and ioi-g-h. Tanguiane’s Complexity pertains to musical elaboration,
whereas the IOI measure, pertains to the entropy of the IOI histogram. Thus, the results are
split where those measures using an alternate weighting scheme for the metrical hierarchy
are on the top of the tree, and those measures which have previously not performed well,
are on the bottom of the tree. The human-based measure is in the middle of the split.

This dramatic change in which measures perform best is perhaps due to the data set
provided by Fitch and Rosenfeld. Their data was generated to yield a set of rhythms which
varied in the complexity according to Fitch and Rosenfeld’s implementation of the Longuet-
Higgins and Lee measure. By doing so, all the rhythms generated had the same number of
pulses, a smaller number of onsets (4.8 on average), and in fact were more representative
of rhythms from African and Indian cultures. Table 7.1 lists the rhythms found in African
and Indian culture. Note that the first column is the rhythm ID number from Fitch and
Rosenfeld’s data in Table 4.3 in Chapter 4, the second column is the name of the rhythm for
African (on top) or Indian (below) cultures. The third and fourth columns show the rhythm
in the culture and the the rhythm from Fitch and Rosenfeld’s data set.

As can be seen in Table 7.1, most of the rhythms from Fitch and Rosenfeld’s data set are
rotations of the rhythms found in African or Indian culture. Note that a rotation is defined
as placing a rhythm on a circle, and then turning the circle by a rotational distance based
on the pulse. Turning the circle clockwise by one rotation, for a rhythm with 16 pulses,
would bring pulse 0 to pulse 1, pulse 1 to pulse 2, . . . , and pulse 15 to pulse 0. However,
not all the rhythms from Fitch and Rosenfeld have to be rotated, the precise rhythms of
the Rumba from African culture and the Pratyanga from Indian culture are present in the
set. Moreover, the duplicate names in the table, means that some rhythms from Fitch and
Rosenfeld’s data are rotations of each other. The results of the representative data, from
Fitch and Rosenfeld’s human performance complexity, suggests the following.
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Table 7.1: Rhythms from Fitch and Rosenfeld’s data set which are found also in
African or Indian cultures.

No. Name Rhythm Fitch/Rosenfeld
12 Domba x . x . . x . . . x . . . x . . . x . . . x . . . x . . x . x .
12 Kpatsa x . . . x . . . x . . x . x . . . x . . . x . . . x . . x . x .
6 Kromanti x . x . . . x . . . x . x . . . . . x . . . x . x . . . x . x .

12 Rap-Drum x . . . x . . x . x . . x . . . . x . . . x . . . x . . x . x .
8 Rumba x . . x . . . x . . x . x . . . x . . x . . . x . . x . x . . .
6 Shiko x . . . x . x . . . x . x . . . . . x . . . x . x . . . x . x .
6 Timini x . x . . . x . x . . . x . . . . . x . . . x . x . . . x . x .
2 Tuareg x . . . x . x . x . . . x . . . x . . . x . . . x . . . x . x .

22 Tuareg x . . . x . x . x . . . x . . . . . x . . . x . x . x . . . x .
30 Tuareg x . . . x . x . x . . . x . . . . x . x . . . x . . . x . . . x
6 Jayacri x . . . x . x . . . x . x . . . . . x . . . x . x . . . x . x .
2 Pratyanga x . . . x . . . x . . . x . x . x . . . x . . . x . . . x . x .
22 Pratyanga x . . . x . . . x . . . x . x . . . x . . . x . x . x . . . x .
30 Pratyanga x . . . x . . . x . . . x . x . . x . x . . . x . . . x . . . x
6 Simhanada x . x . . . x . . . x . x . . . . . x . . . x . x . . . x . x .
2 Vijayananda x . x . x . . . x . . . x . . . x . . . x . . . x . . . x . x .
22 Vijayananda x . x . x . . . x . . . x . . . . . x . . . x . x . x . . . x .
30 Vijayananda x . x . x . . . x . . . x . . . . x . x . . . x . . . x . . . x

1. Measures which use the metrical hierarchy and the human judged weighting scheme
of musicians or non-musicians in 4/4, perform better than the orignal weighting of
the metrical hierarchy.

2. The global interonset histogram may provide valuable information in terms of mea-
suring human-based performance complexity of rhythms.

3. The notion of musical elaboration presented by Tanguiane may be significant when
measuring the complexity of rhythm performance.

4. None of the complexity measures adequately or even accurately measure human-
based performance complexity when rhythms from African or Indian cultures are
concerned, since the highest correlation to the human-based measure is roughly 0.6.

7.1.2 Perceptual
Human-based perceptual complexity was measured by two psychological studies, and

thus far we have made comparisons of computational measures to both of these human
measures. Figure 7.2 shows phylogenetic trees with respect to each data set: the Shumle-
vich and Povel data in Figure 7.2(a) and the Essens data in Figure 7.2(b). We show the top
measures for each, which were listed in Table 6.5 in Chapter 6. For convenience, the Spear-
man rank correlation coefficient for each computational measure compared to human-based
perceptual complexity is shown appended to each node label in square brackets.

First, consider Figure 7.2(a) which shows the best results from Shmulevich and Povel’s
human judgments of perceptual complexity. The measure that performs most closely to the
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(a) Shmulevich and Povel, least-squares fit 98.9.

(b) Essens, least-squares fit 97.8.

Figure 7.2: Phylogenetic trees using the BIONJ method of the complexity measures
which obtained the highest performance indicated from Table 6.5 in Chapter 6. Here,
we have the computational measures along with the human-based perceptual com-
plexity from Shmulevich and Povel in (a) and Essens in (b). Note that the coefficients
of the measures in (a) are significant at the p ≤ 0.001 level, whereas in (b), only
oddity has significance of p ≤ 0.05 while the rest are not significant with p ≤ 0.1.
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human measure is the Longuet-Higgins and Lee measure, including the implementations by
Fitch and Rosenfeld [57], and Smith and Honing [150]. The other measures which perform
well are those which are based on the metrical hierarchy; e.g., Toussaint’s Metrical Com-
plexity and the LHL measures. The WNBD measure, not based on the metrical hierarchy,
also performs well.

However, the phylogenetic tree shows that such top performing measures are still set
apart from the human-based perceptual complexity. The computational measures obtain
a correlation of roughly r∗s ≈ 0.7, which indicates a moderate relationship to the human-
based measure. However, the relationship among the computational complexity measures
is much higher. Disregarding the human-based measure correlations, the intercorrelation of
the measures is over r∗s > 0.9. This indicates that the measures are similarly ranking the
rhythms, where the ranking moderately correlates to the human judgments, but is perhaps
measuring some other property of the patterns to determine their complexity, which may
not accurately reflect human perceptual judgments of complexity.

In addition, the data may provide insight to the performance of the measures. For
example, the data set of rhythms was very strictly generated. Each rhythm had the same
number of pulses, onsets, and intervals; i.e., they were generated by permuting a single
interval set [119]. Considering the data set and also the correlation results, the following
conclusions are suggested.

1. Complexity measures which have the highest performance regarding human-based
perceptual complexity of rhythms, use the metrical hierarchy.

2. When the complexity of constrained rhythms is measured, the original weights, from
Lerdahl and Jackendoff, of the metrical hierarchy yield the most accurate results.

Second, consider Figure 7.2(b), which shows the best results regarding the human judg-
ments of complexity from Essens’ study [48]. The results here are poor in terms of corre-
lation; however, the phylogenetic tree may still provide valuable information. Even though
the correlation with human-based perceptual complexity is low, the intercorrelations are
still of interest. Take for instance Toussaint’s Metrical Complexity using the Palmer and
Krumhansl non-musician weighting in 2/4 and 4/4, and using the Euler weighting scheme.
Here we see both groups are split by the human-based perceptual complexity; thus they
perform similarly to the human judgments, but are not similar to each other. This shows
that using alternate weighting schemes can dramatically change the relationship to the other
measures (put them on opposite sides of the tree), but using a standard framework (i.e., a
metrical hierarchy) keeps the measures at the same distance to the human judgments. Also,
two measures which generally do not perform well, tmumax and oddity, are seen as top
performers regarding Essens’ Human Perceptual Complexity.
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There is a noted difference in the rhythm data used in Essens’ study compared to the
data used in Shmulevich and Povel’s study. In Essens, the rhythms varied in the number
of onsets. The mean number of onsets is 10.375 and the standard deviation of 1.056. As a
result of this data set, dropping the constraints imposed by the nature of Povel and Essens’
data, may allow for a more realistic (in terms of rhythms found among cultures) sense of
performance. Thus, we may conclude the following.

1. Perceptual complexity judgments on rhythms which vary in the number of onsets
yields results close to those computational measures which use an alternate weight-
ing scheme for the metrical hierarchy, such as Palmer and Krumhansl’s or Euler’s
scheme.

2. Properties of the Rhythmic Oddity measure or of Tanguiane’s Complexity measure
can perhaps be used for measuring human-based perceptual complexity, as they are
the best (albeit still low) performers.

7.1.3 Metrical
The study by Fitch and Rosenfeld [57], also presents a new form of complexity which

previous studies [48, 119, 146] did not address; i.e., human metrical complexity, which
is the difficulty people have understanding the metrical structure of a rhythm. Figure 7.3
shows a phylogenetic tree of the top performing computational complexity measures com-
pared to two human-based measures: Fitch and Rosenfeld’s Human Metrical Complex-
ity (Beat-Tapping Error Adjusted) and Fitch and Rosenfeld’s Human Metrical Complexity
(Number of Resets). Note that there are two coefficients in brackets of each complexity
measure node label. The first is the coefficient compared to the Beat-Tapping Error Ad-
justed and the second is the coefficient compared to the Number of Resets. Also, the nodes
in the tree represent the measures from Table 6.6.

Notice that Toussaint’s Metrical Complexity dominates the top performing measures
regarding both of the human-based metrical complexity measures. Also, not only do dif-
ferent versions of the Metrical Complexity measure dominate, but they also attain high
correlation to the human measures, e.g., metricalponorm has r∗s = 0.834 compared to the
Beat-Tapping Error Adjusted and r∗s = 0.793 compared to the Number of Resets. More-
over, as described in §§ 7.1.1, we have that some of the rhythms in Fitch and Rosenfeld’s
data set, represent rhythms found in both African and Indian cultures. From this we may
conclude the following.

1. Complexity measures based on the metrical hierarchy with the original weighting
scheme perform accurately to human-based metrical complexity on rhythms which
contain a subset of rhythms from African and Indian cultures.
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Figure 7.3: Phylogenetic tree using the BIONJ method (least-squares fit 99.8) for the
complexity measures which obtained the highest performance indicated from Table 6.6
in Chapter 6. Here, we have the computational measures along with the Human Met-
rical Complexity from Fitch and Rosenfeld regarding Beat-Tapping Error (Adjusted)
and the Number of Resets. Note that the coefficients of the measures in both trees are
significant at the p ≤ 0.001 level.

2. The 4/4 metrical structure yields more accurate coefficients than 2/4, as seen by
metricalponormpk-MUS-44 and wnbd4.

3. Human Metrical Complexity is the form of complexity closest to the computational
complexity measures, 55% of the measures obtained a correlation r∗s > 0.5 compared
to the measure Beat-Tapping Error Adjusted.

7.2 Cultural Complexity
The second goal of this thesis was to validate the computational complexity measures

in a cultural context. Thus we used representative data sets from African and Indian cul-
tures. However, because we do not currently have human-based measures for any aspects of
complexity for such rhythms, we chose to observe the behavior of the complexity measures
between the different data sets. For instance, the robustness (i.e., stability) of the complex-
ity measures was evaluated. Thus, the African Timelines were compared to both the Indian
Decitalas and Indian Talas. In the following we discuss the results of such comparisons.

In Chapter 6, we evaluated the complexity measures’ performance with respect to each
other, between two data sets from within the same culture, and across cultures. In this
evaluation we measured the difference in the intercorrelation coefficients going from one
data set to the other, and used the basic technique of a boxplot to look for outlier pairs
among the differences. Essentially, complexity measures which showed signs of unstable
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performance were uncovered as outliers. This means that the correlation coefficient of a
pair of measures in one data set was dramatically different compared to the coefficient of
that same pair in the second data set. We will first discuss the results from the intra-cultural
comparison, and second discuss the inter-cultural comparison.
7.2.1 Intra-Cultural Robustness

Consider Table 7.2 below which lists those measures which were frequent among the
outlier pairs comparing sets of rhythms from the same culture. This list contains those
measures that may be suspect of not having robust performance. Table 7.2 shows an outlier
pair where the measure on the left may be paired with each measure on the right in the
comma separated list. Note that each comparison is separated by a horizontal line.

Table 7.2: Complexity measures which are considered unstable comparing the
African Timelines with 12 pulses to those with 16 pulses, and below the horizontal
separator are those unstable measures for the Indian Decitalas with 12 pulses com-
pared to those with 16 pulses.

Data Set Complexity Measure Pair

African Timelines

dswap2 dswap4, ioi-l-sd
dswap4 dswap4, hrun
keith wnbd2, wnbd4
wnbd2 fitch, lhl, keith, metricalonorm, met-

ricalponorm, smith

Indian Decitalas
keith fitch, lhl, smith, wnbd4, wnbd
wnbd4 keith, tmuavg

One can immediately notice that keith is present as an unstable measure in both intra-
cultural comparison, as is the wnbd measure, except with differing beat parameters (2 and
4). The reason for the the unstable performance of keith between data sets of 12 and 16
pulses is most likely due to the definition of the complexity measure. Recall that for the
duration of each onset, the closest power of two is found which is smaller than the dura-
tion [86]. Using this scheme involving powers of two to determine the beat is problematic
for rhythms with 12 pulses. This is because the beat does not typically fall on all powers
of two as with rhythms of 16 pulses. Consider Figure 7.4 which shows the only possible
metrical hierarchy for 16 pulses. This is the beat structure imposed by Keith’s measure.

Figure 7.4 shows that the beat falls on a power of two at each level in the tree. Compare
this now to the cases of where the beat may fall when a rhythm has 12 pulses. Figure 7.5
shows three different possible metrical hierarchies.

Notice in Figure 7.5 that the beat does not always fall on a power of two, sometimes it
falls at a multiple of three. Hence, we see why Keith’s measure may not be robust compar-
ing rhythms with 12 pulses to those with 16; by Keith’s definition, the measure does not
always find the correct position of the beat.
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Figure 7.4: Metrical hierarchy for the subdivision of 16 pulses.

(a) Metrical subdivision 2-2-3 (b) Metrical subdivision 2-3-2

(c) Metrical subdivision 3-2-2

Figure 7.5: Metrical hierarchies for each subdivision of 12 pulses.
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The beat position may also be the reason why wnbd2 and wnbd4 also show signs of
instability between rhythms of 12 and 16 pulse. The wnbd2 measure considers every sec-
ond pulse to be the beat, whereas the wnbd4 considers every fourth pulse to be the beat.
Therefore, when one has a rhythm with 12 pulses, the beat may not fall at every two or
every fourth pulse, especially as seen in the case presented in Figure 7.5(a) where the beat
at the lowest metrical level can be see every three pulses. Similarly this is the most likely
case for the unstable performance of the dswap measures as well. These results suggest the
following.

1. The measure proposed by Keith [86] is not appropriate for rhythms of 12 pulses;
however, if the definition were generalized, then perhaps it could still be applicable.

2. When comparing rhythms with 12 pulses to 16 pulses, measures which are parame-
terized with beat-placement, like wnbd and dswap should perhaps be giving a priori
knowledge of which beat-placement parameters are appropriate for the given rhythm;
such as three, in the case of 12 pulses and four, in the case of 16 pulses.

7.2.2 Inter-Cultural Robustness
Here we turn to a discussion of unstable rhythms between different cultures. The results

show the African Timelines with 12 or 16 pulses compared to the Indian Decitalas with 12
or 16 pulses, the Indian Decitalas, and the North Indian Talas. Consider Table 7.3 which
lists the unstable measures for each comparison.

Table 7.3: Complexity measures which are considered unstable comparing the
African Timelines with 12 or 16 pulses to Indian Decitalas with 12 or 16 pulses, all
the Indian Decitalas below the first horizontal separator, and the North Indian Talas
below the second horizontal separator.

Data Set Complexity Measure Pair

Indian (12,16)-Decitalas

hrun metricalonorm, wnbd
ioi-g-mm tmavg, tmmax
metricalponorm fitch, lhl, smith
oddity tmavg, tmmax

Indian Decitalas offbeatness fitch, hrun, keith, lhl, metricalponorm,
smith

North Indian Talas
metricalonorm keith, pressing, wnbd
wnbd fitch, lhl, metricalonorm, smith

Table 7.3 shows the pairs of complexity measures which were outliers going from one
data set to the other. The complexity measure on the left paired with each measure on the
right forms an outlier pair. Thus, for each pair we have that one measure or both have
unstable performance across data sets. The table also divides the three comparisons by
horizontal divider lines. The first four rows consist of those outlier pairs for the African
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Timelines with 12 or 16 pulses compared to the Indian Decitalas with 12 or 16 pulses, the
row beneath the first separator consists of those pairs of the African Timelines of 12 or 16
pulses compared to the Indian Decitalas, and the last two rows beneath the second separator
consists of those outlier pairs of the comparison of the African Timelines of 12 or 16 pulses
and the North Indian Talas.

First, consider the set of outlier pairs for the African Timelines compared to the In-
dian Decitalas of 12 or 16 pulses. For each pair, we can notice in the phylogenetic trees
in Figure 6.11 from Chapter 6, in one tree the pairs are relatively close, whereas in the
second tree, they are far apart. For example, take the pairs: (metricalponorm, fitch), (metri-

calponorm, lhl), and (metricalponorm, smith). Figure 6.11(a) using the African Timelines

data shows that the pairs are much closer and are also near the middle of the tree, whereas
Figure 6.11(b) using the Indian Decitalas of 12 or 16 pulses, shows the pairs much farther
apart, with metricalponorm near the bottom of the tree and fitch, lhl, and smith towards
the top. This is the case for the other pairs as well; however, we note that the pairs (odd-

ity,tmavg) and (oddity,tmmax) are farther apart using the African Timelines data and closer
together using the Indian Decitalas data. However, the general trend is that one tree shows
the pair closer while the other tree shows them far apart. To shed light on why this might be
happening, consider Figure 7.6 showing boxplots of the raw complexity values of an outlier
pair discussed above.

Notice from Figure 7.6 that in the comparison with the measure metricalponorm, the
two distributions are similar in that they are both nearly symmetric. The main difference
however, pertains to the range of complexity values, but this may be due to the nature
of the data. Regarding the boxplots for the measure lhl, we can clearly see that there is
another major difference other than the range of complexity values; i.e., the distribution
of the Indian Decitalas is very skewed. In fact, this distribution is one-tailed. There are
many possibilities for why this might be the case; however, because the metricalponorm is
a normalized measure and avoids such skewness, perhaps the lhl measure can also benefit
from a type of normalization.

Let us secondly discuss the outlier pairs for the African Timelines compared to the full
data set of Indian Decitalas. In this comparison, it is clearly shown that the offbeatness

measure is flagged as a very common measure among the outlier pairs. Quickly inspecting
the phylogenetic trees in Figure 6.13 from Chapter 6 reveals that offbeatness is close to the
middle of the tree using the African Timelines data set, but is then quite far for the Indian
Decitalas data set.

We did not see this behavior from offbeatness when the Indian Decitalas data set was
restricted to rhythms with 12 or 16 pulses. However, now that this constraint is dropped,
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Figure 7.6: Comparison of a boxplot of the raw complexity values for the African
Timelines of 12 or 16 pulses to that of the Indian Decitalas of 12 or 16 pulses. In (a)
we have boxplots for metricalponorm and in (b) we have boxplots for lhl.
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the Indian Decitalas have a wide range of pulses. The mean number of pulses is 13.320

with a standard deviation of 6.748. Perhaps it is this varied range causing the offbeatness

measure to show such deviant correlation compared to the more tame data set (with respect
to pulses) of the African Timelines. Thus, normalization may be useful.

Lastly, consider the third set of outlier pairs from the comparison of the African Time-

lines to the North Indian Decitalas. The most notable aspect of the complexity measures
contained in the outlier pairs is that they represent the top performers in the previous sec-
tion pertaining to human-based complexity, which generally attained similar performance;
i.e., they generally cluster together. Looking at Figure 6.13(a) using the African Timelines

data, we can see that fitch, keith, lhl, metricalonorm, pressing, and wnbd cluster together
in the middle of the tree. On the other hand, Figure 6.15(b) shows quite the opposite. The
previous cluster of all seven measures now splits into two separate clusters: the first clus-
ter consists of keith, pressing, and wnbd, whereas the second cluster consists of fitch, lhl,

metricalonorm, and smith. Again, the reason for this behavior is perhaps due to the na-
ture of the North Indian Talas. For this data the mean number of pulses is 13.357 with a
standard deviation of 2.373. While this is not as dramatic as previously discussed, perhaps
normalization for the number of pulses would make the results more consistent.

As a remark, a subtle difference seen between the two trees is the performance of met-

ricalonorm, which implicitly is normalized for pulses and onsets. In the tree for the African
Timelines, this measure is highly correlated to the lhl-type measures. In the tree for the
North Indian Talas, the metricalonorm is still close to the lhl-type measures, but does re-
side further away; in fact the measure resides in its own sub-cluster with ioi-l-mm and ioi-

l-h; two measures which also have implicit normalization for both pulses and onsets. The
main conclusions, which may be drawn from comparing the performance of the complexity
measures to data from different cultures is as follows.

1. Normalized complexity measures show a more symmetric distribution of complexity
values across different cultural data as seen by the Metrical Complexity (Pulse and
Onset Normalized) measure.

2. Even the top performing measures previously shown in the discussion of human com-
plexity may benefit from a form of normalization to the number of pulses and perhaps
even onsets.

3. The measures which have an implicit normalization are drawn closer together when
the number of pulses is varied in the data.

7.3 Random Complexity
Robustness of the complexity measures was previously tested using cultural data of

Africa and India. Here, random data is used to validate the tests between the cultures. The
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random data is composed of two data sets: the first is a set of random rhythms with 12 pulses
and the second is a set of random rhythms with 16 pulses. In the following sections, first the
random rhythms with 12 pulses are compared to the random rhythms of 16 pulses. Second,
the combined set of random rhythms including those with 12 or 16 pulses are compared
to each cultural data set: the African Timelines, the Indian Decitalas, and the North Indian
Talas.
7.3.1 Random vs. Random Robustness

Similar to the comparison of the cultural data with 12 pulses to that of 16 pulses, the
results from using random rhythms are discussed here. Consider Table 7.4 which lists the
outlier pairs from the results of the comparison between the random rhythms with 12 pulses
compared to those with 16 pulses. The left column contains those complexity measures that
when paired to each measure on the right, constitute an outlier.

Table 7.4: Complexity measures which are considered unstable comparing the ran-
dom rhythms with 12 pulses to random rhythms with 16 pulses

Data Set Complexity Measure Pair

Random rhythms
dswap4 dswap, pressing, metricalonorm, metricalonormeuler, met-

ricalponorm, wnbd
ioi-l-h ioi-g-h, ioi-g-mm
wnbd2 fitch, keith, lhl, metricalonorm, metricalonormeuler, met-

ricalponorm, metricalponormeuler, offbeatness, pressing,
smith, wnbd

In Table 7.4, we see that dswap4 and wnbd2 are common among the outlier pairs. These
results are quite similar to those from the comparison of African Timelines with 12 pulses
to the Timelines with 16 pulses. However, here we also see that ioi-l-h is present in the out-
lier pairs. Going back to the phylogenetic trees in Figure 6.17, we can observe the changes
in clustering regarding the complexity measures listed in the outlier pairs. First consider
dswap4. In the random rhythms with 12 pulses (see Figure 6.17(a)), dswap4 resides at
the very bottom of the tree while the measures dswap, pressing, metricalonorm, met-

ricalonormeuler, metricalponorm, and wnbd, are generally clustered in the upper half of the
tree. For the random rhythms with 16 pulses (shown in Figure 6.17(b)), dswap4 is located
much closer to the cluster of the measures pressing, metricalonorm, metricalonormeuler,

metricalponorm, and wnbd, near the center of the tree, and is tightly clustered to the dswap

measure.
The wnbd2 measure presents a similar scenario to that of the dswap4. However, in

the tree for the random rhythms with 16 pulses, wnbd2 is in fact inside the cluster com-
posed of measures fitch, keith, lhl, metricalonorm, metricalonormeuler, metricalponorm,

metricalponormeuler, offbeatness, pressing, smith, and wnbd, where it resides rather distant
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from that same grouping of measures in the tree for the random rhythms with 12 pulses.
Additionally, the random rhythm comparison results yield that ioi-l-h has significant change
in correlation to ioi-g-h and ioi-g-mm. In fact, the trees in Figure 6.17 show that ioi-l-h is
on the opposite side of the tree compared to ioi-g-h and ioi-g-mm (for the random rhythms
of 16 pulses), but resides much closer in the main lower branch for the random rhythms of
12 pulses.

These findings support the previous conclusions that wnbd may benefit from a priori
knowledge of which metrical divisions should be taken into account, as would the dswap

measure. Additionally, it seems that the rhythms with 12 pulses admit higher correlation
between local interonset interval histogram entropy measurements and global interonset
interval histogram entropy measurements, as seen with ioi-l-h. Thus, we have the following
conclusions.

1. The random rhythm comparison validates the intra-cultural comparison by showing
that dswap4 and wnbd2 may not be appropriate divisions of the metrical structure for
rhythms with 12 pulses.

2. Local IOI measures are more similar to global IOI measures when computing the
entropy on the respective histograms from rhythms with 12 pulses compared to 16.

7.3.2 Random vs. Cultural Robustness
The random rhythms were compared to each of the cultural data sets to validate the

performance of the measures. The goal was to test for those measures which acted unsta-
bly between each comparison. The random rhythm set is controlled to have a symmetric
distribution of onsets. To visualize this, consider the following boxplot of the distribution
of onsets for the combined data set of the random rhythms with 12 or 16 pulses, shown in
Figure 7.7.

Figure 7.7 shows that the distribution for the onsets of the random rhythm is very sym-
metric and is quite ideal. Compared to the distributions of the number of onsets in the
rhythms from the different cultures, the random rhythm distribution is quite different. This
suggests that the random data sets are unrealistic in terms of rhythms that are actually
found in different cultures, such as African or Indian. Thus, one may ask the question: Do

we want stable performance of complexity measures using an artificial, unrealistic data set,

compared to realistic data sets from different cultures? The answer is probably not.
Ideally, a rhythm complexity measure should accurately and robustly measure the com-

plexity of rhythms created by humans, not those rhythms which have no human signifi-
cance; i.e., are not found in any culture. The random rhythms here are not found in any of
the cultural data sets used in this thesis, and so they are most likely not significant patterns
according to humans. Therefore, we discuss the results of the performance of the complex-
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Figure 7.7: Boxplot of the distribution of onsets from all the rhythms in the sets of
random rhythms with 12 or 16 pulses, African Timelines with 12 or 16 pulses, Indian
Decitalas, and North Indian Talas.

ity measures on random rhythms compared to African and Indian rhythms, where we desire
the measures to be unstable (outliers), indicating that perhaps such measures are more ap-
plicable to cultural data. Table 7.5, presents the outlier pairs from each comparison of the
random rhythms to: African Timelines, Indian Decitalas, and North Indian Talas. Each set
of outliers is separated by a horizontal line.

Table 7.5: Complexity measures which are considered unstable comparing the ran-
dom rhythms to the African Timelines, the Indian Decitalas below the first horizontal
separator, and the North Indian Talas below the second horizontal separator.

Data Set Complexity Measure Pair

African Timelines

hk ioi-g-h, ioi-g-mm, offbeatness
hrun ceps, ioi-l-h, ioi-l-mm, ioi-l-sd
ioi-g-h hk, lz
ioi-g-mm hk, lz
ioi-g-sd lz, tmuavg, tmumax
ioi-l-sd hrun, lz
lz hrun, ioi-g-h, ioi-g-mm, ioi-g-sd, ioi-l-sd
oddity pressing, tmavg, tmmax

Indian Decitalas offbeatness dswap, fitch, hk, hrun, metricalponorm, tmuavg, tmumax

North Indian Talas
metricalonorm keith, pressing, wnbd
wnbd fitch, lhl, metricalonorm, smith

A large number of different outlier pairs are listed in Table 7.5. Those which stand out
are ioi-g-h, ioi-g-mm, ioi-g-sd, ioi-l-sd, and oddity. This suggests that perhaps complexity
measures which depend on interonset intervals, and the rhythmic oddity property of the
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Aka Pigmies, are more appropriate for studying rhythms of Africa, since they act as outliers
between random and African rhythms.

The second set of outlier pairs yields familiar results. That is, offbeatness acts as an
outlier regarding the Indian Decitalas. We previously concluded that high variance of the
number of pulses in the Decitalas causes such a dramatic change for rhythms between
different cultures. However, since the Off-Beatness measure is an outlier here, perhaps the
measure may explain underlying mathematical properties inherent to Indian Decitalas.

In the third set of outlier pairs, we see a result similar to the African Timelines com-
pared to the North Indian Talas. For the random rhythms, the measures that have correlated
well with the human-based complexities are again shown to be outliers. Previously we
concluded that for these measures to attain more robust behavior between cultures, normal-
ization may be appropriate. Here, the results suggest that the type of normalization should
be carefully chosen, as the measures may be useful for measuring the complexity of North
Indian Talas.

From the discussion of the comparisons involving the random rhythm data set, we can
make the following conclusions.

1. The measures which depend on interonset intervals or the rhythmic oddity property
may be more appropriate for studying African derived rhythms.

2. The Off-Beatness measure shows drastic performance changes with random rhythms.
This further supports the notion of normalization, but suggests that the measure may
be appropriate for measuring the complexity of Indian Decitalas.

3. Measures which perform well compared with human-based measures are shown as
outliers comparing random rhythms to North Indian Talas. This suggests that while
normalization may be important, so is the type of normalization since the measures
may retain properties appropriate for measuring the complexity of North Indian Talas.

7.4 Concluding Remarks
In the above discussion, we drew conclusions regarding human-based performance

complexity, human-based perceptual complexity, and human-based metrical complexity.
The most noteworthy result, is that of the 55 measures of rhythm complexity tested here,
over half of them correlated well (r∗s > 0.500) with the human-based measure of metrical
complexity. This surprising result points to the type of rhythmic complexity the algorithms
are most accurately measuring and thus, suggests two open problems.

Open Problem 1. Design a complexity measure for rhythm performance complexity.

Open Problem 2. Design a complexity measure for rhythm perceptual complexity.
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Regarding rhythm performance complexity, the findings from the comparison of the
complexity measures to human-based performance Complexity suggest that using the met-
rical hierarchy of Lerdahl and Jackendoff [99] with an alternate weighting scheme (such as
that from Palmer and Krumhansl’s work [114]) may yield the more accurate results. This is
taking into consideration that the data will not be as controlled (i.e., artificial) as that used
in Shmulevich and Povel’s study [146]. Moreover, as a consequence of Fitch and Rosen-
feld’s work [57], the metrical hierarchy may not be the only technique needed to accurately
measure performance complexity; i.e., using the information from the interonset interval
histogram as seen from Toussaint [172, 173], and also incorporating the notion of musical
elaboration from Tanguiane [157], may yield improved results.

As for rhythm perceptual complexity, the findings from the comparison of the complex-
ity measures to human-based perceptual complexity suggest that the metrical hierarchy may
also yield accurate results. However, since the nature of the data was not quite adequate to
solidify the findings of the best weighting scheme to use for the hierarchy, improvements
may possibly be found by using a scheme from Palmer and Krumhansl [114] or even Euler’s
scheme from Gonzalez [69]. Moreover, perhaps the Rhythmic Oddity property [4], which
was then generalized to a rhythm complexity measure by Toussaint [169], may be useful
in measuring perceptual complexity. However, more psychological validation is necessary,
which in fact points to an open problem in the psychological domain.

Open Problem 3. Design a psychological experiment for measuring human-based perfor-

mance and perceptual complexity using realistic rhythm data.

In addition to the design of new algorithms, improvements on current ones may also
be made in an attempt to more accurately measure the general notion of complexity. Es-
pecially, when using realistic rhythm data; i.e, rhythms representative of different cultures.
From the comparisons of the performance of the complexity measures on such data, it is
clear that there exists a gap when handling the inherent complexities of such realistic data;
e.g., a different number of pulses.

By making comparisons among the African Timelines, Indian Decitalas, and the random
rhythms, the results suggest a need for a way to appropriately normalize. Moreover, the
need for a generalization and improvement of certain measures was discussed. One example
of a measure which would benefit from generalization is Keith’s Complexity measure, as it
is only appropriate for rhythms where the number of pulses is a power of two.

Another example for improving an algorithm may be to use a less-strict scheme for the
Off-Beatness measure. For example, instead of strictly labeling each pulse as on-beat or off-

beat, perhaps a pulse can be off-the-beat by some weight, where the lowest weight would
constitute being on-the-beat. One way to accomplish this would be that upon inscription
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of the polygons which evenly sub-divide the number of pulses, one can keep track of the
number of vertices which touch a pulse. Since all polygons are inscribed starting at the
zeroth pulse, that pulse would have the lowest off-beat weight. However, in the case of 16
pulses, pulse three has a vertex from a square and an octagon, so that pulse would have a
higher off-beat weight. Using this weighting scheme may improve the measure by giving
a larger spread to the range of complexity values. The WNBD measure and the Directed
Swap measure may also benefit from extracting more information about the rhythms being
measured. This would allow for a more robust beat-detection, which may improve results.

Specific to the random rhythm and cultural data results, the type of normalization is
also a large concern. Since measures like Rhythmic Oddity, the IOI-based measures, the
Off-Beatness measure, and those which correlate well with human-based judgements are
shown to be outliers regarding random versus cultural data sets, there may be useful prop-
erties we would like to preserve in the measures, and not loose when applying a form of
normalization. Therefore, there is a necessity for the study of a larger open problem.

Open Problem 4. Design a method for the appropriate normalization of rhythm complexity

values when there are few constraints on the rhythm input; i.e., the number of pulses and/or

onsets may be varied.

In conclusion, each open problem presented is the future work of this thesis, as is the
continued validation of newly discovered rhythm complexity measures. Current techniques
have been analyzed for improvements and a general short-coming has been posed in terms
of an open problem. Once such problems have been solved, and appropriate algorithms
for the complexity of musical rhythm have been discovered, then perhaps one final open
problem may be studied.

Open Problem 5. Which culture has the most complex musical rhythms?

Such a problem suggests that the complexity of musical rhythm requires careful study.
This thesis has explored a variety of ways in which the complexity of musical rhythm can
be measured. It is the hope that such methods seen here may be refined to handle some of
the problems encountered with realistic rhythm data, and then incorporated into computer-
based tools for studying rhythm. Such tools are present in the field of Music Information
Retrieval as feature extraction tools. This thesis is not alone in considering complexity to
be a feature of music, and so this lends itself well to the MIR domain. Perhaps if rhythm
complexity is incorporated into MIR tools, then those in the field of computational ethno-
musicology and musicology alike may find such computer assistance beneficial in analyzing
the complexity of musical rhythm, and maybe one day determine the open problem posed
here of which culture has the most complex musical rhythms.
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[40] J. M. Dı́az-Báñez, G. Farigu, F. Gómez, D. Rappaport, and G. T. Toussaint. El

compás flamenco: A phylogenetic analysis. In BRIDGES: Mathematical Connec-
tions in Art, Music and Science, Jul 2004.

[41] E. J. Dietz. Permutation tests for association between two distance matrices. Sys-
tematic Zoology, 32(1):21–26, 1983.

[42] J. S. Downie. The scientific evaluation of music information retrieval systems: foun-
dations and future. Computer Music Journal, 28(2):12–23, Summer 2004.

[43] A. Dress, D. Huson, and V. Moulton. Analyzing and visualizing sequence and dis-
tance data using SplitsTree. Discrete Applied Mathematics, 71:95–109, 1996.

[44] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, Second Edition.
Wiley-Interscience, 2000.

[45] A. W. F. Edwards and L. L. Cavalli-Sforza. The reconstruction of evolution, vol-
ume 6, pages 67–76. Systematics Assoc. Publ., 1964.

[46] A. W. F. Edwards and L. L. Cavalli-Sforza. A method for cluster analysis. Biomet-
rics, 21:362–375, 1965.

[47] T. Eeerola, T. Himberg, P. Toivainen, and J. Louhivouri. Perceived complexity of
western and African folk melodies by western and African listeners. Pscyhology of
Music, 34(3):337–371, 2006.

[48] P. Essens. Structuring temporal sequences: Comparison of models and factors of
complexity. Perception and Psychophysics, 57(4):519–532, 1995.

[49] B. S. Everitt, S. Landau, and M. Leese. Cluster Analysis, Fourth Edition. Oxford
University Press, Inc., 2001.

[50] J. Felsenstein. Maximum likelihood and minimum-steps methods for estimating
evolutionary trees from data on discrete characters. Systematic Zoology, 22(3):240–
249, Sep 1973.

[51] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood
approach. Journal of Molecular Evolution, 17:368–376, 1981.

[52] J. Felsenstein. Phylogeny programs. http://evolution.genetics.washington.edu/
phylip/software.html, 2008.

[53] R. Fiebrink and I. Fujinaga. Feature selection pitfalls and music classification. In
Proceedings of the International Conference on Music Information Retrieval, pages
340–340, 2006.

[54] W. M. Fitch and E. Margoliash. Construction of phylogenetic trees. Science, New
Series, 155(3760):279–284, Jan 1967.

[55] W. T. Fitch. Personal communication, 2007.

135



[56] W. T. Fitch and A. Rosenfeld. Implementation of the Longuet-Higgins and Lee algo-
rithm in Python. http://www.st-andrews.ac.uk/∼wtsf/rhythmFiles/SyncopationIndex.
py, 2007.

[57] W. T. Fitch and A. J. Rosenfeld. Perception and production of syncopated rhythms.
Music Perception, 25(1):43–58, 2007.

[58] A. Forte. The domain and relations of set-complex theory. Journal of Music Theory,
9(1):173–180, Spring 1965.

[59] Free Software Foundation. GCC, the GNU compiler collection. http://gcc.gnu.org/,
2007.

[60] M. Friedman. The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association, 32(200):675–
701, Dec 1937.

[61] M. Friedman. The use of ranks to avoid the assumption of normality implicit in the
analysis of variance (a correction). Journal of the American Statistical Association,
34(205):109, Mar 1939.

[62] I. Fujinaga and D. McEnnis. On-demand metadata extraction network (OMEN). In
Proceedings of the Joint Conference on Digital Libraries, pages 346–346, 2006.

[63] I. Fujinaga, S. Moore, and D. S. Sullivan. Implementation of exemplar-based learn-
ing model for music cognition. In S. W. Yi, editor, Music, Mind, and Science, pages
69–81. Seoul National University Press, 1999.

[64] W. R. Garner. Uncertainty and Structure as Psychological Concepts. John Wiley &
Sons, Inc., 1962.

[65] O. Gascuel. BIONJ: an improved version of the NJ algorithm based on a simple
model of sequence data. Molecular Biology and Evolution, 14(7):685–695, 1997.

[66] Gentoo Linux Foundation, Inc. Gentoo Linux. http://www.gentoo.org/, 2008.
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