
- 17 -

 CHAPTER 3

SMOOTHING

Godfried Toussaint

ABSTRACT

This chapter introduces the basic ideas behind smoothing images. We begin with

regularization of one dimensional functions. For two dimensional images we con-

sider four widely used methods: spatial averaging, median filtering, logical smooth-

ing and hysteresis smoothing. Finally, we consider methods for smoothing and ap-

proximating the boundaries of shapes represented as simple polygons.

1. Regularization

Let g(x) be a single-valued one dimensional function. It could be some function of the hu-

man voice during speech or the elevation of crops above the ground as a function of distance trav-

elled by a truck driving by with scanning equipment and so on. We are interested in smoothing g(x),

i.e., removing the noise or kinks from it. If the original g(x) looks something like the curve in Fig.

1.1 (a) we would like to obtain something like that illustrated in Fig. 1.1 (b). Let us call the

smoothed curve gw(x). Mathematically we can define gw(x) as follows:

gw(x) = 1/w ! g(u)du

where integration is carried out from u = x - w/2 to u = x + w/2. This is known as regularization.

There are many interesting properties of regularized curves. For example:

(1) if g(x) is discontinuous then gw(x) is continuous.

(2) if g(x) is continuous then g’w(x) is continuous, where g’w(x) denotes the first derivative

of g(x).

In the above equation, w is a smoothing parameter that must be “tuned” so as to give “good”

results for the application at hand. If w is too large the entire function will be turned to a flat line,

the average value of the entire data! If w is too small no change will result.

2. Spatial Smoothing

The following experiment readily performed by anyone illustrates clearly the idea behind

spatial smoothing. From a piece of paper cut out a pattern such as a letter. Now make all manner

of “random” incisions along the boundary of the pattern to make the boundary quite jagged. Next,

place the pattern on an overhead projector and observe the screen as you progressively blur the im-

age by adjusting the focus control. The jagged edges will disappear and the original smooth pattern

will appear instead. This process of blurring an image is smoothing. Mathematically we can define

- 18 -

it in a manner analogous to the definition of one dimensional regularization

Let g(x,y) be a single-valued two dimensional function. Typically g(x,y) is a light intensity

function across the field of vision. Let gw(x,y) denote the regularized version of g(x,y) given by:

gw(x,y) = (Aw)-1 ! ! g(u,v) du dv

where integration is carried out over w(x,y), a window of area Aw centered at (x,y). In other words

at each point (x,y) we are substituting the intensity value g(x,y) by the value gw(x,y) which is an

average over a small neighborhood around (x,y).

In the case of a digital image the value of a pixel is usually substituted by the average value

of the values of the pixel itself and its eight neighbors. Larger neighborhoods can obviously be used

and neither do the neighborhoods have to have a square shape. However, it has been observed fre-

quently in practice that a 3x3 neighborhood is sufficient to give good results in many situations.

For example, consider the digital binary pattern in Fig. 2.1 (a) where the black and white pixels

have values one and zero, respectively. First each pixel in the new smoothed pattern is computed

as the sum of its own value and the values of its 8-neighbors. Dividing each pixel value by 9 would

give the result. However, absolute values are not important at intermediate stages here since we

have to quantize all the resulting values into zeros and ones again to obtain our output binary pic-

ture. As a quantization rule we use the following: if the grey level value of the pixel is 3 or greater

make it a one, otherwise make it a zero. Applying this rule to the pattern of Fig. 2.1 (a) yields the

pattern in Fig. 2.1 (b). Note that the ends of the cross have been cut off somewhat and the concave

corners have been partially filled in. For additional discussion see [DH73].

3. Median Filtering

Often in image processing, when we have as an input a picture with a given set of integers

representing the grey level intensities of the pixels (such as the 0,1 image of Fig. 2.1 (a), we com-

pute some function that gives output pixel values that fall above, below or in between the input

grey level values necessitating the quantization illustrated in the previous section. We can often do

away with this quantization stage by appropriately modifying the function we compute. In the case

Fig. 1.1 One dimensional regularization.

(a) Original waveform (b) Smoothed waveform

x

g(x)

x

g
w
(x)

- 19 -

of averaging, instead of computing the arithmetic average of the pixel values in a neighborhood,

we compute the median value [Se82]. This will automatically give a value among those available

in the input picture. This is called median filtering. If you apply median filtering to the image of

Fig. 2.1 (a) you will obtain the pattern in Fig. 3.1 since a pixel will become a one (or zero) if at

least 5 of the 9 pixels involved have a value of one (or zero). Many variations of this idea, for exam-

ple weighted median filters [Br84], exist for both binary and grey-level pictures. For a comparative

study of the latest techniques the reader is referred to [AII90].

4. Logical Smoothing

In logical smoothing the pixels appearing within the averaging window are treated as Bool-

ean variables and the value of the smoothed picture function at a point is defined by a Boolean

function of those variables. Therefore with this technique we can be very specific as to the descrip-

tion of unwanted (or wanted for that matter) patterns for removal. For example, in salt-and-pepper

noise we want to flip the value from one to zero and vice-versa of isolated pixels, i.e., pixels with

a value of one completely surrounded by pixels of value zero and vice-versa. If we choose a 3x3

window operator to effect this smoother then the following algorithm will do the job. Let the pixels

be labelled according to the convention illustrated in Fig. 4.1. Then, for each pixel e in the original

image change its value from zero to one if all its 8-neighbors are one and change its value from one

to zero if all its 8-neighbors are zero. Let e’ denote the smoothed pixel. We can express this oper-

Fig. 2.1 Two dimensional averaging.

(a) Original pattern (b) Smoothed pattern

- 20 -

ation by the following Boolean expression:

e’ = (~e) " (a " b " c " d " f " g " h " i) #

e " (a # b # c # d # f # g # h # i)

where ~, " and # denote the Boolean operators not, and as well as or, respectively.

5. Polygonal Smoothing and Approximation

5.1 Midpoint Smoothing

In Chapter 1 we saw a surprisingly simple algorithm for smoothing polygons: the mid-point

algorithm. The mid-point algorithm creates a new polygon by successively joining the mid points

of the edges of the old polygon in the order in which they appear. This operation when performed

a sufficient number of times yields a progressively smoother polygon. If the polygon has n vertices

and the procedure is run k times the algorithm clearly takes O(nk) time and is trivial to program. In

situations where this algorithm is appropriate k may be a small constant and hence the algorithm

would be quite efficient in practice. However, in many applications where the “noisy” portions of

the polygons that must be cut off are significantly larger than the average edge length of the poly-

gon the mid-point algorithm may not be satisfactory. Furthermore, in many applications it is desir-

able not only to perform smoothing but also data reduction. In other words the smoothed polygonal

curve should have fewer vertices than the original curve. Since the mid-point algorithm yields

smoothed curves that contain exactly the same number of vertices as the original curves, it is com-

pletely useless for this purpose. We close discussion on this algorithm by mentioning that the mid-

point algorithm has implications other than practical. Indeed, mathematicians have been interested

in studying some surprising properties of these smoothed polygons [KC36]. In the following sec-

Fig. 3.1 Median filtered image of

pattern in Fig. 2.1 (a).

Fig. 4.1 A 3x3 window operator used

in logical smoothing.

a b c

d e f

g h i

- 21 -

tions we consider algorithms that smooth and perform data reduction.

5.2 Hysteresis Smoothing

In this section we describe an elegant, widely applicable and practical method for smooth-

ing polygonal waveforms that also performs data reduction as a by-product and was first intro-

duced into the field of pattern recognition by J. K. Clemens at M.I.T. in 1965 [Cl65] in the context

of designing a reading machine for the blind that could handle different machine typed fonts. It is

called hysteresis smoothing.

Before explaining the algorithm for polygonal curves it is instructive to consider how hys-

teresis smoothing is done mechanically with gears. Assume that we want to transfer rotational mo-

tion from one location in a machine to another via connecting rods. We have a rod a that receives

“signals” in the form of successive clockwise and counter-clockwise rotations and we would like

to transfer these motions to another rod b. However, we want to ensure that only significant rota-

tions are transferred. In other words small perturbations in rotations due to vibrations in the ma-

chine and other “noise” should not be transferred to rod b, they should be “filtered-out” or

smoothed away. How do we connect the two rods to accomplish this task? The answer is simple

and illustrated in Fig. 5.1. R1 is a rod connected to sprocket a of the upper sprocket-wheel-chain

system. R2 is a rod connected to sprocket b of the lower sprocket-wheel-chain system. Both chains

have “teeth” sticking outwards with a suitable gap between each pair of consecutive teeth. This gap

is the smoothing tolerance parameter. If R1 rotates by a suitably small amount the teeth of the upper

sprocket-wheel-chain system do not engage the teeth of the lower sprocket-wheel-chain system

and R2 does not respond. On the other hand, if R1 is rotated, say in a clockwise direction, by a suf-

ficiently large amount the teeth will engage and a resulting counter-clockwise rotation of R2 will

result.

Consider now how we can interpret hysteresis smoothing of a polygonal curve. According-

ly let P = [p1, p2,..., pn] denote the polygonal chain monotonic in the x direction and refer to Fig.

5.2. First pick a threshold value v, analogous to the gap between the teeth in the sprocket-wheel-

chain system described above, which will determine the amount of smoothing done. Next let T =

[t1, t2,..., tn] denote the polygonal chain monotonic in the x direction which is an exact copy of P

but translated by v/2 in the positive y direction. Similarly, let B = [b1, b2,..., bn] denote the polyg-

onal chain monotonic in the x direction which is an exact copy of P but translated by v/2 in the

a

b

Fig. 5.1 A mechanical-gear implementation of hysteresis smoothing.

R1

R2

- 22 -

negative y direction. Finally connect the line segments [b1, t1] and [bn, tn] to T and B to form a mo-

notonic polygon TB = [t1, t2,..., tn, bn, bn-1,..., b1]. We may now produce the smoothed waveform

as follows. Arbitrarily choose either t1 or b1 as a starting point, say b1. Now imagine rotating the

polygon by 90 degrees so that b1 is on top and TB is monotonic in the y direction. Also imagine b1

provides a continuous supply of water and trace the path of the resulting waterfall in the “cave” TB.

The path of the waterfall is precisely the resulting hysteresis-smoothed waveform. It is not diffi-

cult to design an O(n) time algorithm for computing the waterfall path of a monotone polygon.

Hysteresis smoothing is an efficient algorithm for smoothing monotone polygons and it is

both conceptually simple and easy to program. However it has its limitations. For arbitrarily

shaped polygons non-trivial modifications would have to be made. More seriously, if data reduc-

tion is very important hysteresis smoothing may not yield satisfactory results. Note that whenever

the smoothed curve proceeds horizontally from a point x on the upper (lower) curve to a point y on

the lower (upper) curve, it does so in one single line segment. Therefore all vertices of the original

curve that lie between x and y are discarded. Although this holds for all horizontal segments in the

final smoothed curve there are many other portions of this curve which are identical copies of por-

tions of the upper and lower curves and therefore may contain many vertices. Clearly hysteresis

smoothing does not embody data reduction as its primary goal. In the next section we consider the

problem of data reduction as a primary goal.

5.3 Polygonal Approximation

The polygonal approximation problem is concerned with receiving as input a simple poly-

gon or a polygonal chain P such as that obtained from a waveform consisting of n vertices, where

n is usually very large, and obtaining a new polygon or polygonal chain P’ that has m vertices such

that m is much smaller than n and yet P’ is a “good” approximation of P. The polygonal approxi-

Original Waveform

Monotone Polygon

Smoothed Waveform

p
1

p
n

t
1

t
n

b
1

b
n

Fig. 5.2 Hysteresis smoothing produces the “water-fall” path.

- 23 -

mation problem in itself does not have smoothing as an explicit goal. However, most algorithms

end up smoothing as a by-product and in some cases smoothing is actually explicitly incorporated

[BB82], [Pa82].

5.3.1 Iterative end-points fit

We will describe in this section an elegant and simple algorithm favored by image proces-

sors [DH73] and cartographers [DP73], [Mc87]. The algorithm is called iterative end-points fit by

Duda and Hart [DH73] but was independently discovered by Ramer [Ra72] in an image processing

context and Douglas and Peucker [DP73] in a geographic information systems context and so it is

often referred to in the literature as Ramer’s algorithm or the Douglas-Peucker algorithm. We will

refer to it as the Ramer-Douglas-Peucker algorithm.

Consider the polygonal curve P = [p1, p2,..., pn] and refer to Fig. 5.3. An error tolerance w

is pre-specified which determines the amount of deviation we are willing to allow between the

original curve and the approximation. The algorithm proceeds in a greedy fashion. First it tries to

use only one segment [p1, pn]. A line L(p1, pn) is drawn through p1 and pn. The vertex of P whose

perpendicular distance to L(p1, pn) is greatest is determined. Let this vertex be k1 and the corre-

sponding distance be d1. If this distance is less than the error tolerance w we are finished. If not

then we try approximating p with a curve of two segments by splitting the segment that failed the

tolerance test at the furthest vertex, in this case k1. We therefore obtain a candidate approximation

P’ = [p1, k1, pn]. We test [p1, k1] against [p1, p2,..., k1] for the error tolerance and discover it passes.

We therefore abandon this portion of the curve and test [k1, pn] against [k1,..., pn] for the error tol-

erance of k2. We discover that d2 is greater than w and we split [k1,..., pn] into two curves at k2. We

continue recursively in this way until each piece satisfies the error tolerance. In our example in Fig.

Original Waveform

Smoothed Waveform

p
1

p
n

Fig. 5.3 Illustrating the Ramer-Douglas-Peucker algorithm.

Error tolerance w k
1

k
2

d
1

d
2

- 24 -

5.3 the split at k2 is the last split and the final approximating curve P’ = [p1, k1, k2, pn] contains

only three segments.

One interesting question that arizes concerning this algorithm is its time complexity in the

worst case. It is not difficult to create examples of polygonal curves for which this a straight for-

ward implementation of this algorithm runs in O(n2) time. However, with clever techniques from

computational geometry one can reduce this complexity to O(n log n) time [HS92].

6. References

[AII90] Asano, A., Itoh, K. and Ichioka, Y., “The nearest neighbor median filter: Some deter-

ministic properties and implementations,” Pattern Recognition, vol. 23, No. 10, 1990,

pp. 1059-1066.

[BB82] Ballard, D. H. and Brown, C. M., Computer Vision, Prentice-Hall, Inc., 1982.

[Br84] Brownrigg, D. R. K., “The weighted median filter,” Communications of the ACM, vol.

27, 1984, p. 807.

[Cl65] Clemens, J. K., “Optical character recognition for reading machine applications,” Ph.D.

thesis, Dept. Elec. Eng., M.I.T., August 1965.

[DH73] Duda, R. O. and Hart, P. E., Pattern Classification and Scene Analysis, John Wiley &

Sons, 1973.

[DP73] Douglas, D. H. and Peucker, T. K., “Algorithms for the reduction of the number of

points required to represent a digitized line or its caricature,” The Canadian Cartogra-

pher, vol. 10, No. 2, December 1973, pp. 112-122.

[HS92] Hershberger, J. and Snoeyink, J., “Speeding up the Douglas-Peucker line-simplifica-

tion algorithm,” Tech. Rept. 92-7, Department of Computer Science, University of

British Columbia, Vancouver, April 1992.

[KC36] Kasnr, E. and Comenetz, G., “Groups of multi-point transformations with applications

to polygons,” Scripta Mathematica, vol. 4, January 1936, pp. 37-49.

[Mc87] McMaster, R. B., “Automated line generalization,” Cartographica, vol. 24, No. 2,

1987, pp. 74-111.

[Pa82] Pavlidis, T., Algorithms for Graphics and Image Processing, Computer Science Press,

1982.

[Ra72] Ramer, U., “An iterative procedure for the polygonal approximation of plane curves,”

Computer Graphics and Image Processing, vol. 1, 1972, pp. 244-256.

[Se82] Serra, J., Image Analysis and Mathematical Morphology, Academic Press, 1982.

