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CHAPTER 1

INTRODUCTION TO PATTERN RECOGNITION

Godfried Toussaint

ABSTRACT

This chapter introduces the basic building blocks of a typical pattern recognition

system. The emphasis is on application-independent concepts rather than real in-

dustrial problems. These concepts will be treated in greater depth later in the course.

1. The Structure of a Pattern Recognition System

1.1 Automatic Recognition of Patterns

If I write one of the letters of the alphabet in a reasonably neat manner on a piece of card-

board, show it to you and ask you which letter it is you no doubt have no trouble at all in solving

this seemingly simple problem, i.e., in identifying the letter. The problem of pattern recognition by

machines is the same except that now I would like to place the cardboard in front of a camera con-

nected to my computer and I would like the computer to identify the letter, hopefully, with as much

success as you enjoy. It turns out that for a computer this task is much more difficult than appears

at first glance. We will try to shed some light on this problem and the techniques that have been

brought to bear on its attempted solution. It is instructive to divide into several intermediate stages,

the process of starting with a pattern in the physical world and ending with a decision of class-

membership of that pattern. It is instructive consider each of these stages separately in the spirit

often used when one encounters a difficult problem: divide & conquer. It is also useful to attempt

to solve each sub-problem optimally. However, we must remember that ultimately all the solutions

of these sub-problems must be woven back together again and the optimality of the entire system

is only as optimal as the weakest link in the chain.

A frequently found and rather detailed decomposition of the pattern recognition problem

(or also computer vision problem) into a series of subproblems is illustrated in Fig. 0. The purpose

of a pattern recognition program is to analyze a scene in the real world with the aid of an input de-

vice which is usually some form of transducer such as a digital camera and to arrive at a description

of the scene which is useful for the accomplishment of some task. For example, the scene may con-

sist of an envelope in the post office, the description may consist of a series of numbers supposedly

accurately identifying the zip code on the envelope, and the task may be the sorting of the enve-

lopes by geographical region for subsequent distribution. Typically the camera yields a two-dimen-

sional array of numbers each representing the quantized amount of light or brightness of the real

world scene at a particular location in the field of view. The first computational stage in the process

consists of segmenting the image into meaningful objects. The next stage usually involves process-

ing the objects to remove noise of one form or another. The third stage consists of feature extraction

or measuring the “shape” of the objects. The final stage is concerned with classifying the object

into one or more categories on which some subsequent task depends. Let us consider some of these
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sub-problems in more detail.

1.2 Transducers

A transducer converts an energy pattern from the “real” physical world, such as a light-

intensity pattern, into a “Platonic” digital pattern in the computer. This digital pattern we call a dig-

ital image. It consists usually of a square array or matrix of numbers. Each element or cell in the

array of a digital picture is called a pixel (a word derived from picture element) and the number

associated with a pixel represents the light intensity at that location in the picture. The simplest pat-

tern recognition problem, if it even merits the name, is to decide if a small region of interest in the

field of vision is either black or white. Consider for example a machine that examines question-

naires. Questionnaires typically have little square boxes that have to be filled in with a black pencil

if appropriate. For example a portion of the questionnaire may have the typed words FEMALE and

MALE each followed by a small square. In this case one of the two boxes should be filled in black

pencil and the other should be left white (blank). An appropriate transducer for this simple problem

would be a single photo-electric cell located at the center of the square. A photo-electric cell, or

photocell for short, converts light to electricity: the more light that is sensed by the photocell’s

input, the higher the voltage that will be produced at the photocell’s output. The photocell will be

sensitive to light in some region around its center. Let us assume that this region is a disc contained

in the square of interest as illustrated in Fig. 1 (a) and that the photocell output voltage has been

calibrated so that if the entire circle is perfectly black (there is no light) the output is zero volts

whereas if the entire circle is completely white the output voltage is one volt. Then we can attach

a quantizer at the output so that for any value of voltage V in between zero and one, the output will

be ONE if V ! 0.5 and ZERO if V ! 0.5. Thus if approximately at least half of the area of the cir-

cular region is completely black then the output of the photocell will read ZERO.

Given a much larger and complicated pattern of light in the real world there are many pos-

Fig. 0   Decomposing the pattern recognition problem into sub-problems.
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sible ways of designing transducers using the basic single photocell. For example, the cell could

be moved around quickly to different locations on the pattern and the output voltage sampled at

each location. To keep things simple let us assume that we attach a group of these photocells to-

gether in the form of a two-dimensional array, matrix, or grid as in Fig. 1 (b). With all the cells

calibrated just as before a complicated pattern now becomes an array of ONE’s and ZERO’s, a dig-

ital image.

There are at least two fundamental ways of representing a digital image in a computer and

these are illustrated in Fig. 2. The first method superimposes a square grid graph on the centers of

the photocells. In other words the locations of the photocells correspond to the vertices of the graph

and two vertices of the graph are connected with an edge if their corresponding photocells are ver-

tically or horizontally adjacent to each other. This method is illustrated in Fig. 2 (a) where the ver-

tices of the ZERO output cells are labelled black and the others labelled white. In this representa-

tion a subgraph of the grid graph, shown in bold lines in the figure corresponds to the original pat-

tern. A second method is to superimpose a square tessellation of the area of interest such that the

location of the center of each photocell corresponds to the center of its corresponding square in the

tessellation as illustrated in Fig. 2 (b). In this case a square of the tessellation is labelled black if its

corresponding photocell output is a ZERO. In this representation a subregion of the tessellation

corresponds to the original pattern. In the figure it is illustrated by outlining its boundary in bold

lines. Since most existing systems have not incorporated the grid graph approach, we will be con-

cerned with the second representation. Image processing algorithms that use this representation are

known as pixel-based or raster-graphics methods. In this representation the boundary of a connect-

ed component of the pattern is often conveniently represented as a simple polygon. A long row or

column of pixels is then represented by a single line segment affording the possibility of saving in

subsequent storage and computation time. Therefore algorithms that take as input a simple polygon

are also a central concern of pattern recognition. Algorithms that use this representation are known

Fig. 1   A transducer made up of photocells.
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as geometric or vector-graphics methods.

1.3 Preprocessing

Preprocessing is the name given to a family of procedures for smoothing, enhancing, filter-

ing, cleaning-up and otherwise massaging a digital image so that subsequent algorithms along the

road to final classification can be made simple and more accurate.

For example, it may be the case that the transducer is sensitive to specks of dust in the input

field of vision that cause random changes of pixels from ONE to ZERO and vice-versa yielding

so-called salt-and-pepper noise. A typical noise removal procedure is to change the value of a pixel

from ONE to ZERO if all its neighboring pixels have a value of ZERO. Similarly, a pixel’s value

is changed from ZERO to ONE if all its neighboring pixels have a value of ONE.

As a second example of preprocessing consider smoothing a simple polygon that represents

the boundary of a digital image. It may be the case that the boundary has been distorted by some

process, perhaps the poor writing of a person in the case of hand-printed characters. A possible way

in which to smooth the polygon to reduce this kind of noise is to create a new polygon by joining

the midpoints of all the original polygon’s edges in the same order defined by the polygon. This

procedure can be repeated several times as illustrated in Fig. 3 where it has been applied twice to

obtain the polygon with thick dashed lines. This is a very efficient smoothing procedure. For a

polygon with n sides the algorithm clearly runs in O(kn) time where k is the number of times it is

applied. Of course it is assumed here that only a few iterations are necessary. If k is very large the

algorithm quickly slows down. Several questions immediately arise concerning this algorithm. If

the input polygon is simple (non self-crossing) is the output polygon always guaranteed to be sim-

ple? Given a simple or non-simple polygon as input will the output polygon always be convex in

Fig. 2    Two ways of representing a digital image.

(b) A square tessellation(a) A square grid graph.
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the limit, i.e., as the number of iterations approaches infinity?

1.4 Feature Extraction

Feature extraction is the name given to a family of procedures for measuring the relevant

shape information contained in a pattern so that the task of classifying the pattern is made easy by

a formal procedure.   For example, in character recognition a typical feature might be the height-

to-width ratio of the letter. Such a feature would be useful in differentiating between a W and an I

in some machine fonts such as Times, where the W is much wider than the I. On the other hand this

feature would be quite useless in distinguishing between an E and an F. The task of designing a

feature extractor is one of finding as few features as possible that adequately differentiate the pat-

terns in a particular application into their corresponding pattern classes. There is no theory either

in computer science or psychology to solve this problem optimally. Therefore this is an intuitive

and ad hoc “science.” We close this section with a hypothetical problem where two geometric fea-

tures suffice to solve the problem in a satisfactory manner.

Consider the following problem encountered by ROBY the robot. Let us assume ROBY is

standing at the end of a long conveyor belt on which are arriving, at a steady and humanly exhaust-

ing speed, juicy mangoes from Brazil and ripe oranges from Seville. ROBY’s television-camera-

like eye is pointing down towards the conveyor belt and is busy taking pictures of the advancing

fruit. ROBY is equipped with a mechanical arm and its task is to place the oranges in a box on its

left and the mangoes in a box on its right. ROBY must therefore first classify the objects pictured

in its “retinas” into mangoes or oranges. ROBY’s eyes contain a micro-chip with a standard image-

processing program (such as we will encounter later) that, given a picture of an object, quickly ex-

tracts the object’s boundary, in the form of a polygon and sends the polygon to that part of ROBY’s

“brain” that contains a specialized program for making decisions.

Given a polygon it is very easy for ROBY to determine if it is convex or not. Recall that an

object is convex if for every pair of points x and y contained in the object, the line segment [x,y]

Polygon after applying

the algorithm twice.

Fig. 3 A simple algorithm for

smoothing simple polygons.
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joining x and y is also contained in the object. Convexity would be a perfect measure of shape for

distinguishing between oranges from Seville and Chiquita bananas because oranges are always

convex and bananas never (at least not in Canada although in Fiji one can find short two-inch ba-

nanas which are convex). On the other hand convexity is a useless morphological discrimination

measure for oranges and mangoes because both types of fruit are convex (almost always). Howev-

er, we do know that, although oranges and mangoes are convex, the boundary polygons taken from

the pictures of oranges tend to be circular whereas those from mangoes tend to be oblong. Now,

imagine placing the convex polygon, obtained from the image of either an orange or a mango, be-

tween two parallel lines and slide the parallel lines toward each other until they both just touch the

polygon. In this position measure the separation between these two lines which we call tangent

lines of support. This distance measures the thickness of the convex polygon for that particular

placement of the parallel lines. If we now rotate the polygon slightly in say the clockwise manner

and repeat the above procedure, and continue in this way computing the thickness for all possible

rotated positions of the polygon, two very interesting measures of the shape of the polygon are im-

mediately evident. The maximum thickness obtained over all rotated positions of the polygon is

called the length or diameter of the object whereas the minimum thickness obtained is known as

the width of the object. The width and diameter of a convex polygon are illustrated in Fig. 4. We

know from our experience with mangoes that their length is about twice as large as their width. For

oranges on the other hand length and width are about the same since oranges tend to resemble

spheres quite closely. Therefore we can program a very simple rule in ROBY’s brain as follows.

First compute the length and width of the boundary polygon extracted from the image of the fruit

under consideration. Next divide the length by the width. If this ratio is greater than 1.5 then call

the fruit a mango and put it in the appropriate box. Otherwise conclude the fruit is an orange. With

a simple and rather “stupid” rule like this we can make ROBY give the illusion that it is quite in-

telligent, especially to people who do not know the actual decision rule used by ROBY. In fact one

could say that Artificial Intelligence in general is the art of inventing stupid and simple mecha-

nisms that give the illusion of being intelligent and exhibiting complex behavior. With the aid of

computational geometry (the science of the design of efficient algorithms for solving geometric

problems) we can compute many geometric features or properties of objects, such as the width and

Fig. 4 The width and diameter of a

convex polygon.
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diameter in the above example, in an efficient manner.

1.5 Classification

Classification is concerned with making decisions concerning the class membership of a

pattern in question. The task in any given situation is to design a decision rule that is easy to com-

pute and will minimize the probability of misclassification relative to the power of the feature ex-

traction scheme employed. This part of pattern recognition is quite formal since we can make op-

timal decisions using Bayesian decision theory and incorporate several tools from the areas of

probability and statistics such as estimation theory.

If we assume that d measurements (features) are observed on a pattern or object then we

can represent the pattern by a d-dimensional vector X = (x1, x2,..., xn) and usually refer to X as a

feature vector and the space in which X lies as the feature space. Patterns are thus transformed by

the feature extraction process into points in d-dimensional feature space. A pattern class can then

be represented by a region or sub-space of the feature space. Classification then becomes a matter

of determining in what region of the feature space an unknown pattern falls into. Fig. 5 illustrates

a 2-dimensional feature space with three pattern classes represented as regions R1, R2 and R3.

1.6 Sequential Classification

Sometimes measurements (features) are very expensive and rather than making all the mea-

surements in a batch mode we make measurements one at a time and at each step we decide, de-

pending on our confidence obtained so far, whether to make another measurement or whether to

make a final decision. This is referred to as sequential classification.

1.7 Contextual Information

Sometimes it is impossible to decide the class membership of a pattern without looking at

the context in which the original pattern is embedded. It such situations it is necessary to use con-

textual information at the classification stage. For example, consider the letter in the middle in Fig.

5. Viewed in isolation this letter is ambiguous and it is impossible to decide if it is a corrupted “A”

or a corrupted “H.” On the other hand, if we know the letters appearing before and after it in a text

recognition task then as the figure shows we can easily determine whether the entire word is “THE”

Fig. 5 Feature space.
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ning” template.

3. An Industrial Example - The Bankers Machine

See class notes.

Another industrial example of a pattern recognition machine that must meet many con-

straints is the pay-phone coin-validation system [Ba90]. Here the machines must have small mem-

ory and simple decision rules because, with millions of pay phones sitting idle, the electrical power

consumption becomes a limiting factor.
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Fig. 5 Using contextual information

to disambiguate a pattern.

or “CAT.” More involved procedures use Mark-

ovian decision theory and dictionary look up

methods as well as post-processing spelling cor-

rection algorithms to accomplish this goal.

2. Template Matching

In some applications the input patterns

can be more or less controlled so that they are al-

most always identical to some idealized proto-

type. In such situations a simple template match-

ing method may give satisfactory results. A tem-

plate for each prototype is kept in memory. A

new unknown pattern is then matched to each

stored template in turn and when a close match is

found it is classified into the class of this “win-


