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Threshold Logic

2.1 Networks of functions

We deal in this chapter with the simplest kind of computing units used to
build artificial neural networks. These computing elements are a generalization
of the common logic gates used in conventional computing and, since they
operate by comparing their total input with a threshold, this field of research
is known as threshold logic.

2.1.1 Feed-forward and recurrent networks

Our review in the previous chapter of the characteristics and structure of bi-
ological neural networks provides us with the initial motivation for a deeper
inquiry into the properties of networks of abstract neurons. From the view-
point of the engineer, it is important to define how a network should behave,
without having to specify completely all of its parameters, which are to be
found in a learning process. Artificial neural networks are used in many cases
as a black box : a certain input should produce a desired output, but how the
network achieves this result is left to a self-organizing process.
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Fig. 2.1. A neural network as a black box

In general we are interested in mapping an n-dimensional real input
(x1, x2, . . . , xn) to an m-dimensional real output (y1, y2, . . . , ym). A neural
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network thus behaves as a “mapping machine”, capable of modeling a func-
tion F : IRn → IRm. If we look at the structure of the network being used, some
aspects of its dynamics must be defined more precisely. When the function
is evaluated with a network of primitive functions, information flows through
the directed edges of the network. Some nodes compute values which are then
transmitted as arguments for new computations. If there are no cycles in the
network, the result of the whole computation is well-defined and we do not
have to deal with the task of synchronizing the computing units. We just
assume that the computations take place without delay.

f

gx g(x)

f (g (x))

Fig. 2.2. Function composition

If the network contains cycles, however, the computation is not uniquely
defined by the interconnection pattern and the temporal dimension must be
considered. When the output of a unit is fed back to the same unit, we are
dealing with a recursive computation without an explicit halting condition. We
must define what we expect from the network: is the fixed point of the recursive
evaluation the desired result or one of the intermediate computations? To
solve this problem we assume that every computation takes a certain amount
of time at each node (for example a time unit). If the arguments for a unit
have been transmitted at time t, its output will be produced at time t + 1.
A recursive computation can be stopped after a certain number of steps and
the last computed output taken as the result of the recursive computation.

f f (xt , f (xt!1, f ( xt!2 ,...)...)

xt

Fig. 2.3. Recursive evaluation

In this chapter we deal first with networks without cycles, in which the
time dimension can be disregarded. Then we deal with recurrent networks
and their temporal coordination. The first model we consider was proposed
in 1943 by Warren McCulloch and Walter Pitts. Inspired by neurobiology
they put forward a model of computation oriented towards the computational
capabilities of real neurons and studied the question of abstracting universal
concepts from specific perceptions [299].
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We will avoid giving a general definition of a neural network at this point.
So many models have been proposed which differ in so many respects that any
definition trying to encompass this variety would be unnecessarily clumsy. As
we show in this chapter, it is not necessary to start building neural networks
with “high powered” computing units, as some authors do [384]. We will start
our investigations with the general notion that a neural network is a network
of functions in which synchronization can be considered explicitly or not.

2.1.2 The computing units

The nodes of the networks we consider will be called computing elements or
simply units. We assume that the edges of the network transmit information
in a predetermined direction and the number of incoming edges into a node
is not restricted by some upper bound. This is called the unlimited fan-in
property of our computing units.

x1

x2

xn

f f (x1 , x2 , ..., xn )

Fig. 2.4. Evaluation of a function of n arguments

The primitive function computed at each node is in general a function of n
arguments. Normally, however, we try to use very simple primitive functions
of one argument at the nodes. This means that the incoming n arguments
have to be reduced to a single numerical value. Therefore computing units
are split into two functional parts: an integration function g reduces the n
arguments to a single value and the output or activation function f produces
the output of this node taking that single value as its argument. Figure 2.5
shows this general structure of the computing units. Usually the integration
function g is the addition function.
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Fig. 2.5. Generic computing unit

McCulloch–Pitts networks are even simpler than this, because they use
solely binary signals, i.e., ones or zeros. The nodes produce only binary results
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and the edges transmit exclusively ones or zeros. The networks are composed
of directed unweighted edges of excitatory or of inhibitory type. The latter are
marked in diagrams using a small circle attached to the end of the edge. Each
McCulloch–Pitts unit is also provided with a certain threshold value θ.

At first sight the McCulloch–Pitts model seems very limited, since only
binary information can be produced and transmitted, but it already contains
all necessary features to implement the more complex models. Figure 2.6
shows an abstract McCulloch–Pitts computing unit. Following Minsky [311]
it will be represented as a circle with a black half. Incoming edges arrive at
the white half, outgoing edges leave from the black half. Outgoing edges can
fan out any number of times.
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Fig. 2.6. Diagram of a McCulloch–Pitts unit

The rule for evaluating the input to a McCulloch–Pitts unit is the follow-
ing:

• Assume that a McCulloch–Pitts unit gets an input x1, x2, . . . , xn through
n excitatory edges and an input y1, y2, . . . , ym through m inhibitory edges.

• If m ≥ 1 and at least one of the signals y1, y2, . . . , ym is 1, the unit is
inhibited and the result of the computation is 0.

• Otherwise the total excitation x = x1 + x2 + · · · + xn is computed and
compared with the threshold θ of the unit (if n = 0 then x = 0). If x ≥ θ
the unit fires a 1, if x < θ the result of the computation is 0.

This rule implies that a McCulloch–Pitts unit can be inactivated by a sin-
gle inhibitory signal, as is the case with some real neurons. When no inhibitory
signals are present, the units act as a threshold gate capable of implementing
many other logical functions of n arguments.

Figure 2.7 shows the activation function of a unit, the so-called step func-
tion. This function changes discontinuously from zero to one at θ. When θ
is zero and no inhibitory signals are present, we have the case of a unit pro-
ducing the constant output one. If θ is greater than the number of incoming
excitatory edges, the unit will never fire.
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Fig. 2.7. The step function with threshold θ

In the following subsection we assume provisionally that there is no delay
in the computation of the output.

2.2 Synthesis of Boolean functions

The power of threshold gates of the McCulloch–Pitts type can be illustrated
by showing how to synthesize any given logical function of n arguments. We
deal firstly with the more simple kind of logic gates.

2.2.1 Conjunction, disjunction, negation

Mappings from {0, 1}n onto {0, 1} are called logical or Boolean functions.
Simple logical functions can be implemented directly with a single McCulloch–
Pitts unit. The output value 1 can be associated with the logical value true
and 0 with the logical value false. It is straightforward to verify that the two
units of Figure 2.8 compute the functions AND and OR respectively.

2 1

AND OR

x1

x2 x2

x1

Fig. 2.8. Implementation of AND and OR gates

A single unit can compute the disjunction or the conjunction of n argu-
ments as is shown in Figure 2.9, where the conjunction of three and four
arguments is computed by two units. The same kind of computation requires
several conventional logic gates with two inputs. It should be clear from this
simple example that threshold logic elements can reduce the complexity of
the circuit used to implement a given logical function.
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Fig. 2.9. Generalized AND and OR gates

As is well known, AND and OR gates alone cannot be combined to produce
all logical functions of n variables. Since uninhibited threshold logic elements
are capable of implementing more general functions than conventional AND or
OR gates, the question of whether they can be combined to produce all logical
functions arises. Stated another way: is inhibition of McCulloch–Pitts units
necessary or can it be dispensed with? The following proposition shows that
it is necessary. A monotonic logical function f of n arguments is one whose
value at two given n-dimensional points x = (x1, . . . , xn) and y = (y1, . . . , yn)
is such that f(x) ≥ f(y) whenever the number of ones in the input y is a
subset of the ones in the input x. An example of a non-monotonic logical
function of one argument is logical negation.

Proposition 1. Uninhibited threshold logic elements of the McCulloch–Pitts
type can only implement monotonic logical functions.

Proof. An example shows the kind of argumentation needed. Assume that the
input vector (1, 1, . . . , 1) is assigned the function value 0. Since no other vector
can set more edges in the network to 1 than this vector does, any other input
vector can also only be evaluated to 0. In general, if the ones in the input
vector y are a subset of the ones in the input vector x, then the first cannot
set more edges to 1 than x does. This implies that f(x) ≥ f(y), as had to be
shown. !
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Fig. 2.10. Logical functions and their realization

The units of Figure 2.10 show the implementation of some non-monotonic
logical functions requiring inhibitory connections. Logical negation, for exam-
ple, can be computed using a McCulloch–Pitts unit with threshold 0 and an
inhibitory edge. The other two functions can be verified by the reader.
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Fig. 2.11. Function values of a logical function of three variables
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Fig. 2.12. Separation of the input space for the OR function

2.2.2 Geometric interpretation

It is very instructive to visualize the kind of functions that can be computed
with McCulloch–Pitts cells by using a diagram. Figure 2.11 shows the eight
vertices of a three-dimensional unit cube. Each of the three logical variables
x1, x2 and x3 can assume one of two possible binary values. There are eight
possible combinations, represented by the vertices of the cube. A logical func-
tion is just an assignment of a 0 or a 1 to each of the vertices. The figure
shows one of these assignments. In the case of n variables, the cube consists
of 2n vertices and admits 22n

different binary assignments.
McCulloch–Pitts units divide the input space into two half-spaces. For a

given input (x1, x2, x3) and a threshold θ the condition x1 + x2 + x3 ≥ θ is
tested, which is true for all points to one side of the plane with the equation
x1 + x2 + x3 = θ and false for all points to the other side (without including
the plane itself in this case). Figure 2.12 shows this separation for the case in
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x1
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x1 + x2 + x3 = 2

Fig. 2.13. Separating planes of the OR and majority functions

which θ = 1, i.e., for the OR function. Only those vertices above the separating
plane are labeled 1.

The majority function of three variables divides input space in a similar
manner, but the separating plane is given by the equation x1 + x2 + x3 = 2.
Figure 2.13 shows the additional plane. The planes are always parallel in the
case of McCulloch–Pitts units. Non-parallel separating planes can only be
produced using weighted edges.

2.2.3 Constructive synthesis

Every logical function of n variables can be written in tabular form. The
value of the function is written down for every one of the possible binary
combinations of the n inputs. If we want to build a network to compute
this function, it should have n inputs and one output. The network must
associate each input vector with the correct output value. If the number of
computing units is not limited in some way, it is always possible to build or
synthesize a network which computes this function. The constructive proof of
this proposition profits from the fact that McCulloch–Pitts units can be used
as binary decoders.

Consider for example the vector (1, 0, 1). It is the only one which fulfills
the condition x1∧¬x2∧x3. This condition can be tested by a single computing
unit (Figure 2.14). Since only the vector (1, 0, 1) makes this unit fire, the unit
is a decoder for this input.

Assume that a function F of three arguments has been defined according
to the following table:

To compute this function it is only necessary to decode all those vectors
for which the function’s value is 1. Figure 2.15 shows a network capable of
computing the function F .
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Fig. 2.14. Decoder for the vector (1, 0, 1)

input vectors            F

  (0,0,1) 1

  (0,1,0) 1

all others 0
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F

Fig. 2.15. Synthesis of the function F

The individual units in the first layer of the composite network are de-
coders. For each vector for which F is 1 a decoder is used. In our case we need
just two decoders. Components of each vector which must be 0 are transmit-
ted with inhibitory edges, components which must be 1 with excitatory ones.
The threshold of each unit is equal to the number of bits equal to 1 that
must be present in the desired input vector. The last unit to the right is a
disjunction: if any one of the specified vectors can be decoded this unit fires
a 1.

It is straightforward to extend this constructive method to other Boolean
functions of any other dimension. This leads to the following proposition:

Proposition 2. Any logical function F : {0, 1}n → {0, 1} can be computed
with a McCulloch–Pitts network of two layers.

No attempt has been made here to minimize the number of computing
units. In fact, we need as many decoders as there are ones in the table of
function values. An alternative to this simple constructive method is to use
harmonic analysis of logical functions, as will be shown in Sect. 2.5.

We can also consider the minimal possible set of building blocks needed to
implement arbitrary logical functions when the fan-in of the units is bounded
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in some way. The circuits of Figure 2.14 and Figure 2.15 use decoders of n
inputs. These decoders can be built of simpler cells, for example, two units ca-
pable of respectively implementing the AND function and negation. Inhibitory
connections in the decoders can be replaced with a negation gate. The output
of the decoders is collected at a conjunctive unit. The decoder of Figure 2.14
can be implemented as shown in Figure 2.16. The only difference from the
previous decoder are the negated inputs and the higher threshold in the AND
unit. All decoders for a row of the table of a logical function can be designed
in a similar way. This immediately leads to the following proposition:

Proposition 3. All logical functions can be implemented with a network com-
posed of units which exclusively compute the AND, OR, and NOT functions.

The three units AND, NOT and OR are called a logical basis because of
this property. Since OR can be implemented using AND and NOT units, these
two alone constitute a logical basis. The same happens with OR and NOT
units. John von Neumann showed that through a redundant coding of the
inputs (each variable is transmitted through two lines) AND and OR units
alone can constitute a logical basis [326].

3

x1

x2

x3

0

0

Fig. 2.16. A composite decoder for the vector (0, 0, 1)

2.3 Equivalent networks

We can build simpler circuits by using units with more general properties,
for example weighted edges and relative inhibition. However, as we show in
this section, circuits of McCulloch–Pitts units can emulate circuits built out
of high-powered units by exploiting the trade-off between the complexity of
the network versus the complexity of the computing units.

2.3.1 Weighted and unweighted networks

Since McCulloch–Pitts networks do not use weighted edges the question of
whether weighted networks are more general than unweighted ones must be
answered. A simple example shows that both kinds of networks are equivalent.

Assume that three weighted edges converge on the unit shown in Fig-
ure 2.17. The unit computes
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Fig. 2.17. Weighted unit

0.2x1 + 0.4x2 + 0.3x3 ≥ 0.7.

But this is equivalent to

2x1 + 4x2 + 3x3 ≥ 7,

and this computation can be performed with the network of Figure 2.18.

x1

x2

x3

7

Fig. 2.18. Equivalent computing unit

The figure shows that positive rational weights can be simulated by simply
fanning-out the edges of the network the required number of times. This means
that we can either use weighted edges or go for a more complex topology of
the network, with many redundant edges. The same can be done in the case
of irrational weights if the number of input vectors is finite (see Chap. 3,
Exercise 3).

2.3.2 Absolute and relative inhibition

In the last subsection we dealt only with the case of positive weights. Two
classes of inhibition can be identified: absolute inhibition corresponds to the
one used in McCulloch–Pitts units. Relative inhibition corresponds to the case
of edges weighted with a negative factor and whose effect is to lower the firing
threshold when a 1 is transmitted through this edge.

Proposition 4. Networks of McCulloch–Pitts units are equivalent to net-
works with relative inhibition.
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Proof. It is only necessary to show that each unit in a network where relative
inhibition is used is equivalent to one or more units in a network where ab-
solute inhibition is used. It is clear that it is possible to implement absolute
inhibition with relative inhibitory edges. If the threshold of a unit is the in-
teger m and if n excitatory edges impinge on it, the maximum possible total
excitation for this unit is n − m. If m ≥ n the unit never fires and the in-
hibitory edge is irrelevant. It suffices to fan out the inhibitory edge n−m + 1
times and make all these edges meet at the unit. When a 1 is transmitted
through the inhibitory edges the total amount of inhibition is n − m + 1 and
this shuts down the unit. To prove that relative inhibitory edges can be sim-
ulated with absolute inhibitory ones, refer to Figure 2.19. The network to
the left contains a relative inhibitory edge, the network to the right absolute
inhibitory ones. The reader can verify that the two networks are equivalent.
Relative inhibitory edges correspond to edges weighted with −1. We can also
accept any other negative weight w. In that case the threshold of the unit to
the right of Figure 2.19 should be m+w instead of m+1. Therefore networks
with negative weights can be simulated using unweighted McCulloch–Pitts
elements. !

y
... m

m

m+1

y

1

relative inhibition equivalent circuit with absolute inhibition
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xn

x1

x2
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Fig. 2.19. Two equivalent networks

As shown above, we can implement any kind of logical function using
unweighted networks. What we trade is the simplicity of the building blocks for
a more convoluted topology of the network. Later we will always use weighted
networks in order to simplify the topology.

2.3.3 Binary signals and pulse coding

An additional question which can be raised is whether binary signals are
not a very limited coding strategy. Are networks in which the communication
channels adopt any of ten or fifteen different states more efficient than channels
which adopt only two states, as in McCulloch–Pitts networks? To give an
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answer we must consider that unit states have a price, in biological networks
as well as in artificial ones. The transmitted information must be optimized
using the number of available switching states.

1 2 3 4 5 6

number of
representable

values

base

e

Fig. 2.20. Number of representable values as a function of the base

Assume that the number of states per communication channel is b and that
c channels are used to input information. The cost K of the implementation
is proportional to both quantities, i.e., K = γbc, where γ is a proportionality
constant. Using c channels with b states, bc different numbers can be repre-
sented. This means that c = K/γb and, if we set κ = K/γ, we are seeking the
numerical base b which optimizes the function bκ/b. Since we assume constant
cost, κ is a constant. Figure 2.20 shows that the optimal value for b is the
Euler constant e. Since the number of channel states must be an integer, three
states would provide a good approximation to the optimal coding strategy.
However, in electronic and biological systems decoding of the signal plays such
an important role that the choice of two states per channel becomes a better
alternative.

Wiener arrived at a similar conclusion through a somewhat different ar-
gument [452]. The binary nature of information transmission in the nervous
system seems to be an efficient way to transport signals. However, in the
next chapters we will assume that the communication channels can transport
arbitrary real numbers. This makes the analysis simpler than when we have
to deal explicitly with frequency modulated signals, but does not lead to a
minimization of the resources needed for a technical implementation. Some
researchers prefer to work with so-called weightless networks which operate
exclusively with binary data.
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