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We consider a rhythm to be represented by a subset of k points (onsets) on the
circular lattice consisting of n points equally spaced on a circle [1]. Such sets are
called cyclotomic sets in the crystallography literature [3], [13]. Every pair of such
points determines an inter-onset-duration-interval (the geodesic distance between
the pair of points on the circle) [14]. The histogram of this multiset of distances in
the context of musical scales and chords is called its interval content [2]. We will use
the same terminology for the case of rhythms, where the intervals are durations of
time. The remaining (n — k) lattice points determine a complementary rhythm [6].
A rhythm and its complement may thus be viewed as a pair of interlocking rhythms.
Two rhythms which are not congruent but possess the same multiset of distances
are said to be homometric, a term introduced by Lindo Patterson in 1939 [4].

First we review some of the history of interlocking rhythms in African and Eu-
ropean music. Then we review the history of the hexachordal theorem in music
theory [8], [9], [10], [11]. The hexachordal theorem states that two non-congruent
interlocking rhythms with k¥ = n/2 are homometric. The earliest proof of this
theorem in the music literature appears to be due to Milton Babbitt and David
Lewin [15], [8], [9], [10]. It used heavy machinery from topology. Later Lewin
obtained new proofs using group theory. Later still Eric Regener [5] found an ele-
mentary simple proof of this theorem. The music theorists appear to be unaware
that this theorem was known to crystallographers at least twenty years earlier [3].
It seems to have been proved by Lindo Patterson [3] around 1940 but he did not
publish a proof. In the crystallography literature the theorem is called Patterson’s
theorem [12]. The first published proof in the crystallography literature is due to
Buerger [12]; it is based on image algebra, and is non-intuitive. A much simpler
and elegant elementary proof was later found by Iglesias [13]. The simplest ele-
mentary proof was published by Steven Blau in 1999 [7]. We elucidate the proofs
by Iglesias [13] and Blau [7].
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