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Directed graphs: WWW
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a-random walks

Given: digraph G = (V/, E), probability distribution g on V
and 0 < a <1

Choose a starting vertex v according to distribution gq.

With probability 1 — «: choose a random edge vw and go to w.
With probability a jump to a vertex u chosen according to q.
PageRank is the stationary distribution m on V.

In this talk we assume q is uniform.



PageRank
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Computing PageRank

e Potential:
¢us = P{a random walk from u visits v before jumping}
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e Potential:

¢us = P{a random walk from u visits v before jumping}
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where ['(u) are the out neighbours of u.

e PageRank = stationary distribution 7
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Directed PageRank games: Hopcroft-Sheldon '08

Any player=page can add or delete any outlinks.

e Page u is in best response if no add or delete improves its
PageRank.

Graph G is in Nash Equilibrium(NE) if each page is in best
response.

e a-insensitive: NE for all 0 < a < 1.

(@) (b)
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Directed PageRank games: Hopcroft-Sheldon

¢uv = P{a random walk from u visits v before jumping}

e A page u is in best response if it links only to nodes v that
maximize ¢,

e If a strongly connected graph G is a NE all edges are
bidirected.

e a-sensitive NE exist (Chen et al.’09)



Undirected graphs

We study PageRank for undirected graphs, such as:
e Friends on Facebook
e Co-authorship (Erdds graph)

o Bilateral agreements



Undirected graphs: Facebook




Undirected graphs: PageRank
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Undirected PageRank games - 1
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Undirected PageRank games - 2

e A player=page can delete any of its edges.
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Undirected PageRank games - 3

e A player=page can delete any of its edges.
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Undirected PageRank games - 4

e A player=page can add an edge if the other page agrees.
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e A player=page can add an edge if the other page agrees.
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Undirected PageRank games - 5

e u tries to add edge uv ...
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Undirected PageRank games - 5

e u tries to add edge uv ...

M) M)
/ /
Jtu =0.0829 Jtv =0.0441
e ... but v refuses!
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Undirected PageRank games - 6

The addition of an edge requires the other page's approval.
We consider only edge deletions in this talk.

A page is in best response if no deletion improves its
PageRank.

Graph G is in Nash Equilibrium(NE) if each page is in best
response.



Directed vs Undirected NE

(a) (b) ()

e (a) a-insensitive NE in both models



Directed vs Undirected NE

(a) (b) ()

e (a) a-insensitive NE in both models

e (b) Undirected: a-insensitive NE
Directed: delete v2



Directed vs Undirected NE

(a) (b) ()

e (a) a-insensitive NE in both models

e (b) Undirected: a-insensitive NE
Directed: delete v2

e (c) Undirected: NE only for 4/7 < a <1
else delete both v2 and v3
Directed: Not NE
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Our results

Input: An undirected graph G, «, g.

Output: Is the input a Nash equilibrium in the deletions only model?
(ves/no)

e G is a tree: O(n?) algorithm.

e Let k = k(G) the max vertex degree in any biconnected
component

e G is a graph: O(2Kn*) algorithm.
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Algorithm for trees

A strategy for page v is a |I'(v)|-vector x
where x; = 1 if i-th edge retained, else x; = 0.

The PageRank for v under strategy x is

7TV(X) = ZueV Clzll:¢uv();) (x)x;
1—(1—a)=< =

For known vectors a > 0 and b > 0 we can rewrite as:

aTx

TFV(X) = ].TX m,

G is a NE iff for any strategy x

(1) > my(x)
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Fractional programming (Megiddo's method)

To solve:
. T aTX n
P:max m,(x)=1"x BT’ x €{0,1}",
We solve for I = 1,....|['(v)|:
-
Q : max f(x):% st. 17x=1.

For fixed § > 0 let
h(8) =max g(x)=(a—bd)"x st 1Tx=1

z* is the optimum solution to Q iff h(z*) = 0.
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Root finding

Find the root h(z*) = 0 of

h(8) =max g(x)=(a—bd)"x st. 1Tx=1
The root lies on the /-th layer of the line arrangement.
We find all roots in O(|F(v)|?)-time for given vertex v
Since G is a tree we have

> (F(v))? < 4n?

veVv
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Future work

e |s there a polynomial time algorithm for general graphs?
e |Is there a characterization of graphs which are NE?

e How about edge additions?



