
Verifying Nash Equilibria in PageRank Games on
Undirected Web Graphs

David Avis, Kazuo Iwama and Daichi Paku

ISAAC 2011, Yokohama

December 7, 2011

Directed graphs: WWW

α-random walks

• Given: digraph G = (V ,E), probability distribution q on V
and 0 < α < 1.

• Choose a starting vertex v according to distribution q.

• With probability 1−α choose a random edge vw and go to w .

• With probability α jump to a vertex u chosen according to q.

• PageRank is the stationary distribution π on V .

• In this talk we assume q is uniform.

α-random walks

• Given: digraph G = (V ,E), probability distribution q on V
and 0 < α < 1.

• Choose a starting vertex v according to distribution q.

• With probability 1−α choose a random edge vw and go to w .

• With probability α jump to a vertex u chosen according to q.

• PageRank is the stationary distribution π on V .

• In this talk we assume q is uniform.

α-random walks

• Given: digraph G = (V ,E), probability distribution q on V
and 0 < α < 1.

• Choose a starting vertex v according to distribution q.

• With probability 1−α choose a random edge vw and go to w .

• With probability α jump to a vertex u chosen according to q.

• PageRank is the stationary distribution π on V .

• In this talk we assume q is uniform.

α-random walks

• Given: digraph G = (V ,E), probability distribution q on V
and 0 < α < 1.

• Choose a starting vertex v according to distribution q.

• With probability 1−α choose a random edge vw and go to w .

• With probability α jump to a vertex u chosen according to q.

• PageRank is the stationary distribution π on V .

• In this talk we assume q is uniform.

α-random walks

• Given: digraph G = (V ,E), probability distribution q on V
and 0 < α < 1.

• Choose a starting vertex v according to distribution q.

• With probability 1−α choose a random edge vw and go to w .

• With probability α jump to a vertex u chosen according to q.

• PageRank is the stationary distribution π on V .

• In this talk we assume q is uniform.

α-random walks

• Given: digraph G = (V ,E), probability distribution q on V
and 0 < α < 1.

• Choose a starting vertex v according to distribution q.

• With probability 1−α choose a random edge vw and go to w .

• With probability α jump to a vertex u chosen according to q.

• PageRank is the stationary distribution π on V .

• In this talk we assume q is uniform.

PageRank

Computing PageRank

• Potential:

φuv = P{α random walk from u visits v before jumping}

=
1− α

|Γ(u)|
∑

i∈Γ(u)

φiv .

where Γ(u) are the out neighbours of u.

• PageRank = stationary distribution π

πv = α

∑
u∈V quφuv

1− (1−α)
|Γ(v)|

∑
i∈Γ(v) φiv

.

Computing PageRank

• Potential:

φuv = P{α random walk from u visits v before jumping}

=
1− α

|Γ(u)|
∑

i∈Γ(u)

φiv .

where Γ(u) are the out neighbours of u.

• PageRank = stationary distribution π

πv = α

∑
u∈V quφuv

1− (1−α)
|Γ(v)|

∑
i∈Γ(v) φiv

.

Directed PageRank games: Hopcroft-Sheldon ’08

• Any player=page can add or delete any outlinks.

• Page u is in best response if no add or delete improves its
PageRank.

• Graph G is in Nash Equilibrium(NE) if each page is in best
response.

• α-insensitive: NE for all 0 < α < 1.

Directed PageRank games: Hopcroft-Sheldon ’08

• Any player=page can add or delete any outlinks.

• Page u is in best response if no add or delete improves its
PageRank.

• Graph G is in Nash Equilibrium(NE) if each page is in best
response.

• α-insensitive: NE for all 0 < α < 1.

Directed PageRank games: Hopcroft-Sheldon ’08

• Any player=page can add or delete any outlinks.

• Page u is in best response if no add or delete improves its
PageRank.

• Graph G is in Nash Equilibrium(NE) if each page is in best
response.

• α-insensitive: NE for all 0 < α < 1.

Directed PageRank games: Hopcroft-Sheldon ’08

• Any player=page can add or delete any outlinks.

• Page u is in best response if no add or delete improves its
PageRank.

• Graph G is in Nash Equilibrium(NE) if each page is in best
response.

• α-insensitive: NE for all 0 < α < 1.

Directed PageRank games: Hopcroft-Sheldon

φuv = P{α random walk from u visits v before jumping}

• A page u is in best response if it links only to nodes v that
maximize φuv

• If a strongly connected graph G is a NE all edges are
bidirected.

• α-sensitive NE exist (Chen et al.’09)

Directed PageRank games: Hopcroft-Sheldon

φuv = P{α random walk from u visits v before jumping}

• A page u is in best response if it links only to nodes v that
maximize φuv

• If a strongly connected graph G is a NE all edges are
bidirected.

• α-sensitive NE exist (Chen et al.’09)

Directed PageRank games: Hopcroft-Sheldon

φuv = P{α random walk from u visits v before jumping}

• A page u is in best response if it links only to nodes v that
maximize φuv

• If a strongly connected graph G is a NE all edges are
bidirected.

• α-sensitive NE exist (Chen et al.’09)

Directed PageRank games: Hopcroft-Sheldon

φuv = P{α random walk from u visits v before jumping}

• A page u is in best response if it links only to nodes v that
maximize φuv

• If a strongly connected graph G is a NE all edges are
bidirected.

• α-sensitive NE exist (Chen et al.’09)

Undirected graphs

We study PageRank for undirected graphs, such as:

• Friends on Facebook

• Co-authorship (Erdös graph)

• Bilateral agreements

Undirected graphs: Facebook

Undirected graphs: PageRank

Undirected PageRank games - 1

• A player=page can delete any of its edges.

•

Undirected PageRank games - 1

• A player=page can delete any of its edges.

•

Undirected PageRank games - 2

• A player=page can delete any of its edges.

•

Undirected PageRank games - 3

• A player=page can delete any of its edges.

•

Undirected PageRank games - 4

• A player=page can add an edge if the other page agrees.

•

Undirected PageRank games - 4

• A player=page can add an edge if the other page agrees.

•

Undirected PageRank games - 5

• u tries to add edge uv ...

• ... but v refuses!

Undirected PageRank games - 5

• u tries to add edge uv ...

• ... but v refuses!

Undirected PageRank games - 6

• The addition of an edge requires the other page’s approval.

• We consider only edge deletions in this talk.

• A page is in best response if no deletion improves its
PageRank.

• Graph G is in Nash Equilibrium(NE) if each page is in best
response.

Undirected PageRank games - 6

• The addition of an edge requires the other page’s approval.

• We consider only edge deletions in this talk.

• A page is in best response if no deletion improves its
PageRank.

• Graph G is in Nash Equilibrium(NE) if each page is in best
response.

Undirected PageRank games - 6

• The addition of an edge requires the other page’s approval.

• We consider only edge deletions in this talk.

• A page is in best response if no deletion improves its
PageRank.

• Graph G is in Nash Equilibrium(NE) if each page is in best
response.

Undirected PageRank games - 6

• The addition of an edge requires the other page’s approval.

• We consider only edge deletions in this talk.

• A page is in best response if no deletion improves its
PageRank.

• Graph G is in Nash Equilibrium(NE) if each page is in best
response.

Directed vs Undirected NE

• (a) α-insensitive NE in both models

• (b) Undirected: α-insensitive NE
Directed: delete v2

• (c) Undirected: NE only for 4/7 ≤ α < 1
else delete both v2 and v3
Directed: Not NE

Directed vs Undirected NE

• (a) α-insensitive NE in both models

• (b) Undirected: α-insensitive NE
Directed: delete v2

• (c) Undirected: NE only for 4/7 ≤ α < 1
else delete both v2 and v3
Directed: Not NE

Directed vs Undirected NE

• (a) α-insensitive NE in both models

• (b) Undirected: α-insensitive NE
Directed: delete v2

• (c) Undirected: NE only for 4/7 ≤ α < 1
else delete both v2 and v3
Directed: Not NE

Our results

Input: An undirected graph G , α, q.

Output: Is the input a Nash equilibrium in the deletions only model?
(yes/no)

• G is a tree: O(n2) algorithm.

• Let k = k(G) the max vertex degree in any biconnected
component

• G is a graph: O(2kn4) algorithm.

Our results

Input: An undirected graph G , α, q.

Output: Is the input a Nash equilibrium in the deletions only model?
(yes/no)

• G is a tree: O(n2) algorithm.

• Let k = k(G) the max vertex degree in any biconnected
component

• G is a graph: O(2kn4) algorithm.

Our results

Input: An undirected graph G , α, q.

Output: Is the input a Nash equilibrium in the deletions only model?
(yes/no)

• G is a tree: O(n2) algorithm.

• Let k = k(G) the max vertex degree in any biconnected
component

• G is a graph: O(2kn4) algorithm.

Our results

Input: An undirected graph G , α, q.

Output: Is the input a Nash equilibrium in the deletions only model?
(yes/no)

• G is a tree: O(n2) algorithm.

• Let k = k(G) the max vertex degree in any biconnected
component

• G is a graph: O(2kn4) algorithm.

Algorithm for trees

• A strategy for page v is a |Γ(v)|-vector x
where xi = 1 if i-th edge retained, else xi = 0.

• The PageRank for v under strategy x is

πv (x) = α

∑
u∈V quφuv (x)

1− (1− α)
P

i∈Γ(v) φiv (x)xi

1T x

• For known vectors a ≥ 0 and b ≥ 0 we can rewrite as:

πv (x) = 1T x
aT x

bT x
,

• G is a NE iff for any strategy x

πv (1) ≥ πv (x)

Algorithm for trees

• A strategy for page v is a |Γ(v)|-vector x
where xi = 1 if i-th edge retained, else xi = 0.

• The PageRank for v under strategy x is

πv (x) = α

∑
u∈V quφuv (x)

1− (1− α)
P

i∈Γ(v) φiv (x)xi

1T x

• For known vectors a ≥ 0 and b ≥ 0 we can rewrite as:

πv (x) = 1T x
aT x

bT x
,

• G is a NE iff for any strategy x

πv (1) ≥ πv (x)

Algorithm for trees

• A strategy for page v is a |Γ(v)|-vector x
where xi = 1 if i-th edge retained, else xi = 0.

• The PageRank for v under strategy x is

πv (x) = α

∑
u∈V quφuv (x)

1− (1− α)
P

i∈Γ(v) φiv (x)xi

1T x

• For known vectors a ≥ 0 and b ≥ 0 we can rewrite as:

πv (x) = 1T x
aT x

bT x
,

• G is a NE iff for any strategy x

πv (1) ≥ πv (x)

Algorithm for trees

• A strategy for page v is a |Γ(v)|-vector x
where xi = 1 if i-th edge retained, else xi = 0.

• The PageRank for v under strategy x is

πv (x) = α

∑
u∈V quφuv (x)

1− (1− α)
P

i∈Γ(v) φiv (x)xi

1T x

• For known vectors a ≥ 0 and b ≥ 0 we can rewrite as:

πv (x) = 1T x
aT x

bT x
,

• G is a NE iff for any strategy x

πv (1) ≥ πv (x)

Fractional programming (Megiddo’s method)

• To solve:

P : max πv (x) = 1T x
aT x

bT x
, x ∈ {0, 1}n,

• We solve for l = 1, ..., |Γ(v)|:

Q : max f (x) =
aT x

bT x
s.t. 1T x = l .

• For fixed δ > 0 let

h(δ) = max g(x) = (a− bδ)T x s.t. 1T x = l .

• z∗ is the optimum solution to Q iff h(z∗) = 0.

Fractional programming (Megiddo’s method)

• To solve:

P : max πv (x) = 1T x
aT x

bT x
, x ∈ {0, 1}n,

• We solve for l = 1, ..., |Γ(v)|:

Q : max f (x) =
aT x

bT x
s.t. 1T x = l .

• For fixed δ > 0 let

h(δ) = max g(x) = (a− bδ)T x s.t. 1T x = l .

• z∗ is the optimum solution to Q iff h(z∗) = 0.

Fractional programming (Megiddo’s method)

• To solve:

P : max πv (x) = 1T x
aT x

bT x
, x ∈ {0, 1}n,

• We solve for l = 1, ..., |Γ(v)|:

Q : max f (x) =
aT x

bT x
s.t. 1T x = l .

• For fixed δ > 0 let

h(δ) = max g(x) = (a− bδ)T x s.t. 1T x = l .

• z∗ is the optimum solution to Q iff h(z∗) = 0.

Fractional programming (Megiddo’s method)

• To solve:

P : max πv (x) = 1T x
aT x

bT x
, x ∈ {0, 1}n,

• We solve for l = 1, ..., |Γ(v)|:

Q : max f (x) =
aT x

bT x
s.t. 1T x = l .

• For fixed δ > 0 let

h(δ) = max g(x) = (a− bδ)T x s.t. 1T x = l .

• z∗ is the optimum solution to Q iff h(z∗) = 0.

Root finding

• Find the root h(z∗) = 0 of

h(δ) = max g(x) = (a− bδ)T x s.t. 1T x = l .

• The root lies on the l-th layer of the line arrangement.
• We find all roots in O(|Γ(v)|2)-time for given vertex v
• Since G is a tree we have∑

v∈V

(|Γ(v)|2 ≤ 4n2

Root finding

• Find the root h(z∗) = 0 of

h(δ) = max g(x) = (a− bδ)T x s.t. 1T x = l .

• The root lies on the l-th layer of the line arrangement.

• We find all roots in O(|Γ(v)|2)-time for given vertex v
• Since G is a tree we have∑

v∈V

(|Γ(v)|2 ≤ 4n2

Root finding

• Find the root h(z∗) = 0 of

h(δ) = max g(x) = (a− bδ)T x s.t. 1T x = l .

• The root lies on the l-th layer of the line arrangement.
• We find all roots in O(|Γ(v)|2)-time for given vertex v

• Since G is a tree we have∑
v∈V

(|Γ(v)|2 ≤ 4n2

Root finding

• Find the root h(z∗) = 0 of

h(δ) = max g(x) = (a− bδ)T x s.t. 1T x = l .

• The root lies on the l-th layer of the line arrangement.
• We find all roots in O(|Γ(v)|2)-time for given vertex v
• Since G is a tree we have∑

v∈V

(|Γ(v)|2 ≤ 4n2

Future work

• Is there a polynomial time algorithm for general graphs?

• Is there a characterization of graphs which are NE?

• How about edge additions?

Future work

• Is there a polynomial time algorithm for general graphs?

• Is there a characterization of graphs which are NE?

• How about edge additions?

Future work

• Is there a polynomial time algorithm for general graphs?

• Is there a characterization of graphs which are NE?

• How about edge additions?

