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Outline of talk

Diet problem

• Situation: You need to choose some food in the supermarket
to feed yourself properly for just $1 per day.

• Decison variables: How much of each product you will buy.

• Constraints: There are minimum daily requirements for
calories, vitamins, calcium, etc. There is a maximum amount
of each food you can eat.

• Objective Eat for less than $1.
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Sample data

Food Serv. Energy Protein Calcium Price Max
Size (kcal) (g) (mg) ¢ Serv.

x1 Oatmeal 28g 110 4 2 3 4
x2 Chicken 100g 205 32 12 24 3
x3 Eggs 2 large 160 13 54 13 2
x4 Milk 237ml 160 8 285 9 8
x5 Cherry Pie 170g 420 4 22 20 2
x6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

The decision variables are x1, x2, ..., x6.
Fractional servings are allowed.
From Linear Programming, Vasek Chvátal, 1983
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Linear programming formulation for diet problem

Food Serv. Energy Protein Calcium Price Max
Size (kcal) (g) (mg) ¢ Serv.

x1 Oatmeal 28g 110 4 2 3 4
x2 Chicken 100g 205 32 12 24 3
x3 Eggs 2 large 160 13 54 13 2
x4 Milk 237ml 160 8 285 9 8
x5 Cherry Pie 170g 420 4 22 20 2
x6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

min z = 3x1 + 24x2 + 13x3 + 9x4 + 20x5 + 19x6

s.t. 110x1 + 205x2 + 160x3 + 160x4 + 420x5 + 260x6 ≥ 2000

4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 ≥ 55

2x1 + 12x2 + 54x3 + 285x4 + 22x5 + 80x6 ≥ 800

0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 3, 0 ≤ x3 ≤ 2,

0 ≤ x4 ≤ 8, 0 ≤ x5 ≤ 2, 0 ≤ x6 ≤ 2
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Linear programming solution

Food Serv. Energy Protein Calcium Price Max
Size (kcal) (g) (mg) ¢ Serv.

x1 Oatmeal 28g 110 4 2 3 4
x2 Chicken 100g 205 32 12 24 3
x3 Eggs 2 large 160 13 54 13 2
x4 Milk 237ml 160 8 285 9 8
x5 Cherry Pie 170g 420 4 22 20 2
x6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

• x1 = 4(oatmeal) x4 = 4.5(milk) x5 = 2(pie) cost=92.5 ¢
• Where are the chicken, eggs and pork?

• Do I have to eat the same food every day?
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Problems with the solution

• Many desirable items were not included in the optimum
solution

• We obtained a unique optimum solution, but ...

• ... people (and managers) like to make choices!

• Ask the right question !

• What are all the meals I can eat for at most $1?
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All meals for a dollar

Replace the objective function by an inequality:

3x1 + 24x2 + 13x3 + 9x4 + 20x5 + 19x6 ≤ 100

110x1 + 205x2 + 160x3 + 160x4 + 420x5 + 260x6 ≥ 2000

4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 ≥ 55

2x1 + 12x2 + 54x3 + 285x4 + 22x5 + 80x6 ≥ 800

0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 3, 0 ≤ x3 ≤ 2,

0 ≤ x4 ≤ 8, 0 ≤ x5 ≤ 2, 0 ≤ x6 ≤ 2

• Any solution to these inequalities is a meal for under $1

• But this is just a restatement of the problem .......

• ... how do I find these solutions?
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A more useful solutionD. Avis, MGill Univ. 1All menus for a $1All (17) ExtremeSolutions to the Diet Problem with Budget $1.00Cost Oat- Chiken Eggs Milk Cherry Porkmeal Pie Beans92.5 4. 0 0 4.5 2. 097.3 4. 0 0 8. 0.67 098.6 4. 0 0 2.23 2. 1.40100. 1.65 0 0 6.12 2. 0100. 2.81 0 0 8. 0.98 0100. 3.74 0 0 2.20 2. 1.53100. 4. 0 0 2.18 1.88 1.62100. 4. 0 0 2.21 2. 1.48100. 4. 0 0 5.33 2. 0100. 4. 0 0 8. 0.42 0.40100. 4. 0 0 8. 0.80 0100. 4. 0 0.50 8. 0.48 0100. 4. 0 1.88 2.63 2. 0100. 4. 0.17 0 2.27 2. 1.24100. 4. 0.19 0 8. 0.58 0100. 4. 0.60 0 3.73 2. 0100. 4. 0 1.03 2.21 2. 0.78
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• Taking convex combinations of rows gives new meals

• Eg. Taking half each of the last two rows gives a $1 meal with all foods
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10

Example in R3

(1, 1, 0)
(1, −1 , 0)

(−1, −1 0)

(−1, 1, 0)

(0, 0, −1)

x 3

x 1

x 2

H-representation:

1 − x1 + x3 ≥ 0

1 − x2 + x3 ≥ 0

1 + x1 + x3 ≥ 0

1 + x2 + x3 ≥ 0

− x3 ≥ 0

V-representation:

v1 = (−1, 1, 0), v2 = (−1, −1, 0), v3 = (1 , −1, 0),

v4 = (1 ,1, 0), v5 = (0, 0, −1)
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Two representations of a bounded polyhedron

• H-representation (Half-spaces): {x ∈ Rn : Ax ≤ b}
• V-representation (Vertices): v1, v2, ..., vN are the vertices of P

x =
N∑
i=1

λivi

where
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, ...,N

• Vertex enumeration: H-representation ⇒ V-representation

• Convex hull problem: V-representation ⇒ H-representation

• Solution methods: double description(cdd) and reverse
search(lrs)



Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

• H-representation (Half-spaces): {x ∈ Rn : Ax ≤ b}

• V-representation (Vertices): v1, v2, ..., vN are the vertices of P

x =
N∑
i=1

λivi

where
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, ...,N

• Vertex enumeration: H-representation ⇒ V-representation

• Convex hull problem: V-representation ⇒ H-representation

• Solution methods: double description(cdd) and reverse
search(lrs)



Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

• H-representation (Half-spaces): {x ∈ Rn : Ax ≤ b}
• V-representation (Vertices): v1, v2, ..., vN are the vertices of P

x =
N∑
i=1

λivi

where
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, ...,N

• Vertex enumeration: H-representation ⇒ V-representation

• Convex hull problem: V-representation ⇒ H-representation

• Solution methods: double description(cdd) and reverse
search(lrs)



Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

• H-representation (Half-spaces): {x ∈ Rn : Ax ≤ b}
• V-representation (Vertices): v1, v2, ..., vN are the vertices of P

x =
N∑
i=1

λivi

where
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, ...,N

• Vertex enumeration: H-representation ⇒ V-representation

• Convex hull problem: V-representation ⇒ H-representation

• Solution methods: double description(cdd) and reverse
search(lrs)



Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

• H-representation (Half-spaces): {x ∈ Rn : Ax ≤ b}
• V-representation (Vertices): v1, v2, ..., vN are the vertices of P

x =
N∑
i=1

λivi

where
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, ...,N

• Vertex enumeration: H-representation ⇒ V-representation

• Convex hull problem: V-representation ⇒ H-representation

• Solution methods: double description(cdd) and reverse
search(lrs)



Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Two representations of a bounded polyhedron

• H-representation (Half-spaces): {x ∈ Rn : Ax ≤ b}
• V-representation (Vertices): v1, v2, ..., vN are the vertices of P

x =
N∑
i=1

λivi

where
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, ...,N

• Vertex enumeration: H-representation ⇒ V-representation

• Convex hull problem: V-representation ⇒ H-representation

• Solution methods: double description(cdd) and reverse
search(lrs)



Outline Vertex Enumeration Reverse Search Parallel Reverse Search

Who uses vertex enumeration?

• Wide variety of users: scientists, engineers, economists,
operations researchers ...

• ...who are not experts in polyhedral computation ...

• ... and not software engineers

• Software should be easy to install, run on standard work
stations and ...

• ... should run faster on better hardware!

• Goal: parallelize lrs for multicore workstations using existing
code
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Case study: MIT problem

• Polytope mit defined by 729 inequalities in 8 dimensions

• Output consists of 4862 vertices

• In 1993 it took about 3 weeks to solve by cdd and 6 weeks by
lrs (20MHz?)

• Goal: Goal: parallelize lrs for multicore workstations using
existing code

• In 2012:

cddr+ lrs mplrs

cores=8 cores=16 cores=32
secs secs secs su secs su secs su

368 496 99 5.0 44 11.2 26 19

Table: mai64: Opteron 6272, 2.1GHz, 64 cores, speedups(su) on lrs

• 32-core speedup of plrs on 1993 mplrs: about 140,000 times!
(processor=110 × 1300=software)
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More cores

Name lrs mplrs secs/efficiency
(mai20) 96 cores 128 cores 160 cores 192 cores 256 cores 312 cores

c40 10002 329 247 203 179 134 129
1 .48 .48 .46 .44 (.44) (.37)

perm10 2381 115 94 85 96 64 61
1 .34 .31 .28 .20 (.23) (.20)

mit71 21920 686 516 412 350 231 205
1 .54 .54 .54 .53 (.60) (.55)

bv7 9040 302 229 184 158 98 88
1 .49 .49 .49 .47 (.57) (.52)

cp6 1774681 56700 43455 34457 28634 18657 15995
1 .63 .62 .63 .63 (.72) (.69)

Table: efficiency = speedup/number of cores (mai cluster)
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Even more cores ...

Name mplrs
1 core 300 cores 600 cores 900 cores 1200 cores

c40 17755 89 49 43 44
1 .66 .60 .46 .34

mit71 36198 147 80 63 49
1 .82 .75 .64 .62

bv7 10594 48 27 27 29
1 .73 .65 .44 .30

cp6 2400648 9640 4887 3278 2570
1 .83 .82 .81 .78

Table: Tsubame2.5 at Tokyo Institute of Technology: secs/efficiency
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Reverse Search (A. & Fukuda, ’91)

• Space efficient technique to list unstructured discrete objects

• Typical Problems:

• Generate all triangulations on a given point set.
• Generate all planar spanning tress on a given set of points.
• Generate all the cells or vertices of an arrangement of lines

planes, or hyperplanes.
• Generate all vertices of a convex polyhedron

• Reverse search is defined by an adjacency oracle and a local
search function
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Reverse Search - Adjacency Oracle

• V are the objects to be generated

• Define graph G = (V ,E ) by:

• For every v ∈ V i = 1, 2, ..,∆ (maximum degree)

Adj(v , i) =

{
v ′ where vv ′ ∈ E

∅ otherwise

• For every edge vv ′ in G there is a unique i such that
v ′ = Adj(v , i).

• ”Similar” objects are joined by an edge

• Maximum degree ∆ should be as small as possible
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Reverse Search - Local Search

• G = (V ,E ) is the given graph

• v∗ ∈ V is a target vertex

• f : V 7→ V is a local search function s.t.:

• f (v∗) = v∗

• Iterating f on any v leads to v∗

• Ie. f (f (f ..(f (v))..) = v∗

• f defines a spanning tree on G rooted at v∗

• Reverse search generates this tree starting at v∗
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Example - Problem

Problem:
Generate permutations of {1, 2, .., n}

Input:
n = 4

Output:

(1, 2, 3, 4) (1, 2, 4, 3) (1, 3, 2, 4) (1, 3, 4, 2) (1, 4, 2, 3) (1, 4, 3, 3)
(2, 1, 3, 4) (2, 1, 4, 3) (2, 3, 1, 4) (2, 3, 4, 1) (2, 4, 1, 3) (2, 4, 3, 1)
(3, 1, 2, 4) (3, 1, 4, 2) (3, 2, 1, 4) (3, 2, 4, 1) (3, 4, 1, 2) (3, 4, 2, 1)
(4, 1, 2, 3) (4, 1, 3, 2) (4, 2, 1, 3) (4, 2, 3, 1) (4, 3, 1, 2) (4, 3, 2, 1)
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Example - Adjacency Oracle

{π1, π2, ..., πn}isapermutationof {1, 2, .., n}

Adj(π, i) = (π1, π2, ..., πi−1, πi+1, πi , ...πn) for i = 1, 2, ..., n − 1.

Note: ∆ = n − 1
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Example - Local Search
Let π = (π1, π2, ..., πn)
Target: (1, 2, ..., n)

f (π) = (π1, π2, ..., πi−1, πi+1, πi , ..., πn)

where i is the smallest index for which πi > πi+1.
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Example - Reverse Search Tree
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Reverse Search - Pseudocode

Algorithm 1 reverseSearch(v∗,∆,Adj , f )

repeat
v ← v∗ j ← 0
while j < ∆ do
j ← j + 1
if f (Adj(v , j)) = v then

v ← Adj(v , j) forward step
print v
j ← 0

end if
end while
if v 6= v∗ then

(v , j)← f (v) backtrack step
end if

until v = v∗ and j = ∆
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Reverse search for vertex enumeration-I

• G = (V ,E ) is defined by the vertices and edges of the
polytope

• Pivoting between vertices defines the adjacency oracle

• Simplex method gives a path from any vertex to the optimum
vertex

• lrs is a C implementation available on-line
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Reverse search for vertex enumeration-II
http://cgm.cs.mcgill.ca/ avis/C/lrs.html
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Reverse Search: features for parallelization

• Objects generated are not stored in a database: no collisions

• Each vertex is reported once and may be discarded afterwards

• Subtrees may be enumerated independently without
communication

• Subtree size may be estimated by Hall-Knuth estimator
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Extended Reverse Search

Extension to allow :

• all subtrees to be listed at some fixed depth

• a subtree to be enumerated from its given root

• Additional parameters:

• maxd is the depth at which forward steps are terminated.
• mind is the depth at which backtrack steps are terminated.
• d is the depth of subtree root v∗.
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Extended Reverse Search

Extension to allow :

• all subtrees to be listed at some fixed depth

• a subtree to be enumerated from its given root

• Additional parameters:
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Extended Reverse Search - Pseudocode

Algorithm 2 extendedReverseSearch(v∗,∆,Adj , f , d ,maxd ,mind)

repeat
v ← v∗ j ← 0
while j < ∆ and d < maxd do
j ← j + 1
if f (Adj(v , j)) = v then
v ← Adj(v , j) forward step
print v
j ← 0
d ← d + 1

end if
end while
if v 6= v∗ then

(v , j)← f (v) backtrack step
d ← d − 1

end if
until (d = mind or v = v∗) and j = ∆
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Parallelization design parameters

• Users are from many disciplines and are not software
engineers!

• No special setup, extra library installation, or change of usage
for users

• Use available cores on user machine ’automatically’

• Reuse existing lrs code (8,000+ lines!)
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Naive Parallel Reverse Search: 3 phases

• Phase 1: (single processor)
• Generate the reverse search tree T down to a fixed depth

init depth.
• Redirect output nodes and store in list L.

• Phase 2: (full parallelization)

• Schedule threads from L using subtree enumeration feature.
• Use parameter max threads to limit number of parallel threads.
• Direct output to shared output stream.

• Phase 3: (partial parallelization)

• Wait until all children threads terminate.
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Parallel Reverse Search - Pseudocode

Algorithm 3 parallelReverseSearch(v∗,∆,Adj , f , id ,mt)

num threads ← 0
redirect output to a list L Phase 1
extendedReverseSearch(v∗,∆,Adj , f , 0, id , 0)
remove all v ∈ L with depth(v) < id and output v
while L 6= ∅ do

if num threads < mt then
remove any v ∈ L Phase 2
num threads ← num threads + 1
extendedReverseSearch(v ,∆,Adj , f , depth(v),∞, depth(v))

end if
end while
while num threads > 0 do

wait for termination signal
if L 6= ∅ then

wait until a termination signal is received
extendedReverseSearch(v ,∆,Adj , f , depth(v),∞, depth(v))

else
num threads ← num threads − 1 Phase 3

end if
end while
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plrs (Implemented by Gary Roumanis)

A portable parallel implementation of lrs derived from the parallel
reverse search algorithm.

Architecture:

• Light C++ wrapper around lrs.
• Leverage lrs’s restart feature.
• Use portable g++ compiler.

• Multi-producer and single consumer.
• Producer threads traverse subtrees of the reverse search tree,

appending nodes to a lock-free queue.
• Consumer thread removes nodes from shared queue and

concatenates to unified location.

• Leverage open source Boost library for atomic features.
• Ensures portability, maintainability and strong performance.
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3 Phases: CPU utilization

Figure: Input file: mit, id = 6, cores=12
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Estimates at depth 2: mit
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Initial depth variation: mit

Figure: id = 3, L = 127, 124 secs

Figure: id = 6, L = 1213, 105 secs

Figure: id = 4, L = 284, 105 secs

Figure: id = 10, L = 7985, 125 secs
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plrs: limitations

• Algorithm analysis:
• No parallelization in Phase 1.
• Complete parallelizatin in Phase 2.
• Parallelization drops monotonically in Phase 3.

• This leads to the following issues:

• Success depends on balance of the reverse search tree.
• Conflicting issues in setting init depth.
• These problems were solved in mplrs
• Please come back for part 2!
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