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Parity Games



Parity Game (PG) G = (V,Vy, V1, E,Q).
m Two players called 0 and 1, with V =V, UV; (and Vo N'V; = 0)

m Labeling as a priority assignment Q : V' — N

m Winning objective: player 0 wins if largest priority seen infinitely
often is even



@ } player 0 controlled

2 | } player 1 controlled

—0O




® 0 @ } player 0 controlled

! 2 | } player 1 controlled

: C@

Play: 4,




s () @ } player 0 controlled

! 2 | } player 1 controlled

Play: 4, 0,




" 0 @ } player 0 controlled

[ > | } player 1 controlled

: C@

Play: 4, 0, 1,




" 0 @ } player 0 controlled

! 2 | } player 1 controlled

Play: 4, 0, 1, 6,




" 0 @ } player 0 controlled

! 2 | } player 1 controlled

o —+)

Play: 4, 0, 1, 6, 8,




" 0 @ } player 0 controlled

! ® | } player 1 controlled

.83@

Play: 4, 0, 1, 6, 8, 2,




" 0 @ } player 0 controlled

! 2 | } player 1 controlled

wC@)

Play: 4, 0, 1, 6, 8, 2, 5,




@ } player 0 controlled

2 | } player 1 controlled

—0O

Play: 4, 0, 1, 6, 8, 2, 5, 8§,




" 0 @ } player 0 controlled

! ® | } player 1 controlled

Play: 4, 0, 1, 6, 8, 2, 5, 8, 2,




" 0 @ } player 0 controlled

! 2 | } player 1 controlled

.8:@>

Play: 4, 0, 1, 6, 8, 2, 5, 8, 2, 5,




@ } player 0 controlled

2 | } player 1 controlled

—0

Play: 4, 0, 1, 6, 8, 2, 5, 8 2, 5, 8, ...




" 0 @ } player 0 controlled

1 2 | } player 1 controlled

o —)

Play: 4, 0, 1, 6, (8,2,5)
Winner is player 0: largest priority seen infinitely often, 8, is even




Parity Games

Strategies, Winning, and all that

m (Positional) strategy for player i: o; : V; — V respecting F

m v-winning strategy o for i: wins v-starting plays against any
counterstrategy

m Winning set W; = { nodes for which i has a winning strategy }

Theorem

The set of vertices V' can be partitioned into winning sets Wy and Wj.
Player ¢ has a single positional winning strategy for all nodes in W;.

Computational Problem: Compute Wy and W; along with winning
strategies.
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Parity Games

Example

Player 0 wins blue area with blue strategy.
Player 1 wins red area with red strategy.
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Nondeterministic Biichi
Automaton on subformulas of

infinite branches Infinite Logic Tableau labeled

l with subformulas and local

. . correctness conditions
Deterministic Parity

Automaton on subformulas of
infinite branches

\

Winner of Parity Game determines validity of ¢
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Parity Games solving is in NP M coNP, UP (N coUP and PLS. I

But: neither known to be in P nor known to be NP-hard

Note: Not many other (natural) problems with similar status!

m Graph isomorphism problem

m Factorization problem



Turn-based Stochastic Games (TSG)

25 L players
Discounted Payoff Games (DPG)
2 players
Mean Payoff Games (MPG) Markov Decision Processes (MDP)
2 players players
Parity Games (PG) Deterministic Markov Decision Processes (DMDP)

2 players 1 player




LP-type problems (LPtype)
v v

Turn-based Stochastié Games (TSG) Linear Programming (LP)
2; players ’/‘
.
L
/’/I
Discounted Payoff Games (DPG) //
.
2 players S
.
L
.
L

Markov Decision Processes (MDP)
12 players

Mean Payoff Games (MPG)

2 players
Deterministic Markov Decision Processes (DMDP)

1 player

Parity Games (PG)
2 players




LP-type problems (LPtype)
.

Disednted Payoff Games (DPG)
2 players

Mean Payoff Games (MPG
2 players

Parity Games (PG)
2 players

1 player

€ NP N coNP ep

two players make our life really difficult!
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Parity Games

Algorithms

Overview

Recursive Algorithm due to Zielonka
exponential lower bound

Small Progress Measures Algorithm due to Jurdzinski
exponential lower bound

p-calculus Model Checking Algorithm due to Stevens and Stirling
exponential lower bound
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Parity Games

Algorithms

Overview

Recursive Algorithm due to Zielonka
exponential lower bound

Small Progress Measures Algorithm due to Jurdzinski
exponential lower bound

p-calculus Model Checking Algorithm due to Stevens and Stirling
exponential lower bound

Strategy Improvement Algorithm due to Vége and Jurdzinski
exponential lower bounds but linear diameter

Strategy Improvement applies to other infinitary payoff games as well!
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H Parity Game Solver Platform
PGSOLVER: http://www.tcs.ifi.lmu.de/pgsolver

B Modal Logic Solver Platform
MLSOLVER: http://www.tcs.ifi.1lmu.de/mlsolver


http://www.tcs.ifi.lmu.de/pgsolver
http://www.tcs.ifi.lmu.de/mlsolver

Strategy Improvement

Strategy Improvement
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Strategy Improvement

History

m Howard 1960: infinite-horizon Markov Decision Processes
m Hoffman-Karp 1966: Non-terminating Stochastic Games
m Condon 1992: Simple Stochastic Games

Puri 1995: Discounted Payoff Games

m Voge-Jurdziniski 2000: discrete algorithm to solve Parity Games
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Two ingredients...
Pre-ordering < on positional player 0 strategies
Improvement operator IMPROVE : Sg — Sp
with two properties...

<-optimal strategy ¢ induces winning sets and winning strategies

o not <-optimal implies o <t IMPROVE(0)

1: while o is not optimal do
% o < IMPROVE(0)
3: end while

Question: does this algorithm always terminate?
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Torw — Val, (V)

Positional Play vala,T(v) =(




Strategy Improvement

Positional Plays and Valuations

Let o player 0 strategy, T player 1 strategy, v node.

T e — Valy (V)

Torw = 3 a3a ) 717 (4757 7 72)w

Positional Play val, -(v) = (7,

m cycle component
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Let o player 0 strategy, T player 1 strategy, v node.

T e — Valy (V)

Torw = 3 a3a ) 717 (4757 7 72)w

Positional Play val, (v) = (7, {8, 9},

m cycle component
m path component
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Strategy Improvement

Positional Plays and Valuations

Let o player 0 strategy, T player 1 strategy, v node.

T > Valy (V)

Torw = 3 a3a ) 717 (4757 7 72)w

Positional Play val, -(v) = (7, {8,9}, 6)

m cycle component
m path component
m length component
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(p1, Py 11) < (p2, Po, 12)
iff
(=) p < (=1)P?po,ie. ... <5<3<1<0<2<4<...

eg (3,—,—) <(2,—-)

=

p1=p2, and largest p € PLAPy iseven & p € P, orisodd & p € P,

e.g (3,{9,8,7,6}, —) <(3,{9,8,6,5}, —) since {9,8,7,6}4{9,8,6,5} ={7,5}

p1=p2 and P; = P», and (—1)p1l1 > (—l)pllz

e.g. (3,{9,8,7,6},20) < (3,{9,8,7,6},21) and (2,{9,8,7,6},21) < (2,{9,8,7,6},20)
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Single player case:

val, (v) = val, - (v), T trivial

Two player case:

val,(v) = minval, ,(v)

m val, polytime computable

m there is a single optimal counterstrategy 7, s.t. valy(v) = valy -, (v)

Pre-ordering < on strategy valuations by point-wise comparison:

o<o — Yo. Vali=v= < valﬂvi



Two ingredients...
H Pre-ordering < on positional player 0 strategies v/

B Improvement operator IMPROVE : Sy — S

with two properties...
<-optimal strategy o induces winning sets and winning strategies

o not <J-optimal implies o << IMPROVE(0)

1: while ¢ is not optimal do
2 o + IMPROVE(0)
3: end while
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Let Eg = EN (Vo x V) set of player 0 edges.
A o-switch is an edge e € Ep \ o not chosen by o.

m Comparability: val, < val, or val, < val, for every o-switch e.

m Easy Check: valy <t valy((y,) iff vals(o(v)) < valy(w).

Improving Switches: (o) = {e | val, < valyg}

m Switching: ) C J C I(0) implies val, < valyj.

m Optimality: I(o) = () implies o is optimal.

IMPROVE(c) = o[J] for some ) € J C I(0)
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Two ingredients...
H Pre-ordering < on positional player 0 strategies v/

B Improvement operator IMPROVE : Sy — Sy v/

with two properties...
<-optimal strategy o induces winning sets and winning strategies

o not <-optimal implies o << IMPROVE(0) v/

1: while ¢ is not optimal do
2 o + IMPROVE(0)
3: end while




Let o be an optimal strategy.
B Wy ={v|val,(v) = (w,_,_) and w even}

Wy ={v | val,(v) = (w,, ) and w odd}

o s a winning strategy for player 0 on Wy

A 7, is a winning strategy for player 1 on Wy




Two ingredients...
H Pre-ordering < on positional player 0 strategies v/

B Improvement operator IMPROVE : Sy — Sy v/

with two properties...
<-optimal strategy o induces winning sets and strategies v’

o not <-optimal implies o << IMPROVE(0) v/

1: while ¢ is not optimal do
2 o + IMPROVE(0)
3: end while




Initial strategy

m val,(6) =

m val,(h) =




Strategy Improvement

Example

Counter strategy / Valuation

« val,(6) = (B (LI}, 4) induced by = [ I 2.0, (B, 2, 0)°
m val,(5) = (., {., .}, 4 ) induced by ™ = .7 ., 2,0, (.7 2,0)%
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Strategy Improvement

Example

Improving switches

4 0 3
1 2
6 8

m val,(6) = (8, {8, 8}, 4) induced by 7 = Bl B, 2, 0, (8, 2,0)
m val,(5) = (B, {8, B}, 4) induced by 7 =Bl B, 2, 0, (8, 2,0)

Oliver Friedmann (LMU) Strategy Improvement February 15, 2011
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Next strategy

m val,(6) =

m val,(h) =




Strategy Improvement

Example

Next counter strategy / Next valuation

« val,(6) = (B (LI}, 4) induced by = [ I 2.0, (B, 2, 0)°
m val,(5) = (., {., .}, 4 ) induced by ™ = .7 ., 2,0, (.7 2,0)%
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Strategy Improvement

Example

Improving switches

m val,(6) = (8, {8, 8}, 4) induced by 7 = Bl B, 2, 0, (8, 2,0)
m val,(5) = (B, {8, B}, 4) induced by 7 =Bl B, 2, 0, (8, 2,0)
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Final strategy

m val,(6) =

m val,(h) =




Strategy Improvement

Example

Final counter strategy / Final valuation

w val,(6) = (M, {8}, 2) induced by ~ — B, 1, (I, 1)*
n val,(5) = (B, {8}, 4) induced by = — |51, 2. 0. (8,2,0°
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Assume that
m checking for <-optimality, and
m computing the improvement operator IMPROVE

both require polynomial time.

Complexity of Strategy Iteration essentially depends on the number of
iterations!



Strategy Improvement

Improvement Rules

Strategy Iteration is parameterized by an improvement rule.

IMPROVE(c) = o|.J] for some ) C J C I(0)

Improvement Rule = method of chosing improving switches

m Single-Switching vs. Multi-Switching
m Deterministic vs. Randomized

m Memorizing vs. Oblivious

Oliver Friedmann (LMU) Strategy Improvement February 15, 2011
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Question: theoretically possible to have polynomially many iterations?
Let GG be a game and n be the number of nodes.

Definition: the diameter of G is the least number of iterations required
to solve G

The diameter of G is less or equal to n.




Standard improvement rule = simultaneous best local improvement

SWITCH-ALL(0) : v +— argmax val, (w)
wevE



Standard improvement rule = simultaneous best local improvement

SWITCH-ALL(0) : v +— argmax val, (w)
wevE

One player PGs can be solved in O(n) iterations by SWITCH-ALL
strategy improvement.




Lower Bounds



Lower Bounds

Sink Parity Games

Definition: PG is sink PG iff
only one cycle component appears in strategy iteration

cycle component has least priority in the game, and is odd

Consequences:
m Game is completely won by player 1
m Cycle component and path length component irrelevant

m Strategy Iteration = optimization of paths leading to the sink

Oliver Friedmann (LMU) Strategy Improvement February 15, 2011
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m Best entry point: ag




Situation: Player 1 controlled, player 0 dominated cycle

m Ordering:
m val,(e) =

m val,(d) =



Player 0 moves out, player 1 moves in (“cycle open”)

m Ordering: val,(a) < val,(e) < val,(b) < val,(c)
m val,(e) = val,(d) U {e} = val,(a) U{d, e}
m val,(d) = val,(a) U {d}



Node ¢ has the highest valuation, however, best local update is b

m Ordering: val,(a) < val,(e) < val,(b) < val,(c)
m val,(e) = val,(d) U {e} = val,(a) U{d, e}
m val,(d) = val,(a) U {d}



Player 0 still moves out

m Ordering: val,(b) < val,(e) < val,(a) < val,(c)
m val,(e) = val,(d) U {e} = val,(b) U{d, e}
m val,(d) = val,(b) U {d}



Node ¢ still has highest valuation, however, best local update is a

m Ordering: val,(b) < val,(e) < val,(a) < val,(c)
m val,(e) = val,(d) U {e} = val,(b) U{d, e}
m val,(d) = val,(b) U {d}



Still moving out...

m Ordering: val,(b) < val,(a) < val,(e) < val,(c)
m val,(e) = val,(d) U {e} = val,(a) U{d, e}
m val,(d) = val,(a) U {d}



Only improving edge is d (“closing the cycle”)

m Ordering: val,(b) < val,(a) < val,(e) < val,(c)
m val,(e) = val,(d) U {e} = val,(a) U{d, e}
m val,(d) = val,(a) U {d}



Cycle closed, player 1 forced to move out

m Ordering: val,(b) < val,(a) < val,(c) < val,(e)
m val,(e) = val,(c) U {e}
m val,(d) = val,(c) U{d, e}
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Lower Bounds

Binary Counting
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Lower Bounds

Binary Counting
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Lower Bounds

Cycle Gate Gadget

e :4 hy : 36

g1 node serves as activation control
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Whole graph consists of a simple cycle,



&

a deceleration lane,



S =i

6

S —

&

simple (bit-saving) cycles



simple (bit-saving) cycles that are connected to the lane,







Initial Strategy, heuristic: Maximize local reward.

Oliver Friedmann (LMU) Strategy Improvement



Lane improves iteratively, all cycles are occupied thereby.




Lower Bounds

Full Construction

Lane improves iteratively, all cycles are occupied thereby.
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First cycle cannot improve furthermore to the lane.







First cycles closes, forcing player 1 to leave it.







First cycles closes, forcing player 1 to leave it.







Deceleration lane and other cycles reset.




Lower Bounds

Full Construction

Lane improves iteratively, second and third cycle are occupied thereby.

Oliver Friedmann (LMU) Strategy Improvement February 15, 2011 35



Lane improves iteratively, second and third cycle are occupied thereby.




Lower Bounds

Full Construction

Lane improves iteratively, second and third cycle are occupied thereby.

Oliver Friedmann (LMU) Strategy Improvement February 15, 2011 35



Lane improves iteratively, second and third cycle are occupied thereby.




Lower Bounds

Full Construction

Lane improves iteratively, second and third cycle are occupied thereby.

Oliver Friedmann (LMU) Strategy Improvement February 15, 2011 35



Lane improves iteratively, second and third cycle are occupied thereby.




Lower Bounds

Full Construction

Lane improves iteratively, second and third cycle are occupied thereby.

Oliver Friedmann (LMU) Strategy Improvement February 15, 2011 35



Lane improves iteratively, second and third cycle are occupied thereby.




Lower Bounds

Full Construction

Lane improves iteratively, second and third cycle are occupied thereby.

Oliver Friedmann (LMU) Strategy Improvement February 15, 2011 35



Lane improves iteratively, second and third cycle are occupied thereby.




Lower Bounds

Full Construction
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Second cycle cannot improve furthermore to the lane.




Second cycles closes, forcing player 1 to leave it.
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Second cycles closes, forcing player 1 to leave it.




Second cycles closes, forcing player 1 to leave it.
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First cycle reopens again.






Deceleration lane and all other cycles reset.




Lower Bounds

Full Construction

Lane improves iteratively, first and third cycle are occupied thereby.
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First cycle cannot improve furthermore to the lane.







First cycles closes, forcing player 1 to leave it.







First cycles closes, forcing player 1 to leave it.
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Deceleration lane and third cycle reset.



Lower Bounds

Full Construction

Lane improves iteratively, third cycle is occupied thereby.

Oliver Friedmann (LMU) Strategy Improvement February 15, 2011

35



oS

00O

S S G S G S S
a » " b a » = b a

Lane improves iteratively, third cycle is occupied thereby.
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Full Construction

Lane improves iteratively, third cycle is occupied thereby.
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Lane improves iteratively, third cycle is occupied thereby.




m Polytime algorithm for two-player games and the like
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