ELC Workshop on Exponential Lower Bounds for Pivoting Algorithms

March 23, 2015

Oliver Friedmann wins a prize!

Dear Victor,
Please post this offer of \$1000 to the first person who can find a counterexample to the least entered rule or prove it to be polynomial. The least entered rule enters the improving variable which has been entree least often.

Sincerely,
Norman Zadeh

Victor Klee (1925-2007)

Vic Klee at Oberwolfach in 1981 (photo: L. Danzer)

Mother of all pivoting algorithms: Simplex Method

- George Dantzig invented the simplex method to solve linear programs during WWII.

Mother of all pivoting algorithms: Simplex Method

- George Dantzig invented the simplex method to solve linear programs during WWII.
- "In terms of widespread application, Dantzig's algorithm is one of the most successful of all time: Linear programming dominates the world of industry..." (Top 10 Algorithms of the 20th century)

Mother of all pivoting algorithms: Simplex Method

- George Dantzig invented the simplex method to solve linear programs during WWII.
- "In terms of widespread application, Dantzig's algorithm is one of the most successful of all time: Linear programming dominates the world of industry..." (Top 10 Algorithms of the 20th century)
- It gave rise to the field of Operations Research (OR).

Operations Research faculty at Stanford (1969)

George Dantzig is on the far left, then Alan Manne, Frederick Hillier, Donald Iglehart, Arthur Veinott Jr., Rudolf E. Kalman, Gerald Lieberman, Kenneth Arrow and Richard Cottle.

Another OR graduate from Stanford

Institute for Operations Research and the Management Sciences

In The Media

"Japan's former prime minister, Yukio Hatoyama, could not apply math modeling to solving two pressing political problems \qquad ."
"Before entering politics, Hatoyama in the 1970s received a Ph.D in engineering in a field called operations research, which employs applied mathematics to solve complex problems, at Stanford University."

Linear programming in one slide

The Simplex Method and LP digraphs

Algorithm of searching a sink of LP digraphs by some

LP digraph for A pivotting rules.

Klee-Minty paper (1970)

How Good Is the Simplex Algorithm?

Victor Klee*
Department of Mathematics, University of Washington, Seattle, Washington
AND
George J. Minty ${ }^{\dagger}$
Department of Mathematics, Indiana University, Bloomington, Indiana

1. Introduction

By constructing long "increasing" paths on appropriate convex polytopes, we show that the simplex algorithm for linear programs (at least with its most commonly used pivot rule, Dantzig [1]) is not a "good algorithm" in the sense of Jack Edmonds. That is, the number of pivots or iterations that may be required is not majorized by any polynomial function of the two parameters that specify the size of the program. In particular, $2^{d}-1$ iterations may be required in solving a linear program whose feasible region, defined by d linear inequality constraints in d nonnegative variables or by d linear equality constraints in $2 d$ nonnegative variables, is projectively equivalent to a d-dimensional cube. Further, for each d there are positive constants α_{d} and

Klee-Minty Examples

- Squashed 3-cube (Chvátal, P.47)

$$
\begin{array}{rcl}
\operatorname{maximize} & 100 x_{1}+10 x_{2}+x_{3} & \\
\text { s.t. } & x_{1} & \leq 1 \\
& 20 x_{1}+x_{2} & \leq 100 \\
& 200 x_{1}+20 x_{2}+x_{3} & \leq 10000 \\
& x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

Klee-Minty Examples

- Squashed 3-cube (Chvátal, P.47)

$$
\begin{array}{rcl}
\operatorname{maximize} & 100 x_{1}+10 x_{2}+x_{3} & \\
\text { s.t. } & x_{1} & \leq 1 \\
& 20 x_{1}+x_{2} & \leq 100 \\
& 200 x_{1}+20 x_{2}+x_{3} & \leq 10000 \\
& x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

0	0	0	0
1	0008000		
1800	1088200		
1	09800		
0	1000	0	010000

Pivot Sequence (Dantzig's rule)

	$x_{1} x_{2} x_{3}$	$z=100 x_{1}+10 x_{2}+x_{3}$
000	0	
100	100	
1	800	900
0	01000	1000
01008000	9000	
1808200	9100	
109800	9900	
0	010000	10000

Pivot Sequence (Dantzig's rule)

| | x_{1} | x_{2} |
| :--- | :--- | :--- |$x_{3} z=100 x_{1}+10 x_{2}+x_{3}$

- All vertices are visited

Pivot Sequence (Dantzig's rule)

| | x_{1} | x_{2} |
| :--- | :--- | :--- |$x_{3} z=100 x_{1}+10 x_{2}+x_{3}$

- All vertices are visited
- Similar examples exist for each integer $n: 2^{n}$ iterations!

Pivot Sequence (Dantzig's rule)

| | x_{1} | x_{2} |
| :--- | :--- | :--- |$x_{3} \quad z=100 x_{1}+10 x_{2}+x_{3}$

- All vertices are visited
- Similar examples exist for each integer $n: 2^{n}$ iterations!
- x_{n} pivots once

Pivot Sequence (Dantzig's rule)

	$x_{1} x_{2} \quad x_{3}$	$z=100 x_{1}+10 x_{2}+x_{3}$
000	0	
100	100	
1	800	900
0	1000	1000
01008000	9000	
1808200	9100	
1	09800	9900
0	010000	10000

- All vertices are visited
- Similar examples exist for each integer $n: 2^{n}$ iterations!
- x_{n} pivots once
- x_{1} pivots 2^{n-1} times.

Klee-Minty construction: combinatorial representation

Klee-Minty path

Similar results soon followed

- D.A. and V. Chvatal, "Notes on Bland's Pivoting Rule," Math Prog. Study, Vol 8, pp.24-34, 1978
- R.G. Jeroslow, "The simplex algorithm with the pivot rule of maximizing improvement criterion", Discrete Mathematics 4 (1973) 367-377.

Norm Zadeh

Norm Zadeh creator of Perfect Ten Magazine at his Beverly Hills Mansion November 2001 with his perfect 10 models (photo:Jonas Mohr)

For Sale!

Los Angeles ©imes Real Estate

You are here: LAT Home > Real Estate
(Erhard Pfeiffer)

Jobs | Cars.com | Real Estate | Rentals

| Foreclosure

SEARCH

Email

ADVERTISEMENT

you want to know about cars

Zadeh's previously unpublished gem

- N. Zadeh, "What is the worst case behavior of the simplex algorithm," Technical Report 27, Dept. Operations Research, Stanford University, 1980.

Zadeh's previously unpublished gem

- N. Zadeh, "What is the worst case behavior of the simplex algorithm," Technical Report 27, Dept. Operations Research, Stanford University, 1980.
- Now published with postscript in:

Polyhedral Computation, CRM-AMS Proceedings vol 48, eds.
D.A., D. Bremner and A. Deza, 2009.

Zadeh's previously unpublished gem

- N. Zadeh, "What is the worst case behavior of the simplex algorithm," Technical Report 27, Dept. Operations Research, Stanford University, 1980.
- Now published with postscript in: Polyhedral Computation, CRM-AMS Proceedings vol 48, eds. D.A., D. Bremner and A. Deza, 2009.
- Shows Klee-Minty examples can be defeated by history based rules

Starting point
(Courtesy: G. Ziegler)

Dear Victor,
Please post this offer of \$1000 to the first person who can find a counterexample to the least entered rule or prove it to be polynomial. The least entered rule enter the improving variable which has been entree least often.

Sincerely,
Norman Zadeh

Klee-Minty construction is broken!

- Zadeh: choose the improving variable that has been used least often

Klee-Minty construction is broken!

- Zadeh: choose the improving variable that has been used least often
- Eg 4D: after 3 steps we must enter the right cube and cannot return to the left

Klee-Minty construction is broken!

- Zadeh: choose the improving variable that has been used least often
- Eg 4D: after 3 steps we must enter the right cube and cannot return to the left
- After at most $O\left(n^{2}\right)$ steps the sink is found

Klee-Minty construction is broken!

- Zadeh: choose the improving variable that has been used least often
- Eg 4D: after 3 steps we must enter the right cube and cannot return to the left
- After at most $O\left(n^{2}\right)$ steps the sink is found
- Oliver et al. showed Zadeh's rule requires exponential time

Why is this research important

- In practice LPs are used to solve mixed integer programs by cutting plane methods

Why is this research important

- In practice LPs are used to solve mixed integer programs by cutting plane methods
- Interior point methods solve LPs in polynomial time, but ...

Why is this research important

- In practice LPs are used to solve mixed integer programs by cutting plane methods
- Interior point methods solve LPs in polynomial time, but ...
- ...they are not strongly polynomial time and cannot handle cutting planes

Why is this research important

- In practice LPs are used to solve mixed integer programs by cutting plane methods
- Interior point methods solve LPs in polynomial time, but ...
- ...they are not strongly polynomial time and cannot handle cutting planes
- Simplex method is very well adapted to handle cutting planes

Why is this research important

- In practice LPs are used to solve mixed integer programs by cutting plane methods
- Interior point methods solve LPs in polynomial time, but ...
- ...they are not strongly polynomial time and cannot handle cutting planes
- Simplex method is very well adapted to handle cutting planes
- Lower bounds may apply to other problems: e.g. n-cube USOs

Why is this research important

- In practice LPs are used to solve mixed integer programs by cutting plane methods
- Interior point methods solve LPs in polynomial time, but ...
- ...they are not strongly polynomial time and cannot handle cutting planes
- Simplex method is very well adapted to handle cutting planes
- Lower bounds may apply to other problems: e.g. n-cube USOs
- Are there any polynomial time pivot selection methods?

Finding the sink of a USO

Warning: This problem may be addictive ...

Y. Aoshima, D. Avis, T. Deering, Y. Matsumoto, S. Moriyama, "On the Existence of Hamiltonian Paths for History Based Pivot Rules on Acyclic Unique Sink Orientations of Hypercubes", Discrete Applied Mathematics(2012) arXiv:1110.3014v2

Works for low dimensions ...

Let's try $d=10$

Basic problem

Can we efficiently find the sink of an LP-digraph by following a directed path from any given vertex, using a given edge selection rule (pivoting)?

Necessary conditions for LP digraphs

- Unique Sink Orientation (USO) [‘01 Szabo,Welzl]
- Acyclicity
- Holt Klee Property ['99 Holt, Klee]
- Shelling Property [‘09 Avis, Moriyama]

Necessary conditions for LP digraphs

Unique Sink Orientation (USO)
 [‘01 Szabo,Welzl]

Each subgraph $G(P, H)$ of $G(P)$ induced by a face
H of P has a unique sink (and then a unique source).

Necessary conditions for LP digraphs

Acyclicity

$G(P)$ has no directed cycle.

Acyclic

Not acyclic

Necessary conditions for LP digraphs

Holt Klee property ['99 Holt, Klee]

$G(P)$ has a USO, and for every k-dimensional face H of P there are k disjoint paths from the unique source to the unique sink in $G(P, H)$.

n-cube USOs

- Vertices $V=\left\{0,1, \ldots, 2^{n}-1\right\}=\{00 . .00,00 . .01, \ldots, 11 . .11\}$

n-cube USOs

- Vertices $V=\left\{0,1, \ldots, 2^{n}-1\right\}=\{00 . .00,00 . .01, \ldots, 11 . .11\}$
- Facets $F_{1}, F_{2}, \ldots, F_{2 n}$. For $i=1, \ldots, n$,

$$
F_{i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}=0\right\}, F_{n+i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}=1\right\} .
$$

n-cube USOs

- Vertices $V=\left\{0,1, \ldots, 2^{n}-1\right\}=\{00 . .00,00 . .01, \ldots, 11 . .11\}$
- Facets $F_{1}, F_{2}, \ldots, F_{2 n}$. For $i=1, \ldots, n$,

$$
F_{i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}=0\right\}, F_{n+i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}=1\right\} .
$$

- Cobasis $C(v)=\left\{i: v \in F_{i}, i=1, \ldots, 2 n\right\}, v \in V$

n-cube USOs

- Vertices $V=\left\{0,1, \ldots, 2^{n}-1\right\}=\{00 . .00,00 . .01, \ldots, 11 . .11\}$
- Facets $F_{1}, F_{2}, \ldots, F_{2 n}$. For $i=1, \ldots, n$,

$$
F_{i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}=0\right\}, F_{n+i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}=1\right\}
$$

- Cobasis $C(v)=\left\{i: v \in F_{i}, i=1, \ldots, 2 n\right\}, v \in V$
- Basis $B(v)=\left\{i: v \notin F_{i}, i=1, \ldots, 2 n\right\}, v \in V$

n-cube USOs

- Vertices $V=\left\{0,1, \ldots, 2^{n}-1\right\}=\{00 . .00,00 . .01, \ldots, 11 . .11\}$
- Facets $F_{1}, F_{2}, \ldots, F_{2 n}$. For $i=1, \ldots, n$,

$$
F_{i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}=0\right\}, F_{n+i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}=1\right\}
$$

- Cobasis $C(v)=\left\{i: v \in F_{i}, i=1, \ldots, 2 n\right\}, v \in V$
- Basis $B(v)=\left\{i: v \notin F_{i}, i=1, \ldots, 2 n\right\}, v \in V$
- Note $i \in B(v)$ iff $n+i \in C(v)$.

n-cube USOs

- Vertices $V=\left\{0,1, \ldots, 2^{n}-1\right\}=\{00 . .00,00 . .01, \ldots, 11 . .11\}$
- Facets $F_{1}, F_{2}, \ldots, F_{2 n}$. For $i=1, \ldots, n$,

$$
F_{i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}=0\right\}, F_{n+i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}=1\right\} .
$$

- Cobasis $C(v)=\left\{i: v \in F_{i}, i=1, \ldots, 2 n\right\}, v \in V$
- Basis $B(v)=\left\{i: v \notin F_{i}, i=1, \ldots, 2 n\right\}, v \in V$
- Note $i \in B(v)$ iff $n+i \in C(v)$.
- A pivot interchanges a pair of indices i and $n+i$ between $B(v)$ and $C(v)$. (flips bit i of v)

3-cube acyclic USO

- Vertices $V=\{0,1, \ldots, 7\}=\{000,001, \ldots, 111\}$

3-cube acyclic USO

- Vertices $V=\{0,1, \ldots, 7\}=\{000,001, \ldots, 111\}$
- $F_{i}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{i}=0\right\}, F_{3+i}=\left\{\left(x_{1}, x_{2},, x_{3}\right) \mid x_{i}=1\right\}$

3-cube acyclic USO

- Vertices $V=\{0,1, \ldots, 7\}=\{000,001, \ldots, 111\}$
- $F_{i}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{i}=0\right\}, F_{3+i}=\left\{\left(x_{1}, x_{2},, x_{3}\right) \mid x_{i}=1\right\}$
- $C(6)=C(110)=\{4,5,3\}, B(6)=B(110)=\{1,2,6\}$

3-cube acyclic USO

- Vertices $V=\{0,1, \ldots, 7\}=\{000,001, \ldots, 111\}$
- $F_{i}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{i}=0\right\}, F_{3+i}=\left\{\left(x_{1}, x_{2},, x_{3}\right) \mid x_{i}=1\right\}$
- $C(6)=C(110)=\{4,5,3\}, B(6)=B(110)=\{1,2,6\}$
- $v=6$ pivots to vertices $2,4,7$ by flipping bits $1,2,3$

3-cube acyclic USO

- Vertices $V=\{0,1, \ldots, 7\}=\{000,001, \ldots, 111\}$
- $F_{i}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{i}=0\right\}, F_{3+i}=\left\{\left(x_{1}, x_{2},, x_{3}\right) \mid x_{i}=1\right\}$
- $C(6)=C(110)=\{4,5,3\}, B(6)=B(110)=\{1,2,6\}$
- $v=6$ pivots to vertices $2,4,7$ by flipping bits $1,2,3$
- Pivots correspond to moves in the $4,2,1$ directions

History based rules

Choose the improving variable that satisfies:

- Least recently basic (Johnson)

History based rules

Choose the improving variable that satisfies:

- Least recently basic (Johnson)
- Least recently considered (Cunningham)

History based rules

Choose the improving variable that satisfies:

- Least recently basic (Johnson)
- Least recently considered (Cunningham)
- Least recently entered (Fathi-Tovey)

History based rules

Choose the improving variable that satisfies:

- Least recently basic (Johnson)
- Least recently considered (Cunningham)
- Least recently entered (Fathi-Tovey)
- Least number of iterations in basis (A-M-M)

History based rules

Choose the improving variable that satisfies:

- Least recently basic (Johnson)
- Least recently considered (Cunningham)
- Least recently entered (Fathi-Tovey)
- Least number of iterations in basis (A-M-M)
- Least used direction (A-M-M)

History based rules

Choose the improving variable that satisfies:

- Least recently basic (Johnson)
- Least recently considered (Cunningham)
- Least recently entered (Fathi-Tovey)
- Least number of iterations in basis (A-M-M)
- Least used direction (A-M-M)
- Least number of times to enter basis (Zadeh)

History based rules

Choose the improving variable that satisfies:

- Least recently basic (Johnson)
- Least recently considered (Cunningham)
- Least recently entered (Fathi-Tovey)
- Least number of iterations in basis (A-M-M)
- Least used direction (A-M-M)
- Least number of times to enter basis (Zadeh)
- All of the above break Klee-Minty type constructions

History based rules

Choose the improving variable that satisfies:

- Least recently basic (Johnson)
- Least recently considered (Cunningham)
- Least recently entered (Fathi-Tovey)
- Least number of iterations in basis (A-M-M)
- Least used direction (A-M-M)
- Least number of times to enter basis (Zadeh)
- All of the above break Klee-Minty type constructions
- We try to find an acyclic USO for which a given rule follows a Hamiltonian path

Least recently basic (Johnson)

Vertex	(orientation, direction)-pair								Options		
	+4	-4	+3	-3	+2	-2	+1	-1			
0	0	0	0	0		\checkmark		\checkmark		\checkmark	
\checkmark	\checkmark	$+1,+2,+3,+4$									
1	0	0	0	1		\checkmark		\checkmark		\checkmark	\checkmark
			$+2,+3,+4$								
5	0	1	0	1		\checkmark	\checkmark			\checkmark	\checkmark
13	1	1	0	1	\checkmark		\checkmark			\checkmark	\checkmark
15	1	1	1	1	\checkmark		\checkmark		\checkmark		
14	1	1	1	0	\checkmark		\checkmark		\checkmark		
10	1	0	1	0	\checkmark			\checkmark	\checkmark		
8	10	0	0	0	\checkmark			\checkmark		\checkmark	

Least recently considered (Cunningham)

Vertex		Sequence	Options		
0	0	0	0	0	$+2,-2,+1,-1,+3,-3,+4,-4$
2	0	0	1	0	$-2,+1,-1,+3,-3,+4,-4$
6	0	1	1	0	$-3,+4,-4,+2,-2,+1,-1$
14	1	1	1	0	$-4,+2,-2,+1,-1,+3,-3$
10	1	0	1	0	$+4,-4,+2,-2,+1,-1,+3$
8	1	0	0	0	$+1,-1,+3,-3,+4,-4,+2$

Least recently entered (Fathi-Tovey)

Vertex		(orientation, direction)-pair							Options			
	+4	-4	+3	-3	+2	-2	+1	-1				
0	0	0	0	0		\checkmark		\checkmark		\checkmark		\checkmark
1	0	0	0	1		\checkmark		\checkmark		\checkmark	\checkmark	
$+2,+3,+3,+4$												
5	0	1	0	1		\checkmark	\checkmark			\checkmark	\checkmark	
13	1	1	0	1	\checkmark		\checkmark			\checkmark	\checkmark	
15	1	1	1	1	\checkmark		\checkmark		\checkmark		\checkmark	
11	1	0	1	1	\checkmark			\checkmark	\checkmark		\checkmark	
9	1	0	0	1	\checkmark			\checkmark		\checkmark	\checkmark	
8	1	0	0	0	\checkmark			\checkmark		\checkmark		\checkmark

Least number of iterations in basis (A-M-M)

Vertex		(orientation, direction)-pair								Options
		$+4$	-4	+3	-3	+2	-2	+1	-1	
0	0000	0	1	0	1	0	1	0	1	$+1,+2,+3,+4$
1	0001	0	2	0	2	0	2	1	1	+2, +3, +4
5	0101	0	3	1	2	0	3	2	1	+2, +4
13	1101	1	3	2	2	0	4	3	1	+2
15	1111	2	3	3	2	1	4	4	1	-1
14	1110	3	3	4	2	2	4	4	2	-3
10	1010	4	3	4	3	3	4	4	3	+1, -2
11	1011	5	3	4	4	4	4	5	3	-2
9	1001	6	3	4	5	4	5	6	3	-1
8	1000	7	3	4	6	4	6	6	4	

Least number of iterations in basis

- We searched a catalogue of acyclic USOs for $n=3,4$

Least number of iterations in basis

- We searched a catalogue of acyclic USOs for $n=3,4$
- We found no examples of Hamilton paths using this rule in dimensions 3 or 4 .

Least used direction (A-M-M)

Vertex		Direction				Options
		4	3	2	1	
0	0000	0	0	0	0	1, 2, 3, 4
1	0001	0	0	0	1	2, 3, 4
3	0011	0	0	1	1	4
11	1011	1	0	1	1	2
9	1001	1	0	2	1	1
8	1000	1	0	2	2	

Least used direction

For n-cube H_{n}, directions $i=1, \ldots, n$

- $n v(i)=$ the number of times that direction i has been taken.

Least used direction

For n-cube H_{n}, directions $i=1, \ldots, n$

- $n v(i)=$ the number of times that direction i has been taken.
- Initialize: $n v(i)=0$ for $i=1, \ldots, n$

Least used direction

For n-cube H_{n}, directions $i=1, \ldots, n$

- $n v(i)=$ the number of times that direction i has been taken.
- Initialize: $\mathrm{nv}(\mathrm{i})=0$ for $i=1, \ldots, n$
- Update: From current vertex y choose an outgoing edge to a facet F_{j} minimizing $n v(j)$

Least used direction

For n-cube H_{n}, directions $i=1, \ldots, n$

- $n v(i)=$ the number of times that direction i has been taken.
- Initialize: $\mathrm{nv}(\mathrm{i})=0$ for $i=1, \ldots, n$
- Update: From current vertex y choose an outgoing edge to a facet F_{j} minimizing nv(j)
- Set $n v(j)=n v(j)+1$.
- Special case of Zadeh's rule.

Unique H_{3}

Hamilton path using least used direction rule It satisfies the Holt-Klee condition

$$
\begin{aligned}
& n v(1)=n v(2)=n v(4)=0 \\
& \text { 4: } n v(1)=n v(2)=0, n v(4)=1 \\
& 2: n v(1)=0, n v(2)=1, n v(4)=1 \\
& 1: n v(1)=1, n v(2)=1, n v(4)=1 \\
& 2: n v(1)=1, n v(2)=2, n v(4)=1 \\
& 4: n v(1)=1, n v(2)=2, n v(4)=2 \\
& 2: n v(1)=1, n v(2)=3, n v(4)=2 \\
& 1
\end{aligned}
$$

Least visited rule

Unique H_{4}

Hamilton path using least used direction rule It satisfies the Holt-Klee condition

H_{5}

Another candidate for H_{5}

Computational results: least used direction

dimension	2	3	4	5
number of Hamilton paths	1	1	1	2
Holt-Klee	1	1	1	0

Computational results: least used direction

dimension	2	3	4	5
number of Hamilton paths	1	1	1	2
Holt-Klee	1	1	1	0

- For $n \leq 4$, each example extends to the next dimension

Computational results: least used direction

dimension	2	3	4	5
number of Hamilton paths	1	1	1	2
Holt-Klee	1	1	1	0

- For $n \leq 4$, each example extends to the next dimension
- Since HK fails for $n=5$, these examples are not LP-digraphs

Computational results: least used direction

But things do not go well for $n \geq 6 \ldots$

dimension	2	3	4	5	6	7	8
number of Hamilton paths	1	1	1	2	0	0	0
Holt-Klee	1	1	1	0	0	0	0

We did a computer search of all acyclic USOs that contain Hamiltonial paths.

Least times to enter basis (Zadeh's rule)

Facets $F_{i}, i=1, \ldots, 2 n$

- $n v(i)=$ the number of times that F_{i} has been visited.

Least times to enter basis (Zadeh's rule)

Facets $F_{i}, i=1, \ldots, 2 n$

- $n v(i)=$ the number of times that F_{i} has been visited.
- Initialize: $n v(i)=0$ for all i

Least times to enter basis (Zadeh's rule)

Facets $F_{i}, i=1, \ldots, 2 n$

- $n v(i)=$ the number of times that F_{i} has been visited.
- Initialize: $n v(i)=0$ for all i
- Update: From current vertex y choose an outgoing edge to a facet F_{j} minimizing nv(j)

Least times to enter basis (Zadeh's rule)

Facets $F_{i}, i=1, \ldots, 2 n$

- $n v(i)=$ the number of times that F_{i} has been visited.
- Initialize: $n v(i)=0$ for all i
- Update: From current vertex y choose an outgoing edge to a facet F_{j} minimizing nv(j)
- Set $n v(j)=n v(j)+1$.

Computational results: least times to enter basis

The deluge!

dimension	2	3	4	5	6	7
Ham. paths	1	2	17	1,072	$3,262,342$	$\geq 42,500,000,000$
Holt-Klee	1	2	12	79	360	none yet

Williamson Hoke's theorem (1988)

- Given an oriented n-cube H, let $d_{k}=$ number of vertices with in-degree k

Williamson Hoke's theorem (1988)

- Given an oriented n-cube H, let $d_{k}=$ number of vertices with in-degree k
- Theorem: H is an AUSO if and only if

$$
d_{k}=\binom{n}{k}, \quad k=0,1, \ldots, n
$$

How do we get the results?

- Hopeless trying to generate all AUSOs directly

How do we get the results?

- Hopeless trying to generate all AUSOs directly
- A H.P. defines the orientation of all edges of an acyclic orientation

How do we get the results?

- Hopeless trying to generate all AUSOs directly
- A H.P. defines the orientation of all edges of an acyclic orientation
- Williamson-Hoke's theorem characterizes which orientations are AUSOs

How do we get the results?

- Hopeless trying to generate all AUSOs directly
- A H.P. defines the orientation of all edges of an acyclic orientation
- Williamson-Hoke's theorem characterizes which orientations are AUSOs
- We generate only HPs consistent with Zadeh's rule using nv sequence

How do we get the results?

- Hopeless trying to generate all AUSOs directly
- A H.P. defines the orientation of all edges of an acyclic orientation
- Williamson-Hoke's theorem characterizes which orientations are AUSOs
- We generate only HPs consistent with Zadeh's rule using nv sequence
- Reject partial HP if it violates W-H theorem

How few times can a variable enter the basis?

- In Klee-Minty examples, one variable never enters the basis.

How few times can a variable enter the basis?

- In Klee-Minty examples, one variable never enters the basis.
- Theorem:

Let H be a AUSO n-cube with a H.P. followed by Zadeh's rule. Each variable enters the basis at least $\frac{2^{n-2}}{n}-1$ times.

Proof of the lower bound

- Variable $-d$ enters the basis min number k times

Proof of the lower bound

- Variable $-d$ enters the basis min number k times
- At the sink $\sum_{i=1}^{2 n} n v(i)=2^{n}-1$

Proof of the lower bound

- Variable $-d$ enters the basis min number k times
- At the sink $\sum_{i=1}^{2 n} n v(i)=2^{n}-1$
- Pivot $\pm d$ is blocked at v if v 's twin already visited

Proof of the lower bound

- Variable -d enters the basis min number k times
- At the sink $\sum_{i=1}^{2 n} n v(i)=2^{n}-1$
- Pivot $\pm d$ is blocked at v if v 's twin already visited
- Number of blocked pivots is at most 2^{n-1}

Proof of the lower bound

- Variable $-d$ enters the basis min number k times
- At the sink $\sum_{i=1}^{2 n} n v(i)=2^{n}-1$
- Pivot $\pm d$ is blocked at v if v 's twin already visited
- Number of blocked pivots is at most 2^{n-1}
- $\sum_{i=1}^{2 n} n v(i) \leq 2 n(k+1)-1+2^{n-1}$

Proof of the lower bound

- Variable $-d$ enters the basis min number k times
- At the sink $\sum_{i=1}^{2 n} n v(i)=2^{n}-1$
- Pivot $\pm d$ is blocked at v if v 's twin already visited
- Number of blocked pivots is at most 2^{n-1}
- $\sum_{i=1}^{2 n} n v(i) \leq 2 n(k+1)-1+2^{n-1}$
- Combining, $k \geq \frac{2^{n-2}}{n}-1$

Hamiltonian paths are special

- The theorem does not generalize to arbitrary exponential length Zadeh paths

Hamiltonian paths are special

- The theorem does not generalize to arbitrary exponential length Zadeh paths
- Let C_{1} and C_{2} be copies of an AUSO with an exponential length Zadeh path.

And the open problems are ...

And the open problems are ...

- ... obvious

