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Abstract
We are given a set S of points in the Euclidean plane. We assume that S is
in general position. A simple polygon P is a surrounding polygon of S if each
vertex of P is a point in S and every point in S is either inside P or a vertex
of P . In this paper, we present an enumeration algorithm of the surrounding
polygons for a given point set. Our algorithm is based on reverse search by
Avis and Fukuda and enumerates all the surrounding polygons in polynomial
delay and quadratic space. It also provides the first space efficient method to
generate all simple polygonizations on a given point set in exponential time.
By relating these two problems we provide an upper bound on the number
of surrounding polygons.
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Figure 1: (a) A point set S. (b) A surrounding polygon of S. (c) A simple polygonization
of S.

1. Introduction

Enumeration problems are fundamental and important in computer sci-
ence. Enumerating geometric objects are studied for triangulations [4, 5,
13], non-crossing spanning trees [4, 13], pseudoline arrangements [25], non-
crossing matchings [24], unfoldings of Platonic solids [12], and so on. In this
paper, we focus on the enumeration problem of generating simple polygons
with the following additional property. We are given a set S of n points in
the Euclidean plane. A surrounding polygon of S is a simple polygon P such
that each vertex of P is a point in S and every point in S is either inside
the polygon or a vertex of the polygon. A surrounding polygon P of S is a
simple polygonization1 of S if every point of S is a vertex of P . See Figure 1
for examples.

Simple polygonizations are studied from various perspectives. As for the
counting, the current fastest algorithm was given by Marx and Miltzou [14],
and it runs in nO(

√
n) time when a set of n points is given. It is still

an outstanding open problem to propose a polynomial-time algorithm that
counts the number of simple polygonizations of a given point set [16]. Much
attention has been paid for combinatorial counting, too. A history on the
lower and upper bounds is summarized by Demaine [8] and O’Rourke et
al. [19]. Let bP be the number of simple polygonizations of a point set P ,
and let bn be the maximum of bP among all the sets P of n points. The
current best lower and upper bounds for bn are 4.64n [9] and 54.55n [20],
respectively.

Another research topic is a random generation of simple polygonizations.
Since no polynomial-time counting algorithm is known for simple polygo-

1The simple polygonizations are also called spanning cycles, Hamiltonian polygons, and
planar traveling salesman tours.
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nizations, it seems to be a hard task to propose a polynomial-time algorithm
that uniformly generates simple polygonizations. However, uniformly ran-
dom generations are known for restricted classes: x-monotone polygons [26]
and star-shaped polygons [21]. These uniform random generations are based
on counting. For general simple polygonizations, heuristic algorithms are
known [3, 22, 26]. Those algorithms efficiently generate simple polygons, but
not uniformly at random.

At the SPA Workshop in Yugawara in 1991, Avis asked whether the set
of all simple polygonizations on a planar n point set is connected by lo-
cal 2-edge flip operations, allowing their enumeration by the reverse search
technique [4]. Such a technique works, for example, for triangulations and
non-crossing spanning trees. Unfortunately, Hernando, Houle and Hurtado
[11] showed the answer is no. Whether allowing k-edge flips for larger k is
sufficient remains open. In fact, very little is known about the problem of
enumerating all the simple polygonizations, as mentioned in [23]. A trivial
enumeration is to generate all the permutations of given points, then out-
put only simple polygonizations. However this method requires Ω(n!) time
whereas it is known that the number of polygonizations is exponentially
bounded in n. The algorithm we give for enumerating surrounding poly-
gons uses reverse search and O(n2) space. The output contains a list of all
simple polygonizations on S, providing a partial answer to Avis’ problem.
In Section 5, by relating the two problems, we will see that the algorithm’s
running time is exponentially bounded in n providing a big improvement on
the trivial algorithm. We note here that a very recent result of Nakahata
et al. [17] also provides an exponential algorithm for enumerating all simple
polygonizations using a completely different technique. The space used is
exponential in n. There remains the interesting and challenging question of
whether all the simple polygonizations of a given point set can be enumerated
in output-polynomial time2 or in polynomial delay3.

In this paper we consider the problem of enumerating the surrounding
polygons of a given point set S. From the definition, the set of surrounding

2The running time of an enumeration algorithm A for an enumeration problem is
output-polynomial if the total running time of A is bounded by a polynomial in the input
and output size of the problem.

3The running time of an enumeration algorithm A for an enumeration problem is
polynomial-delay if the delay, which is the maximum computation time between any two
output, of A is bounded by a polynomial in the input size of the problem.
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polygons of S includes the set of simple polygonizations of S. We show that,
for this enumeration problem, the reverse search can be applied. First, we
introduce an “embedding” operation: deleting a vertex from a surrounding
polygon and putting it inside the polygon. Then, using this operation, we
define a rooted tree structure among the set of surrounding polygons of S.
We show that, by traversing the tree, one can enumerate all the surrounding
polygons. The proposed algorithm enumerates them in polynomial delay.

2. Preliminaries

A simple polygon is a closed region of the plane enclosed by a simple cycle
of edges. Here, a simple cycle means that two adjacent line segments inter-
sect only at their common endpoint and no two non-adjacent line segments
intersect. An ear of a simple polygon P is a triangle such that one of its
edges is a diagonal of P and the remaining two edges are edges of P . The
following theorem for ears is known.

Theorem 1 ([15]). Every simple polygon with n ≥ 4 vertices has at least two
non-overlapping ears.

Let S be a set of n points in the Euclidean plane. We assume that S is
in general position, i.e., no three points are collinear. The upper-left point of
S is the point with the minimum x-coordinate. If a tie exists, we choose the
point with the maximum y-coordinate among them. A surrounding polygon
of S is a simple polygon such that every point in S is either inside the polygon
or a vertex of the polygon. For example, the convex hull of S is a surrounding
polygon of S. Note that any surrounding polygon has the upper-left point
in S as a vertex.

We denote by P(S) the set of surrounding polygons of S, and denote
by CH(S) the convex hull of S. We denote a surrounding polygon of S by
a (cyclic) sequence of the vertices in the surrounding polygon. Let P =
⟨p1, p2, . . . , pk⟩ be a surrounding polygon of S. Throughout this paper, we
assume that p1 is the upper-left point in S, the vertices on P appear in
counterclockwise order, and the successor of pk is p1. Let p be a vertex
of a surrounding polygon P of S. We denote by pred(p) and succ(p) the
predecessor and successor of p on P , respectively.
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3. Family tree

Let S be a set of n points in the Euclidean plane, and let P(S) be the
set of surrounding polygons of S. In this section, we define a tree structure
over P(S) such that its nodes correspond to the surrounding polygons in
P(S). To define a tree structure, we first define the parent of a surrounding
polygon using the “embedding operation” defined below. Then, using the
parent-child relationship, we define the tree structure rooted at CH(S).

Now, we introduce some notations. Let P = ⟨p1, p2, . . . , pk⟩ be a sur-
rounding polygon of S. Recall that p1 is the upper-left vertex on P and
the vertices on P are arranged in the counterclockwise order. We denote by
pi ≺ pj if i < j holds, and we say that pj is larger than pi. The vertex p
of P is embeddable if the triangle consisting of pred(p), p, and succ(p) does
not intersect the interior of P . See examples in Figure 2(a). In the figure,
p6, p7, p11, p14, p15, p16, and p17 are embeddable.

Lemma 2. Let S be a set of points, and let P be a surrounding polygon in
P(S) \ {CH(S)}. Then, P has at least one embeddable vertex.

Proof. Let us define some notations. The complement, denoted by P , of P
is the set of regions outside P and inside CH(S): P = CH(S) \ P . Note that
the complement consists of zero or more simple polygons (if P = CH(S), P
is the empty set).

It can be observed that a vertex p on P is embeddable if and only if the
triangle consisting of pred(p), p, and succ(p) is either (1) a simple polygon of
3 vertices in P or (2) an ear of a simple polygon in P .

If P includes a simple polygon of 3 vertices, then P includes an embed-
dable vertex. Otherwise, let us assume that P has no simple polygon of 3
vertices. Then, a simple polygon Q with 4 or more vertices in P exists, since
P ̸= CH(S) holds. From Theorem 1, Q has at least two non-overlapping ears.
At least one of them includes an embeddable vertex on P .

Now, let us define an operation that makes another surrounding polygon
from a surrounding polygon. Let p be an embeddable vertex on P . An em-
bedding operation to p is to remove the two edges (pred(p), p) and (p, succ(p))
and insert the edge (pred(p), succ(p)). Intuitively, an embedding operation
“embeds” a vertex into the interior of P . See Figure 2.

We denote by larg(P ) the embeddable vertex of largest index on P . The
parent of P , denoted by par(P ), is the polygon obtained by embedding larg(P )
in the interior of P . Now, we have the following lemma.
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Figure 2: (a) A surrounding polygon, where p6, p7, p11, p14, p15, p16, and p17 are embed-
dable. (b) The surrounding polygon obtained by embedding p16. The point p16 is em-
bedded inside the polygon. (c) The parent of the polygon in (a), which is obtained by
embedding p17.
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Figure 3: A parent sequence.

Lemma 3. Let S be a set of n points in the Euclidean plane, and let P be
a surrounding polygon in P(S) \ {CH(S)}. Then, the parent par(P ) of P
always exists and is unique.

Proof. From Lemma 2, P has at least one embeddable vertex. Hence, larg(P )
is always defined. Moreover, larg(P ) is unique for P from its definition.
Therefore the claim holds.

Note that par(P ) is also a surrounding polygon of S. By repeatedly find-
ing the parents from P , we obtain a sequence of surrounding polygons. The
parent sequence PS(P ) = ⟨P1, P2, . . . , Pℓ⟩ of P is a sequence of surrounding
polygons such that the first polygon is P itself and Pi is the parent of Pi−1

for each i = 2, 3, . . . , ℓ. See Figure 3. As we can see in the following lemma,
the last polygon in a parent sequence is always CH(P ).

Lemma 4. Let S be a set of n points in the Euclidean plane, and let P be a
surrounding polygon in P(S)\{CH(S)}. The last polygon of PS(P ) is CH(S).
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Input point set

Figure 4: An example of a family tree.

Proof. Let PS(P ) = ⟨P1, P2, . . . , Pℓ⟩ be the parent sequence of P . For a
polygon Pi in PS(P ), we define a function ϕ(Pi) as the number of edges on
Pi. Note that ϕ(CH(S)) ≤ ϕ(Pi) holds and ϕ(Pi) = ϕ(CH(S)) if and only
if Pi = CH(S). From the definition of the parent, it can be observed that
ϕ(Pi) = ϕ(Pi−1) − 1 for each i = 2, 3, . . . , ℓ. From Lemma 2, the parent of
a surrounding polygon always exists unless the surrounding polygon is the
convex hull. Therefore, Pℓ = CH(S) holds.

From Lemma 4, for any surrounding polygon, the last polygon of its
parent sequence is the convex hull. By merging the parent sequences for all
surrounding polygons in P(S), we have the tree structure rooted at CH(S).
We call such a tree the family tree. An example of the family tree is shown
in Figure 4.

4. Enumeration algorithm

In this section, we present an enumeration algorithm that, for a given
set S of n points, enumerates all the surrounding polygons in P(S). In the
previous section, we defined the family tree over P(S). We know that the
root of the family tree is the convex hull of S. Hence, we obtain the following
enumeration algorithm. We first construct the convex hull of S. Then, we
traverse the (implicitly defined) family tree with depth first search. This
algorithm can enumerate all the surrounding polygons in P(S). To do the
search, we design an algorithm that finds all the children of any surrounding
polygon of S. Starting from the root, we apply the algorithm recursively,
and then we can traverse the family tree.
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To describe how to construct children, we introduce some notations.
Let P = ⟨p1, p2, . . . , pk⟩ be a surrounding polygon in P(S). For an edge
(pi, succ(pi)) of P and a point p inside P , we denote by P (pi, p) the poly-
gon obtained by removing (pi, succ(pi)) and inserting two edges (pi, p) and
(p, succ(pi)). Intuitively, this operation is the reverse one of the embedding
operation. We call it a digging operation. Any child of P is described as
P (pi, p) for some pi and p. Hence, for all possible P (pi, p), if we can check
whether or not P (pi, p) is a child, then one can enumerate all the children.
We have the following observation.

Lemma 5. Let P = ⟨p1, p2, . . . , pk⟩ be a surrounding polygon of a set of
points. For a point pi (1 ≤ i ≤ k) on P and a point p inside P , P (pi, p) is a
child of P if

(1) P (pi, p) is a surrounding polygon of S and
(2) par(P (pi, p)) = P holds.

Actually, using the conditions in Lemma 5, we obtain the child-enumeration
algorithm. However, let us give a more detailed case analysis to describe our
algorithm. If P (pi, p) is not a surrounding polygon, then P (pi, p) is not a
child of P (see Figure 5(b)). Hence, in the case analysis below, we only
consider the cases that P (pi, p) is a surrounding polygon.

Case 1: pi ≺ pred(larg(P )).
Here, pred(larg(P )) is the predecessor of larg(P ). In this case, if we apply

a digging operation to a point pi smaller than pred(larg(P )), in the poly-
gon P (pi, p), the embeddable vertex of largest index is still larg(P ), that is,
larg(P ) = larg(P (pi, p)) holds. Hence, par(P (pi, p)) ̸= P holds. Therefore,
P (pi, p) is not a child of P . See Figure 5(c) for an example.

Case 2: pi = pred(larg(P )).
If larg(P ) is still embeddable in P (pi, p), then P (pi, p) is not a child of

P . See Figure 5(d). However, if larg(P ) is not embeddable in P (pi, p), then
P (pi, p) is a child. See Figure 5(e).

Case 3: pred(larg(P )) ≺ pi
In this case, p = larg(P (pi, p)) always holds. Hence, P = par(P (pi, p))

holds. Thus, P (pi, p) is a child of P . See Figure 5(f).

The above case analysis gives the algorithm shown in Algorithm 1. We
apply the algorithm recursively starting from the convex hull, and we can
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Figure 5: (a) A surrounding polygon P , where larg(P ) = p7. (b) P (p10, p14) is not a child
of P , since it is not a surrounding polygon. (c) P (p2, p12) is not a child of P . (d) P (p6, p14)
is not a child of P . (e) P (p6, p13) is a child of P , since p7 is not embeddable in P (p6, p13).
(f) P (p10, p12) is a child of P .

traverse the family tree. one can enumerate all the surrounding polygons in
P(S).

Theorem 6. Let S be a set of n points in Euclidean plane. Algorithm 1
enumerates all the surrounding polygons in P(S) in O((n2 log n) |P(S)|)-time
and O(n2)-space.

Proof. We first show that Algorithm 1 enumerates all the surrounding poly-
gons in P(S) without duplicate. For any surrounding polygon in P(S), the
parent is always defined (Lemma 3) and its parent sequence ends up with the
convex hull (Lemma 4). Hence, every surrounding polygon is included in the
family tree of P(S). Moreover, for any surrounding polygon in P(S)\CH(S),
the parent is defined uniquely (Lemma 3). Hence, Algorithm 1 outputs each
surrounding polygon exactly once. Therefore, the algorithm enumerates all
the surrounding polygons in P(S) without duplicate.

Next, we analyze the running time of our enumeration algorithm. We
estimate the running time for one recursive call of Algorithm 1 in worst
case. Since the double for-loops in Lines 8–11 dominate the running time of a
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Algorithm 1: Find-Children(P )
1 /* P is a surrounding polygon of a point set S and S is

stored in a global variable. */
2 Output P .
3 Set pi = pred(larg(P )).
4 foreach point p inside P do // Case 2
5 if larg(P ) is not embeddable in P (pi, p) then
6 if P (pi, p) is a surrounding polygon then
7 Find-Children(P (pi, p))

8 foreach pi with pred(larg(P )) ≺ pi do // Case 3
9 foreach point p inside P do

10 if P (pi, p) is a surrounding polygon then
11 Find-Children(P (pi, p))

recursive call, we analyze the running time of only this part. Here, the outer
for-loop takes O(n) iterations. Similarly, the inner for-loop takes O(n) iter-
ations. The if-condition can be checked in O(log n) time, as follows. Recall
that P is a surrounding polygon. Hence, if (1) the triangle consisting of pi,
succ(pi) and p has no point inside and (2) each of line segments (pi, p) and
(succ(pi), p) has no intersection with edges of P , P (pi, p) is a surrounding
polygon (the first condition in Lemma 5). The condition (1) can be checked
using a triangular range query [10], which asks the designated three points
include a point inside. This query can be done in O(log n) time with O(n2)-
time preprocessing and O(n2)-additional space for an input point set. The
condition (2) can be checked using a ray-shooting query, which asks the first
intersection of a query ray (a half line) with the polygon. It is easy to ob-
serve that the first intersection point is further than p from pi (and succ(pi))
if and only if (pi, p) (and (succ(pi), p)) has no intersection, respectively. A
ray-shooting query can be done in O(log n) time with O(n log n)-time prepro-
cessing and O(n)-additional space for each surrounding polygon [6, 7]. For
the triangular range queries, the algorithm requires O(n2)-time preprocess-
ing only once and O(n2)-additional space. For the ray-shooting queries, each
recursive call in the algorithm requires O(n log n)-time preprocessing and
O(n)-additional space. Therefore, the running time of each recursive call is
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O(n2 log n) time and the whole of the algorithm requires O(n2) space.

From the theorem above, one can see that the running time of our algo-
rithm is output-polynomial. Using the alternative output method in [18], we
have a polynomial-delay time enumeration algorithm. In the traversal, the
algorithm outputs polygons with even depth when we go down a family tree
and outputs polygons with odd depth when we go up. More precisely, we
modify Algorithm 1 so that the algorithm outputs the current surrounding
polygon P before the children of P in even depth and outputs P after the
children of P in odd depth. It is easy to see that the modified algorithm
outputs a surrounding polygon once at most three edge traversals in a family
tree. See [18] for further details.

Corollary 7. Let S be a set of n points in Euclidean plane. Algorithm 1
enumerates all the surrounding polygons in P(S) in O(n2 log n)-delay and
O(n2)-space.

5. The number of surrounding polygons and simple polygoniza-
tions

In this section we relate the number of simple polygonizations and sur-
rounding polygons on a given point set S. Using known results on the latter
allows us to give a worst case upper bound on the output size of our algo-
rithm. Since the relationship is quite tight this also shows that our algorithm
gives a relatively good method to enumerate simple polygonizations, which
is space efficient.

Let S be a set of n points in Euclidean plane. We denote by SP(S)
the set of its simple polygonizations and by P(S) the set of its surrounding
polygons.

Proposition 1. Let S be a set of n points in Euclidean plane. Suppose the
number of simple polygonizations of S is at most cn for a constant c, that
is |SP(S)| ≤ cn. Then the number of surrounding polygons of S is at most
(c+ 1)n, that is |P(S)| ≤ (c+ 1)n+1.

Proof. Let P(S, p) be the set of surrounding polygons of S with p inside
points. Then we have the following inequality:

|P(S, p)| ≤
(
n

p

)
cn−p.

11



Hence, we have

|P(S)| =
n−3∑
p=1

|P(S, p)|

≤
n∑

p=1

(
n

p

)
cn−p

= (c+ 1)n.

For any point set, the number of simple polygonizations is bounded above
by O∗(54.55n) [20]. Hence the proposition implies that for any point set
the number of surrounding polygons is bounded above by O∗(55.55n). As
remarked earlier, a very recent result [17] gives a method using O∗(4n) time
and exponential space to count the number of simple polygonizations. Their
method can also be used to generate them.

Note that since the base of the exponentials differ by one, Algorithm 1
may not give either an output polynomial or polynomial time delay method
for enumerating simple polygonizations. Although the analysis above is
surely not tight, we present empirical evidence in the next section that shows
the output sizes of the two problems do in fact grow at different rates.

6. Experimental results

We implemented our enumeration algorithm in Section 4. This section
shows experimental results for small point sets. We ran our enumeration
algorithm for random point sets and point sets representing order types.

Our experimental environment is as follows: Intel Xeon(R) W-2102 CPU
2.90GHz x 4 processor, 32GB memory, Ubuntu 18.04 OS, GNU C++ com-
piler, and CGAL 4.11-2build1.

We generated random point sets in Euclidean plane, as follows. For each
k = 3, 4, . . . , 12 and p = 0, 1, . . . , 9 with k + p ≤ 12, we randomly generated
100 point sets in an unit grid such that the convex hull of each point set
consists of k vertices and includes p points inside. We enumerated all the
surrounding polygons for every generated point set for each k and p. We cal-
culated the numbers of surrounding polygons and simple polygonizations for
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each point set to compare them. Besides, we calculated the number of leaves
in the family tree. It can be observed that, in Figure 4, almost all leaves are
simple polygonizations. More precisely, a surrounding polygon P is a simple
polygonization if and only if P is a leaf with the maximum depth in a family
tree. To practically investigate how many leaves are simple polygonizations,
we also calculated the number of leaves of the family tree for each point set.
Our enumeration algorithm (Algorithm 1) can be used to enumerate all
the simple polygonizations, if we modify the algorithm so that only simple
polygonizations are output. Note that all the simple polygonizations appear
as leaves in a family tree. To estimate the running time for such an enumer-
ation, the ratio between the number of surrounding polygons and leaves of
a family tree plays an important role. Indeed, we gave a upper bound for
the number of surrounding polygons using bounds for the number of simple
polygonizations (Proposition 1). In this section, we investigate the behavior
of the ratio empirically.

Table 1 shows our experimental results. Each cell consists of three num-
bers: (1) the average number of surrounding polygons (#surp(k, p)), (2) the
average number of simple polygonizations (#simp(k, p)), and (3) the average
number of leaves of family trees (#leaves(k, p)) for 100 point sets for each k
and p.

First, we can see the following basic observations from Table 1. When
we fix k, as p increases, both #surp(k, p), #simp(k, p), and #leaves(k, p)
increase, respectively. Similarly, if we fix p, as k increases, the three values
increase, respectively. When we fix k+ p, as k decreases and p increases, the
three values increase, respectively.

Next, let us compare #simp(k, p) with #leaves(n, p) and #surp(n, p), re-
spectively. It is easy to see that #simp(k, p) ≤ #leaves(k, p) ≤ #surp(k, p)

holds. Let us focus on the ratio #leaves(k,p)
#simp(k,p)

. For very small k and p, #simp(k, p)

and #leaves(k, p) take close values. However, when we fix k, as p increases,
#leaves(k,p)
#simp(k,p)

increases. Next, let us see the ratio #surp(k,p)
#simp(k,p)

. When we fix k,
as p increases, #surp(k,p)

#simp(k,p)
increases. In our experiments, for a fixed k, as

p grows, both #leaves(k, p) and #surp(k, p) grow faster than #simp(k, p).
Therefore, it is easy to imagine that the above two ratios tend to increase
monotonically. Proving or disproving this an interesting open problem.

Finally, we ran our algorithm for point sets representing order types [2].
Points sets representing all the order types are published in Aichholzer’s
web page [1]. The purpose of these experiments is to investigate the ex-
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HHHHHHk
p 0 1 2 3 4 5 6 7 8 9

1 4 13 43 149 548 1970 7291 28632 111851
3 1 3 8 22 70 230 735 2438 8556 30349

1 3 8 26 90 319 1132 4159 16226 63121
1 5 19 73 272 1013 4066 16172 60910 -

4 1 4 12 40 129 424 1505 5327 17906 -
1 4 13 47 168 616 2398 9471 35580 -
1 6 27 113 463 1894 7710 31794 - -

5 1 5 18 64 224 797 2865 10436 - -
1 5 20 75 297 1176 4681 19005 - -
1 7 37 173 764 3329 14081 - - -

6 1 6 26 101 381 1439 5305 - - -
1 6 27 121 503 2121 8791 - - -
1 8 47 247 1207 5423 - - - -

7 1 7 34 150 623 2390 - - - -
1 7 36 175 823 3544 - - - -
1 9 60 342 1754 - - - - -

8 1 8 45 214 929 - - - - -
1 8 48 251 1216 - - - - -
1 10 74 459 - - - - - -

9 1 9 57 297 - - - - - -
1 9 60 343 - - - - - -
1 11 89 - - - - - - -

10 1 10 70 - - - - - - -
1 10 73 - - - - - - -
1 12 - - - - - - - -

11 1 11 - - - - - - - -
1 11 - - - - - - - -
1 - - - - - - - - -

12 1 - - - - - - - - -
1 - - - - - - - - -

Table 1: Experimental results. Each cell consists of the average number of surrounding
polygons, the average number of simple polygonizations, the average number of the leaves
in family trees for each k = 3, 4, . . . , 12 and p = 0, 1, . . . , 9 such that k + p ≤ 12. The
numbers after decimal points are removed in the table.
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n #point sets #surpord(n) #simpord(n) Time(s)
Ave Max Ave Max

4 2 2.0 4 2.0 3 < 0.01
5 3 6.3 13 4.3 8 < 0.01
6 16 25.1 54 14.6 29 0.04
7 135 91.7 193 46.9 92 1.54
8 3315 338.5 783 153.9 339 123.27
9 158817 1281.1 3182 521.5 1282 22801.60

Table 2: The number of point sets representing different order types (from Aich-
holzer’s webpage [1]), the average and maximum numbers of the surrounding poly-
gons (#surpord(n)) and the average and maximum numbers of simple polygoniza-
tions (#simpord(n)) for n = 4, 5, 6, 7, 8, 9. Each average number is rounded down to one
decimal place. Time column shows running times to enumerate all the surrounding poly-
gons for all point sets representing order types for each n = 4, 5, 6, 7, 8, 9 (< 0.01 means
less than 0.01 seconds).

act maximum numbers of surrounding polygons and simple polygonizations
among points sets representing all order types. For n = 4, 5, 6, 7, 8, 9, we
calculated the average and maximum numbers of the surrounding poly-
gons (#surpord(n)) and the simple polygonizations (#simpord(n)), which are
shown in Table 2. Running times are also shown in the table. We plot the
maximum numbers in the table in Figure 6 and fit the plotted values using an
exponential function d(cn), where c and d are constants, using Gnuplot 5.2.
As a result, we obtained two fitting functions: 0.0106(4.0577n) for surround-
ing polygons and 0.0085(3.7597n) for simple polygonizations. From these fit-
ting functions, it seems that the maximum numbers of surrounding polygons
grows exponentially faster than the one of simple polygonizations. Thus, we
conjecture that the enumeration algorithm for simple polygonizations using
Algorithm 1 is neither polynomial-delay nor output-polynomial.
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function, 0.0106(4.0577n), for the values. The green line connects the plotted values for the
maximum numbers of simple polygonizations. The yellow dotted line is a fitting function,
0.0085(3.7597n), for the values.
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