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ABSTRACT

This paper describes an imped implementation of the verse searcher-
tex enumeration/covex hull algorithm ford-dimensional covex lyhedra. The
implementation uses a lexicographic ratio test to resdégenerag, works on
bounded or unbounded polyhedra and ugastearithmetic with all integer yot-
ing. It can also be used to compute the volume of theesohull of a set of
points. for a polyhedron withm inequalities ind variables and knownx¢reme
point, it finds all bases in tim®(md®) per basis. This implementation can han-
dle problems of quite lge size, especially for simple polyhedra (where each
basis corresponds to @nex and the compleity reduces tdO(md) per \ertex).
Computational xperience is included in the paparcluding a comparison with
an earlier implementation.

1. Introduction

This paper describdss [1], a revised version of theverse searchertex enumeration algo-
rithm proposed by Fukuda and the author [2]. This implementation is a majorvemaat on
rs, a pogram released by the author in 1992, awikeel in 1994 [4], which was based on the
original method described in [2]. The impements in speed are attiable to man factors,
including an impreed pivot selection procedure to resel\degenerayg lexicographically faster
arithmetic based on irger rather than rational arithmetic, and optional cacheing to reduce back-
track pvots. Thenew implementation is more general, as it handles bounded and unbounded
polyhedra, does not require norgaivity of variables, and performs automatic transformations
to allow solution of facet enumeration and Voronoi diagram problems.

The main function ofrs is to find the vertices andieeme rays of a polyhedron described
by a system of linear inequalitieé description of the theory underlying the current implementa-
tion of this function is the purpose of this pap&dditional functions ofrs are hiilt on top, and
are described briefly here. These include: facet enumeration, computati@noablertices,
volume computation, estimation of the output size, and restart capabiliey remainder of this
introduction contains an informal description ofwhtrs works. Section2 of the paper gies
some background material and basic definitioBsection 3 describes dictionaries, their relation-
ship to vertices and extreme rays andopng. Section 4 describes lexicographiwgbing and
proves that each &rtex and extreme ray is representable byxapesitive basis. Section 5 is con-
cerned with the unique representation of vertices and extreme rays-toynldoases. Section 6
contains a description ofwerse search, and an efficient implementation of therse function as
used inlrs. Section 7 describes some implementation issues, including trgeirpeoting for-
mulae used. Section 8 describes brieflwvhihe additional functions mentioned a&Boae
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implemented. Sectiof concludes with some limited computational experience comparing the
current \ersionlrs to the earlier grsionrs. More extensve eperience, and an empirical analysis
of the various speedups is contained in Avis[7].

Briefly and informally the reverse search algorithm works as folle Supposeve hae a
system ofm linear inequalities defining d-dimensional polyhedron iR? and a ertex of that
polyhedron gien by the indices ofd inequalities whose bounding/erplanes intersect at the
vertex. These indices definecabasisfor the \ertex. Thecomplementary set oh - d indices are
called abasis For ary given linear objectrte function, the simpbe method generates a path
betweenadjacentbases (or equalently cobases) which are thosefeliing in one index. The path
is terminated when a basis of artex maximizing this objectie function is found.The path is
found by pvoting, which irvolves interchanging one of thggerplanes defining the current coba-
sis with one in the basis. The path chosen from the iniN@hdiasis depends on thevpt rule
used, which must be finite tww@d cycling. The original implementatiors used Bland least
subscript rule [8].1f we look at the set of all such paths from all bases of the polyhedron, we get
a anning forest of the graph of adjacent bases of the polyhedron. The root of each subtree of
the forest is a basis of an optimurartex. Thereverse search algorithm starts at each root and
traces out its subtree in depth first orderdyersingthe pvot rule.

The algorithm is particularly easy if the polyhedrosiimple(non-dgenerate): eachevtex
lies on &actly d hyperplanes, and so has a unique basis. The spanning forest has one component,
which is a spanning tree of theeséton of the polyhedron, and eadrtex is produced once. An
example of such a polyhedron is the cube, and Figure 1.1 shows a posgitde search tree for
it.
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A complication of the original implementatiora/ the need to handle a degenerate starting
vertex. A dual form of Bland rule had to be implemented in order to compute all bases of this
vertex. Each of these bases was then used as the start for a (priveede reearch.A serious
dravback of the algorithm as originally implementedsathat it computed all bases of the input
polyhedron. For manpolyhedra encountered, especially combinatorial polytopes, the number of
bases is much larger than the number of vertices.

The standard approach to reducing the number of bases is perturbatiersmatikchanges
to the input data so that the resulting polyhedron is simple. The resulting perturbed polyhedron
will typically have nore vertices, bt far fewer bases, than the original polyhedron. Numerical
perturbation was implemented fog, but abandonded because: (i) perturbed vertices tmabe
transformed back to gg frue vertices; (ii) the answer may no longer be correcedigs may be
lost; (iii) perturbation increases the cost of thkteeded precision arithmetic; (iv) anex is



output more than once.

The current ersionlrs resohes dgenerag by use of the well-known lexicographicvoi
selection rule for the simptenethod. Thigule is defined for a subset of the bases, knowrxas le
positve. The subgraph of lepositve bases forms a connected subgraph of the basis graph
which covers all vertices of the polyhedron. Furthermore an objectiinction can be chosen so
that the simpbe method initiated at gnlex-positive basis terminates at a unique-gositve ti-
mum basis. If we initiate the verse search method at this basis andyse the Igicographic
pivot rule we generate a spanning tree of the graph obapdsitive bases. This is the core lo.

As we will see in Section 5, thexienin basis for eachertex is lex-positive. We @n test the
property of being a lemin basis quicklyand report only lex-min based.exicographic pioting
is sometimes referred to as symbolic perturbation, since the grapk-pdditve bases can be
viewed as the skeleton of a simple polyhedron obtained by perturbation of the original polyhe-
dron. Indeed, it is often described by adding powers of a small indetermitatae right hand
side of each inequality to reselvdegeneray. Howeve it can be implemented without yn
change to the original data, and so all of the objections (i)-(iWeabe resolved. Furthermore
we can use the same method for the dual problem of computing the facets ovéhehtof as
set of vertices and extreme rays. In this dual canteroperly interpreted, the graph ofie
positive bases corresponds to a triangulation of thevewriull. Sincethe determinant of each of
these simplices is kmm (see Section 7), an additional advantage is that we can obtaialthe v
ume of a polytope gen by a ®t of \ertices for the same cost as computing the facets of its
corvex hull.

A remarkable feature is that no additional storage is needed at intermediate nodes in the
tree. Going deeper in the tree we explore all valigefise" pvots in order by basic inaefrom
ary given intermediate node. For backtracking, we can use tloe pile to return us to the parent
node along with the currentvoi indices. From there it is simple to continue by considering the
next basic indg as a 'teverse" piot, etc. The algorithm is therefore non-recuesind requires no
stack or other data structure. The output is produced as a duplicate free stream (see Section 5),
which may be usefulven if the computation is too Ige to complete. Empiricallygbout 80-90%
of the running time ofrs is spent proting. Since backtracking generatesetly half of the pi-
ots, considerable savings canmawer be dotained by "cacheing” dictionaries along the current
path from the root.

Althoughlrs is a large impreement onrs, it is far from an efficient general solution to the
vertex enumeration problemSuch a solution should reasonably be required to generaterall v
tices in time polynomial in the input and output size. Currently no such algorithm s koo
exist. Examples contained in Avis, Bremner and Seidel [6}vsthat all pvot algorithms using
numeric or symbolic perturbation may bebaexremely badly: the number of bases computed
can be super-polynomial in the number eftices. This is born out in practice for combinatorial
polytopes.rs is efficient for ertex enumeration of simple (or near-simple) polyhedra, or dually
for facet enumeration of simplicial (or near-simplicial) polyhedrRecently BremnerFukuda
and Marzetta [9] desloped an ingenious primal-dual method fartex enumeration of highly
degenerate simplicial polytopes that satisfy a hereditary propkrtyorks by simulating the
reverse search tree generatedlig/for the (easy) dual facet enumeration problem for simplicial
polytopes. Duallythis method can be used fackt enumeration of simple polytopes. For poly-
topes with zero-one vertices, a polynomial timertex enumeration algorithm was recently
announced by Bussieck and Luebbe{12].

Irs can be diciently parallelized, as has been done byrijer Marzetta, Fukuda and
Nievergelt [10]. This parallel version has been used to esghme extremely large problems
which do not seem solvable by other methods.

2. Background

For a general introduction to ceex polyhedra, the reader is referred to Ziegler [20].
Throughout the paper we will assume tRats a d-dimensional polyhedron ifR%. A classic
result is that® can be represented indways. AnH-representatioris given by am x d matrix



A =(a ) and am-vectorb = (b;):
P={yORY|b+Ayz= 0} (2.1)

If Ais minimal, that is no n can be deleted without changifi®y then P hasm facets each
defined by one of the inequalities in (2.8).vertex YIRY is a point ofP that satisfies an fifiely
independent set af inequalities as equations.e/gssume throughout th& has at least onesy-
tex, which implies tham = d + 1. Anextreme rayz[ORY is a direction such that for somertex
y and ay positive calart, y+tzis in P and satisfies some set df- 1 &finely independent
inequalities as equations. Note that an extreme ray is unique only up to eepwoaitr since if
Zis an extreme ray then sotisfor ary positive salart. An equivalent V-representatiorof P is
given by a ninimal set ofs \ertices y, - - -, Ys andu extreme raysy, - - -, Z,:

S u S

P={yORY|y= 'ZlAiyi + _zlyjzj,ai >0,y 2 o,_zl/\i =1}. (2.2)
1= J: i=

Thevertex enumeratiomproblemis to produce & -representation from aH-representation, and

the facet enumeratiomproblemis to prwide the rgerse transformation. It is well known that

these problems are essentially eglgint, see Section 8.1. In this paper we treat the problem pri-

marily from the verte enumeration perspews.

As an example, consider the unbounded three dimensional polyHediefined by the sys-
tem of 8 inequalities:

1+x,20
1+X220
1_X120
1—X220
1-%x,+%x320
1—X2+X320
1+x,+%x320
1+X2+X320

It has aV-representation gen by the 5 vertices
(1,1,0),(-1,12,0),(1,-1,0), (-1,-1,0), (0,0;1)

and one xtreme ray (0,0,1). Note that the vertices do neehaique cobases. For example the
vertex (-1,-1,0) can be defined by choosing diree of the first tw and last tvo inequalities and
replacing them by equations. Thereme ray has four representations, one with each of the first
four vertices. For example (41, 0)+ (0O, 0,t) satisfies both the second and third inequalities as
equations, and is iR for all t > 0. These representations with distinct vertices are cghethet-

ric rays.

3. Dictionaries

Much of the material in this section is adapted to #mer enumeration setting from stan-
dard results in linear programming, see for example Chvatal [13] and Ignizio salteiCA8].
As with the simplg method, the essential calculations are performed dictionary derived
from (2.1). We dstinguishdecisionvariables X, ...,Xq andslack variables Xg+1, - . . , Xg+m- It
is easy to see that solutions to (2.1) can be put in 1-1 correspondence to solutions of

d

Xg+i = b + X & jx;, i=1,..m
j=1
Xd+i201 i=1,...,m
by identifying x; =y;,j =1,... d. Irs is initiated from a ertex of P, which is either supplied

by the user or is computed by solving a linear prograen (2.1). It is conenient to order the
rows of (2.1) so that the final rows define this initial @rtex. Sincethese rows are fafiely inde-
pendent, we can rewrite the alka/stem ofm equations as the egalent system



d
X :bi+Za'i,jxm+j, i=1,..,m (3.2)
j=1
for a suitable codéiientsb; anda’; ;. For reasons that become clear laveg aigment this sys-
tem by adding the additional equation

XO_bO+ZanXm+J (3.2)
J_
where by =0 and a'p; =-1,j =1,...d. From the \ector b = (b, ...,by,) ard (m+1)xd
matrix A" = (@ ;) we form the (n+ 1) x (d + m+ 1) dimensional matrix

A=[1 -A]

wherel is an fn+ 1) x (m+ 1) identity matrix. Then the augmented system of equations can be
rewritten as

Ax = b. (3.3)

For any matrix such asA, A; refers to thej-th column ofA, and A; refers to the submatrix of
columns ofA indexed by J. We use similar notation foractors. ThenotationA' and A' refers
to rowv i and the submatrix oA with rows indeed by | respectiely. Let B be an ordered
m+1-tupleindexing a set ofim + 1 &finely independent columns &, and letN be an ordered-
tuple indexing the remainingd columns. Therwe may rewrite (3.3) af\gXg + Ay Xy = b,
which is equialent to the system:

| Xg + AgtAyXn = Aglb (3.4)

The system (3.4) is calleddictionary, and consists om+ 1 rows. Thet-th row corresponds to
thet-th index in B. All essential calculations wolve manipulating this dictionaryThe index set
B is called abasis and the ind& set N is called acobasis From ary dictionary we obtain a
basic solution x by setting xg = Agtb and xy =0. B is a feasible basis x is a
basic feasiblesolution and (3.4) is afeasible dictionaryf:

({0,..,d} OB, and

(i) ;20,i0B,i=d+1,...d+m.
In other words, B containsxy and all decision variables, axds non-ngative for all slack ari-

ables. Thenext two propositions she how the vertices andxé¢reme rays oP can be receered
from dictionaries.

Proposition 3.1: Every vertg y of P can be gtended to a basic feasible solution of (3.4), and
ewery basic feasible solutiox of (3.4) can be restricted to a vextef P.

Proof: Let y be a ertex of P. It is defined by choosing a a set dfinequalities in (2.1) and
replacing them by equationtet N be the set of all indicdst d such that inequalityis chosen,

and letB={0,... d+m}-N. Letx; =vy;, = . d, defineXxgsi, i = . mby (3.1) andxo
by (3.2). Clearly Xy =0 and (i) and (ii) are satlsfled singesatisfies (2 1) Corversely if xis a
basic feasible solution, we defigedy y; = xj, j = .,d. Snce xy =0, N indicates a set ad

inequalities from (2.1) that are solved as equatlons to defi@endition (ii) indicatesy is feasi-
ble for (2.1), hence it is a verten

Proposition 3.2: For every extreme ay zof P, there is a asible basiB and inde s[ON such
that letting a= AgLAq:

(@) z =-ta;, 1<i<d,andsome®t 0,

(b) g <0, d+1<i<m

Proof: From the definition, each extreme rayRfs a feasible directior IR?, so hat for some
vertex y and al positive <alart, y+tz satisfies a set ofl —1 inequalities from (2.1) as
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equations. LeN'’ index this set. Sincé® does not admit lines, this ray is terminated by one addi-
tional inequality being satisfied as an equation.diatlex this inequality and sdl = N' + s. We
obtain a set ofl cobasic indice$N which determine theartexy of P. Leta = Ag'A.. By (b) we

can obtain feasible solutions= Aglb - at by settingxy: = 0 and x = t for ary positive calart.

All these solutions satisfy inequalities ixgd by N’ as equations, so restricting to coordinates
1,....d of —a, we dbtain the extreme ray. O

Under the conditions of Proposition 3.2, we say Baepresentdhe geometric ray + tz.
Irs computes feasible dictionaries from which vertices and extreme raysvafy be obtained.
The basic operation is jgivot between tw basesB and B, which is defined by indices[IB and
sON by settingB = B-r +s. This notation means thatreplaces in its position (say) in the
basis B. The operation is the computation of (3.4) Br which is done as folles. Let
a= AglA..
Pivot Operation.

(a) Divide 1ow tof (3.4) by a

(b)) Fori=0,...t-1,t+1,... m subtact g times the n& row tfrom row i of (3.4).

We dscuss the mechanics in Section 7. Thetpis feasibleif both xg and xg are basic feasible
solutions, which implies that botk, and Xg are slack ariables. Thalecision variables do not
play ary active mle in pvot selection, thg are "carried" along merely to enable thertex and
extreme ray coordinates to be computedytae columns of this part of the dictionary).

Let B° ={0,... m}andN" ={m+1,... m+d}. This is the initial basis and cobasis, and
the initial dictionary is gien by (3.2) and (3.1), which we write:

| Xg* + AN* XN* = b. (35)
The first equation in this system is
Xo+ 2 X% =0 (3.6)
iON*

If we interpretxy to be the value of an objeati function, then the basic solution of this dictio-
nary with x5+ =0 has objectte value zero. Since for all basic feasible solutions weeha
X; 20, jON", it is clear that the maximum of, over al basic feasible solutions is zero, and the
initial dictionary achiges this maximum. This initial dictionary is the root of theaise search
tree constructed blys. All other bases are obtained bygiing from this dictionary The initial
basis inverse is the i + 1) x (m+ 1) identity matrix. To perform lexicographic piots from awy
feasible basiB, it will be necessary to ke acess to the basisvierse Ag. This can be readily
obtained from the dictionary (3.4) with badisas follavs. Let€ be the unitm+ 1-vector
indexed O, . . .,mwith a one at indek

Proposition 3.3: Let Bbe a feasible basis. Then, for 0, ... m, olumn iof At is € if i = B,
for somer, otherwise it is the columnAA;.

Proof: The dictionary (3.4) corresponding Bdis obtained by standardwoand column opera-
tions from the equalent system (3.5). It follows from elementary linear algebra that the columns
indexed by B = {0, ... ,m}(3.4) are the basisverse Ag’. O

4. Lex-positive Bases and L exicographic Pivot Selection

The earlier programs computed all basic feasible solutions, and so by Proposition 3.1 this
guarantees all vertices will be founéor degenerate polyhedra there are manore feasible
bases than vertices, so it useful to identify a smaller set of bases thatvstilltthe vertices.

We a@ll a \ectorlex-positiveif its first non-zero coordinate is pos#i We all a feasible basiB

lex-positiveif each of the rows inded d + 1, ..., mof the (m+ 1) x (m+ 1) matrix
OBy ao1 -+ aom U
l ]
1l |
D=0Ualb Azt B=1 0 (4.1)
O 0
(N 0
0 0
0Bm Am1 Omm [
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is lex-positive. The initial basisB” is lex-positive, since in this case (4.1) ist | ], and the con-
dition follows from the feasibility oB". Every feasible basi8 contains indices 0,.d,and so the
columns with these indices in (4.1) remain unchanged, dhe the firstd + 1 columns of the
identity matrix. We will show that each ertex has a l&-positive kasis. D do this we introduce
lexicographic proting, which preserves the property that the basis is lex-p@siti

Let B be a l&-positve hasis. Let sON and consider the columm= AgtA,. If
a; <0,d+1<i<m, this column defines arxgeme rayas ascribed in Proposition 3.2. Other
wise, lett be the inde such thatD'/a; is the lexicographically minimum vector of

Op! .0
0—:a>0d+1<i<mg (4.2)
O O

Such a minimum is unique, becau3ehas full rav rank. Letr be the basic indein B corre-
sponding to rovi. We ébreviate this in the notation:

r = lexminratiqB, )
In case (4.2) is empty and we set 0.

Proposition 4.1: Given a lex-positive basB and s[IN, let r = lexminratiq B, s) # O.

(a) B=B-r +sis a lexpositive basis.

(b) s=lexminratiqB,r).
Proof: Lett be the rav of D corresponding to basic inde [IB, and seta = AgLA,. The piot
operation produces the matiixfor B from D according to the formulae:

. D! R - : :
Dt:;’ D'=D'-4aD', O<i<m, i#t. 4.3)
1
To prove the lex-positivity of B we need only considerws indexed d + 1 <i < m. Since each
row of D is lex-positive, and a; > 0, D'is lex-positive. Therefore, for eachwith a; < 0, D' is the
sum of a l&-positive vector with either zero or axepositive vector, so it is kex-positive. For each
i with a; > 0 we can rewrite its equation alwoas
b D' D

a & a
Sincet was dhosen as the lexicographically minimum vector in (4.2), it vedldhat the right
hand side and hend® is lex-positve. This proves part (a). For part (b) set
a=Ag A.
In the dictionary with basi8, columnr is the identity columre'. Therefore it follows from the
pivot operation that
1

at:E, ai:_aiat, d+1S|Sm,|¢t

t

Using these definitions, foram, d+1<i<m, i#tsuch that >0we can deduce from (4.3)
p_D D
a  a &

Since both terms on the right hand side axeplesitve, we wnclude thatf)i/ai is lexicographi-
cally greater thar@t/at. Therefore rov t is the minimizer for basiB. This praves part (b), since
slB is the ind& corresponding to row of the updated dictionary.

O
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The lexicographic piot rule for the simple method for linear programming choosesqgié
in the follawing way. Assuming the problem is to maximizg, the index s[IN of the entering
variable is chosen so that it has @yaeve wefiicient in rav zero of (3.4). If no such indeexists,
the current basic feasible solution is optimune ¥&n choose = lexminratiq B, s) as the index
of the leaving griable. Ifno such inde exists, the problem is unbounded. The proof of Proposi-
tion 4.1 shows that eachvpt adds a positie nultiple of the l&-positve row r to the objectrie
function. Since the objeot row increases lexicographically with eackatj this praves no kasis
can repeat and the optimum (or an unbounded solution) mestuelly be reachedFurther-
more, if pvots are chosen in thisay, an g@timum solution will be found with a }epositive
basis, gen though in general it may @ mary other bases that are nokipositve. We may nav
strengthen Proposition 3.1.

Proposition 4.2: Every vert& y of P can be extended to a basic feasible solution of (3.4) with a
lex-positive basis.

Proof: It is well known that for eery vertexy of P there is a linear function which obtains its
maximum er P at the unique poiny. We wse this function instead of the the one specified in
(3.2), and initiate the simptemethod using lexicographic ymiting on the resulting dictionary
(3.4) with the initial l&-positive basisB". By the abwe dscussion, we will obtain the optimum
solutiony with a lex-positve asis.0

We all a feasible basiB and its corresponding dictionaoptimumif row zero of Ag*A is
non-ngaive. As described abee, this is the normal stopping criterion for the simpiaethod.
An important feature of lepositive bases is that there is a unique optimum dictianditpinat-
ing the need to initiate verse search on multiple dictionarieé. similar result was obtained by
Bremner et al.[9] using a different argument.

Proposition 4.3: B is the unique optimum lex-positive basis.

Proof: Row zero of the initial dictionary is then+d +1 vector (1,0,...,0,1,...,1) witin zeroes,
derived from equation (3.6), where the cobasidNis={m+1,---,m+d}. Suppose therexésts
another le-positve qtimum basisB # B". Letky,...kq be indices inB-B’. Each inde is
necessarily irN . Consider rav zero of the system (3.4). It is obtained from (3.6) by subtracting
equations with vatiables inged by kq,...,kq from (3.4), since these variables are eliminated
from the cobasis\ . The coefficients of ariablesxg, ..., X, in these equations are the corre-
sponding rass in (4.1), each of which is)epositive by assumption. Since botB and B” are
optimum, B, =0. It follows that @q1,---,aom) is lexicographically ngaive, so aq; <0 for
some inde d +1< j £ m (in fact, the first non-zero coefficient). This contradicts the optimality
of B.O

The results of this subsection are summarized in the following theorem.

Theorem 4.4: For each vertex y of P thele is a kxpositive basid with basic feasible solutior
sudh that % =vy;,i=1,...d. The simpl& method initiated on the corresponding dictionary
(3.4) generates a sequence of lex-positive bases terminating in the hasis B

5. Lex-minimum Bases of Vertices and Extreme Rays

Even with l-positive gvoting, for a non-simple polyhedron the sanasts will often be
generated with manbases. Brtunately a winique representat basis can easily be identified for
each ertex. For a gven basic feasible solutior of (3.4), its lexicographically smallest ba&iss
calledlex-min

Proposition 5.1: B is lexmin for some basic feasible solutiarif and only if thee does not gist
r 0B and sON such that (i) r > s, (i) x, =0, and (iii) (Ag A), % O.
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Proof: Clearly if B is lex-min we cannot satisfy (i)-(iii), for otherwise, the baBis B —r + s has
the same basic feasible solutigrand is lexicographically smaller thah On the other hand,
supposeB is not lex-min. LetB,, be the lex-min basis with the same basic feasible solution
Note that this implies that ¥; # 0, i is contained in botl8 and B,;,. Let s be the smallest inde
in Byin — B. Since B is a basis there is some ixdelB - By, such thatB = B-r + sis a feasi-
ble basis. By the choice ofands we must hae loth (i) and (ii). Finally (iii) follows from the
fact thatr ands define a valid piot for the dictionary with basiB. O

Given a dctionary for B, conditions (i)-(iii) of Proposition 5.1 can be checkedifmd) time.

Proposition 5.2: The lex-min basi8 of each basic feasible solution is lexpositive.

Proof: We nrust shav the rows indeed d +1, ... mof (4.1) are Ig-positive. Since x is feasible,
we need only check rows with = 0. Letr 0B be a basic indecorresponding to such awo
Suppose the smallest indq'afor whicha; ; # 0 is such thata; ; < 0. Now if r < mfrom Proposi-
tion 3.3 we haea;, =1,s0j <r.On the other hand, if = m+ 1, then tvially j <m<r. Also
JON since it indetes a @lumn of (4.1) that is not a uniegtor ThereforeB=B-r + j is a fea-
sible degenerate ymt yielding a licographically smaller basis for the same feasible solution
Since this is a contradiction, it must be thaf > 0 and so row is lex-positie. O

Note that the proof of the proposition implies that in a lex-min Hsisi B andi > m+ 1, then
necessarily > 0.

Next we consider extreme rayslere the situation is more complicated, due to #&t@nce
of parallel rays incident to distinct vertices, known as geometric rays, as illustrated in Section 2.
In a non-simple polyhedron, the same geometric ray may appear yndmtonaries, ie. it may
have mary cobasis representations with the same basic soluttas.not necessarily true that a
geometric ray incident with aevtexy will appear in the be-min dictionary for this ertex. To e
this, note that a dictionary can only identify at mostistinct rays, bt a cone, for example, may
have mary more. Therds, hovever, a way to identify the lex-min basis for yigiven geometric
ray.
Proposition 5.3: The licographically minimum basisepresenting the gometric ay y+tz is
lex-positive.

Proof: Let B be ary basis representing the geometric ray tz, with dictionary gven by (3.4).
Let sON index the column in this dictionary correspondingziand leta = AgtAs. We monsider
anaugmentedlictionary by adding a mevariablexq, g =m+d+1, and appendlng to (3.4) the
new equation:

Xs+ Xq = 1.

This corresponds to adding the constraink 1 to the origlnal problem. The augmented dictio-
nary has basiB + g and basic feasible solutiong, Xq) = (Ag!b, 1). Columns no longer defines

a ray in the augmented dictionagnd it is possible to got on this column with ariablex, leav-

ing the basis, andg entering with value one After thevpt the augmented system has basis
B + s, basic feasible solutionxg, Xs) = (Ag'b — a, 1), and represents theertex y+ z of the aug-
mented problem. By Proposition 5.2, the-fain basisBy,, for this \ertex is lex-positie. Let
Nmin be the corresponding cobasis. Since the basic feasible solution hds sOB,,,. Let
Bmin = Bmin —S. We have 0N, since if not Xy would be in the basiB, i, at value zero. As
g=m+d+1, itis the largest index, gregenerate piot with q leaving the basis would produce
a lexicographically smaller basis with the same basic feasible solution, contradicting the minimal-
ity of Bmin. Since qUN,in, the raw in the dictionary forxs is all zeroes except for a one in the
columns forxs and .

We onsider the piot interchanging<S and Xq in the augmented dictionary with ba&g,,.
Before the piot, the column fonxq is (a,1), since mcreasmg to one changes the basic feasible
solution from &g, Xq) = (Ag b-a,1) to (XB,; Xs) = (Ag 'b,1). The pivot preseres le-

min’
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positivity, since in the column fox, only the last entrycorresponding toxs, is positive. After
the pwvot the column forxs is (a, 1). If we delete the extra wofrom the augmented dictionary
after the prot, we get a dlctlonary for the original problem witx-fgositve basisB,. It has
basic feasible solutiorg . = AB b and columnrs has walue—a, so it represents the geometric ray
y +tz. We daim thatB is Ie<|cograph|cally at least as large Bg;,. This follows from the dct
that B+ s is a basis for theartexy + z in the augmented problem, and so isidegraphically
greater than or equal to the lex-min basis for this ¥eBgi,, = Bin + S. O

A basis representing a geometric ray can be tested for lex-minimality dficiergly. The next
proposition is analogous to Proposition 5.1, Note conditions (i)-(iii) are identical.

Proposition 5.4: B is the lex-min basisepresenting a geometri@y y+ tz with basic feasible
solution xif and only if thee does not grist r(IB and (N such that () r > s, (i) x, =0, (iii)
(AgLAS), 20, and (iv) (Ag Ay, = 0, where At A, represents theay z

Proof: The proof is similar to Proposition 5.1. If (i)-(iv) hold then thegpinterchanging ands
produces a smaller basis with the same propertiesieaty letB,,, be the lex-min basis arl
ary other basis representing+tz. Chooser ands as in Proposition 5.1. As shown there, (i)-(iii)
must hold. It remains to obserthat condition (iv) must hold or else thevgtiwould change col-
umn u by other than multiplication by a posigi <alar and the ne basis would not represent
y+tz.O

The conditions of Proposition 5.4 can be teste@(md) time given the current dictionaryThe
results of this section are summarized in the following theorem.

Theorem 5.5: Each vertex y and eab geometric ay y+tz of P can be epresented uniquely by
its lex-min basis, whitis lexpositive O

The goal of a @rtex enumeration algorithm is to produce a minim\arepresentation (2.2)
for P. In this minimum representation each directibrproducing one or morexgeme rays
should be output once. When the polyhedpPois a pointed cone, the result of Theorem 5.5 is
enough to achie this. Since there is only onerntex, the origin, the only geometric ray with
direction z is tz. In this case the set of lex-min basegegia ninimum V-description ofP. An
important application of this is taéet enumeration of polytopes, see Section 6. For unbounded
polyhedra with more than onentex, we do not knev any local necessary and sufficient condi-
tion to determine the lex-min basis for a ray (as opposed to a geometric ray). Théphec-
essary condition allows some parallel geometric rays to be eliminated. Note conditions (i) and
(iv) are the same as in Proposition 5.4.

Proposition 5.6: B is the lex-min basis whose dictionagpresents aay zin columnAg! A, only

if there does not gist r00B and SN such that (i)r >'s, (i) (Ag-As), > O, (iii) r is an inde which
minimizes theatio (Ag'b)i/(Ag-A,)i, over alli B for which the denominator is positivand (iv)
(Ag Au); =0.

Proof: Conditions (i) - (iii) of the proposition imply that it is possible to makieasible prot to
the basisB = B —r + s, which is lexicographically smaller thad Condition (iv) implies that the
pivot does not change the column of the dictionary representinget X be the basic feasible
solution for basi. B is not necessarily ¥epositive, but its dictionary represents the geometric
ray X + tz. By Proposition 5.3, the lex-min basis for this geometric rayxsplesitve. Since it is
lexicographically no lager thanB, this praves B is not the lex-min basis of the rayo

Testing the conditions of Proposition 5.6 requi@snd) time, tut is more gpensve than testing
those of Propositions 5.1 and 5.4 due to the additional ratio test required for condition (iii).

6. Reverse Search

Based on Theorems 4.4 and 5.5 we can desigitimg algorithms to generate the*n‘/ices
and extreme rays d?. An dgorithm of this type is initiated with theXepositive basisB and
uses lexicographic yoting to generate all Jepositive bases. A duplicate free list of vertices and
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geometric rays is obtained by outputting only thertén bases for eactevtex and geometric ray
The algorithm can be described as a search of the graph whose nodegas#ile ases, and
whose edges correspond to lexicographiotgi between these bases.standard graph tkeersal
algorithm, such as depth first search, could be useduifers from the disadvantage that it is
necessary to keep a list of all bases dieew. Even for rather small inputs, the size of such a list
can be prohibitiely large. Irs implements reerse search (see [2] ), which is a method that
enables the graph to be searched without maintaining a list of visited nodes. hetbe search
algorithm, only the current badis cobasisN and corresponding dictionary are stored.

The research search algorithm makes use of the following four functions.

(a) pivot(B,r,s). B is the basis of the current dictionary= B; is a basic indeand s= N; is a
cobasic inde. Thedictionary is pvoted to the n& basisB —r + s as described in Section 3. The
basic and cobasic indic&andN are updated by settirigf = sandN; =r.

(b) selectpivatB, r, j). B is the basis of the current dictionawhich is assumed non-optimal.
selectpivotreturns indices B and s[IN chosen by the lexicographicvpt rule applied to the
dictionary with basi®. First the least indes = N; is found with ngaive meficient in rov zero,

ie. such than A'BlAs)o < 0. Then the lexicographic ratio test is performed on this column as
described in Section 4, ie. we compute lexminratiqB, s). The indices and | are returned.

(c) lexmin(B, s). B is the current basis representingeatexy ands is either zero, or elsglIN
and the corresponding column of the dictionary Borepresents a raywhens is zero,lexmin
determines iB is the lex-min basis foy, and if so returngrue. OtherwiseslIN and this column
of the dictionary represents a raylexmindetermines iB is the lex-min basis for the geometric
ray y +tz, and if so returngrue. The operations required aresgi in Propositions 5.1 and 5.4.

(d) revers€B, u, v). Given basisB and cobasic indevN, reversedetermines if there is a basic
index udB such that the lexicographic vot rule applied to the dictionary with basis
B = B—u+Vv generates a yot back toB. In ather words,reversedetermines if there is an ince
ulB so thatselectpivotapplied to the dictionary with basis— u + v would compute the indices
r =vands=u. This will happen if the first rggtive wefficient in rav zero of the dictionary for
B has ind& u, and if v = lexminratiq B, u). In this casereversereturnstrue with the inde u,
otherwise it will returnfalse If the columnv represents a raghe ray is output ifexminB, v) is
true. reversecan be implemented by usimgvot and selectpivot but this is very indfcient. An
efficient implementation is discussed hvelo

Using these four functions, theveese search algorithins can be described by the pseudo-
code gven in Hgure 6.1. It is assumed that the dictionary with current lBsssavailable to all
functions.

A general discussion of verse search, proof of correctness and corifyleanalysis is
given in[5], to which the reader is referred for more information. The muéire loop is
executed for each basiB, starting with the optimum basis. Each cobasic column of the current
dictionary is @amined byreverseto see if there is a depositve pvot using this column, for
which the resulting dictionary yats back toB using the lexicographic simplenethod. If so the
pivot is formed, and th&vhile loop is eecuted for each column of thewdlictionary When the
while loop terminates for a gén basis,selectpivotand pivot are used to return to its parent in the
reverse search tree, and thvhile loop is continued for this basis. Note that for this it is essential
that the value of be correctly restored, as is doneselectpivot The until statement is used to
terminate the algorithm after the last column of the starting optimum dictionary hasxaeen e
ined.

Inspection of the pseudo-code shows that there argoitwots for each basis except the ini-
tial basisB": one in thewhile loop when a n& basis is found, and one in the backtracking step,
when a simple pivot is used to mee t the parent basis. Sincevpiing is the most time consum-
ing operation, a speedup can be agleby saving the recent dictionaries in a cache, sy ten
be reloaded rather than recomputed. More criticilig clear thatreverseis executedd times for
each basis and so must be implementédigftly. This can be achied by wsing the follaving
proposition.
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B=B";j=1;
repeat
while j < d
{ v=N;j;
if reversgB, u, v)
then { pivot(B, u, v); /I new basis found //
if lexmin(B, Q) then output current vertex;
=1
}
else j=j+1;
selectpivaiB, r, |); /I backtrack //
pivot(B,r, Nj);
j=i+1

until j >dand B=B".

Figure6.1: Pseudo-code fdrs

Proposition 6.1: Given basisB, index VON, let a= AgtA,, and for anyt =1, ... m let W be
the vector of coefficients adw t of the current dictionary (3.4). The functioeverséB, u, v) is
true andreturns u= B; if and only if (i) W < 0, (ii) u = B; = lexminratiq(B, v) # 0, and

(iii) setting w=wP — agw'/a;, we ave w 20, forall jON, j <u.

Proof: Let B=B-u+vV. First supposeaeverséB,u,V) is true, which implies thatselectpivot
applied to the dictionary with basi8 returns r =v and s=u. This implies that
v = lexminratigB,u) # 0. By Proposition 4.1(b)u = lexminratiqB,v), giving (ii). It also
implies thata; > 0, and sow is well defined. It follows from the wot operation (Section 3) that
w is the vector of coéitients of rav zero of the dictionary with basiB. Since selectpivot
chooses = u, W, must be the first mgtive omponent ofw, so (ii) holds. Also by the piot for-
mula,w, = WS/ai. Since g; is positie, (i) holds.

For the cowerse, assume (i) - (iii) holdDefine B as abwe. As agued,w is the vector of
coeficients of rav zero of the dictionary corresponding & From (ii) a >0 and from (i)
W8 <0, 0 w, < 0. Together with (iii) this implies thatelectpivotapplied to the dictionary with
basisB will selectu as the entering indte Sinceu # 0, we can apply Proposition 4.1(b), getting
v = lexminratigB,u). Thereforev is chosen as the leaving indéy selectpivotand so
reversé€B, u, V) is true.O

From Proposition 6.1 we see thaterserequires a beicographic ratio test for each gre
ative mefficient in rav zero of the dictionanyf the ratio test succeeds, meaning the column does
not represent arkegeme raypart of the rav zero of the updated dictionary is computed. The ratio
test dominates the cost of this, requird@nd) time for degenerate dictionaries in the worst case.
For non-degenerate dictionaries, the ratio test requires Qtly) time, which sincean > d is also
the time for testing all of the conditions (i)-(iii).

Referring to the pseudo-code in Figure 6.1, we see that the total time requiexe tsgfor
a basisB is O(md?) for degenerate dictionaries aBdmd) for non-degenerate dictionaries. The
time required for anx@cution of pivot, lexminor selectpivotis O(md). This praes the following
result.

Theorem 6.2: Irs finds all bases and hence all vertices of a polytredn timeO(md?) per basis
and Q'md) space It finds all vertices of a simple polyhedron in tim@r@) per verte. 0
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7. Implementation Issues and I nteger Pivoting
To minimize spacelrs uses the reduced form of the dictionary (3.4pgiby

Xg = Agtb — Agt Ay Xy (7.1)

which is stored as an(+ 1) x (d + 1) array Note that the signs of the coefficients of cobaaii-v
ables are the verse of those in (3.4). Therefore the optimum dictionary is characterized tay a ro
zero having non-posite weficients. Fr ary non-optimum dictionarythe candidates for enter
ing variable for the simplemethod are those with a posdi wefiicient in rov zero. For definite-
ness, we choose the one with minimum mdEor the licographic ratio test required to find the
leaving variable, the ms of (4.1) required for (4.2) are remped column by column, using
Proposition 3.1, until a unique minimum is fourd/e an interpret le-positvity in the contat

of the dictionary (3.4).B is a l-positive kasis if and only if for eachJB with i =2 m+1 and
basic feasible solutior; = 0, the first non-zero cd#fient in its corresponding woof (7.1) is
negdive.

The basic and cobasic indicBsand N are maintained in increasing ordedig. In order to
avdd moving the data in the dictionargointers are maintained to the actualrand column
locations in the dictionaryThis ordering allavs certain operations to be optimized. Faaraple,
the testB = B" can be achieed by checking if B, = m. Similarly the tests required iselect-
pivot, lexminandreversecan be speeded up by processing the indices in order.

The reverse search method is extremely sewsitb numerical errarA single mistale in the
sign of a dictionary element can mean that an entire subtree ofvéngergearch tree is not dis-
covered. For that reason, exact arithmetic is ussduses arrays to hold long integers, using the
data format and basic routines/@i by Gonnet and Baeza-Yates [16].he division routine is
based on Knuth [19] and was implemented by Jerry Quinn.

The earlier versions used rational arithmetic, and each entry in the dictionary was stored as
a rational in reduced form, requiringcd computations after each arithmetic operatitost of
these computations are eliminatedrg by the use of integer yating method of Edmonds [15]
(which is connected to Crametrtule, see the appendix of Chvatal [13]n integer pvoting, only
the numerators of cdidients of the dictionary (7.1) are stored, with respect to a common denom-
inator, which is the absolutealue of the determinant of the current basis. The absolute value of
the determinant is used so that the signs of the numerators agree with the signs of the rational
numbers therepresent. Led; ;, 0<i <m, 0< j < d denote the array of coefficients of (7.1), and
let det(B) be he determinant of the current ba8islf a pivot is to be grformed on rev r and
columns, the updated (barred) coefficients areegiby:

a = (ai,jar,s_ai,sar’j)/det(B)
&)= 8 &sZas as=det®), de(B)=as

where in the ab@e formulae,i Zr and j #s. It can be shown that the imter division has no
remainder Since nogcd computations are required in integevqiing, the onlygcd operations

performed inlrs are before printing the output. Empiricallynteger pivoting appears to be
between tw and ten times dster than rational yiting, with gcd computation using Euclid’

algorithm.

8. Other Functionsof Irs

In this section we briefly described other functiondrefthat are built on top of the basic
function of vert& enumeration. The details arevgn dsewhere, as noted.

8.1. Facet Enumeration

The facet enumeration problem is to produceHanepresentation (2.1) d? from aV-
representation (2.2). lins a gandard lifting technique ( see for example Ziegler [20] ) is used to
corvert the facet enumeration problem to an eglént vertex enumeration problem. The input
V-representation is lifted to a pointed cone in one higher dimension, for whichahpeoiwems
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are eqwalent. Specificallyeach vert& (a4, . ..,aq) of P is transformed to the inequality
Xy taiXo+---+agXg+ =20 8.1)
and each raya(, . . . ,a4) of P is transformed to the inequality
a Xo + -+ agXq4 2 0.

The resulting system of inequalities describes a pointed Eoire d + 1-dimensions. A ray
(z4, . -.,24+1) Of P corresponds to the facet

21+ ZpX i+ ZgqXg 20

of P. Note that no lifting is required if the input polyhedrBns a pointed cone. Also, if the input

is theV-representation of a polytope containing the origin, it can also be solved without lifting by
interpreting the input points as inequalities (8.1), withset to the constant one. Somiat
remarkably dthough lifting increases denerayg, Irs sometimes runs faster on lifted polytopes.
This is due to the fact that rays are detected more efficiently #réioes, each of which require
one (or two) additional gots.

8.2. Voronoi Vertices

Given a ®t of m points inRY, it is required to find the set ofovbnoi vertices, each charac-
terized by being the centre of an empypérsphere spanned by at ledst 1 input points. It is
well known (see for example, Edelsbrunner [14] ) that tbeNbi vertices of a set of points in
RY can be obtained by solving aerex enumeration problem inR%*. Each input point
(a4, ...,aq) is transformed to the inequality

2 2
(@p+---+ag) —2a5x; — -~ 2a9Xg + Xg+1 2 0

The resulting system of inequalities describes a polyhe@ionR%**. There is a one-to-one cor
respondence between thertices ofP and the Voronoi vertices of the input set of data. Indeed,
each ertex (yy,---,Yqs1) Of P projects to the donoi ertex (y1,---,Yq). The inequalities
described by the cobasic indices foreate of P also correspond to the input points defining the
corresponding Voronoi vertex.

8.3. Volume Computation

Given a ®t of m points inRY it is required to find the volume of their a@x tull. Let P be
the polytope spanned by the input data points. As described in subsection &tetlenéimera-
tion of P can be obtained from the rays of the 1-dimensional con®. It can be shown that the
lex-positive bases ofP form a decomposition of the polytofeinto non-werlapping simplices.
This follows from the dict that the be-positve btases ofP correspond to the vertices of a simple
polyhedron obtained by a suitable perturbatio ofhe dual of this simple polyhedron is simpli-
cial, and its projection ges the required decomposition 8t As we saw in Section 7, the deter
minant of each basis & is readily aailable during the computation. The determinant is a equal
to d! times the volume of the corresponding simpdé P. Hence summing these determinants
and dividing byd! gives the required volume dP. See Blieler et al. [11] for more details and a
comparison with other volume computation methods.

8.4. Estimation
The number of vertices in thé-representation of a polyhedron representednbgequali-

ties in RY can vary from one ton®?” P may hae & mary as m° feasible bases, of which as

mary as m%?" may be l&-positive. Clearly, for even small values ofm and d, if P achieves

these upper bounds thernex enumeration problem is intractable. As the running timérsofs
directly proportional to the number of bases computed, it is useful to estimate this .number
Reverse search is amenable to a technique of tree estimation due to Hall and KnutAq17].
described by Avis and Deoye [3], Irs can be used to estimate the number wfpesitive ases,

and also the number of vertices and rays (or facets for facet enumeration prolSemrly
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estimates for the volume of a polytope can be obtained. The estimates are unbiased, and tech-
niques are gen to lower the variance. In spite of the enormous range of the quantities to be esti-
mated, the estimates obtained appear e gi @od indication of the tractability of solving the

given problem completely.

8.5. Restart Capability

A feature of algorithms based orvaeese search is that thean easily be interrupted and
restarted in the middle of a computation. In tlegtex enumeration setting, it is necessary to
record only the indices of the current cobasis before interrupting the program. Then using this
cobasis and the original input file, the current dictionary can be recomputed, and the computation
resumed from this node of theveese search tree. If cacheing is used, the cache is lost after the
program is interrupted, but is restored automatically aspnets are made after restarting.

9. Computational Results

In [4] some preliminary computationakgerience was gen on a &t of seen test prob-
lems. D illustrate the eolution of the code, we ran both the original progreefil and ersion
2.3 ofIrs on these test problems, using the latest incarnationutf a DEC AlphaServer 1000
4/23. Theresults are shown in Figure 9.1. In the table,#R/ #B refer respeatély to the num-
ber of vertices, rays and bases computed. Note that dueidogeaphic pioting, Irs computes
considerably fewer bases on thgeleerate problems 2, 3 and 6. Problem 1 has a matrix-gener
ated uniformly in the range -1000..1000 dmdiector all ones. Problem 2 is due to Akihisa
Tamura, and has all data from the set {0,-1,Broblem 3 is the truncated Metric Cone on four
points, consisting essentially of all triangle inequalities and nggingy constraints on these
four points. Problems 4 and 5 were constructed arbitrarily with integer data in the range
-100..100. Problend was arbitrarily constructed with matrix entries in the range -10..1(Mand
vector 1..13. Problem 7 is aukn-Quandt problem, with matrix entries randomly chosen in the
range 0..1000 anl vector entries all 10000. Its solution required integers with up to 63 decimal
digits.

T T
ve0l Irs

Problem m| d #H #R #B secs #B secs

1 A 4 3 31 2.81 31 .06

2 16 5 18 1247 7.48 76| .05

3 19 6 8 10845 86.43 188 12

4 12 7 % 54 43 54 .05

5 14 9 S e] 33 97 114 94 .09

6 23 | 10 332 | 302| 3656 83.65 824 1.69

7 20 | 10 | 1188 1188| 208.98 | 1188| 2.78

Figure 9.1: Computational Results

One of the largest problems solvedsia configuration polytope with 96 inequalities in 86
dimensions. The output of 323,188 vertices was obtained by computing 1,621,760 bases in a
computation lasting 30 days. Even larger problem& Hmen solved using a parallel version of
Irs described by Brlingger et al. in [L0for example, thg report computing the more than 3 mil-
lion vertices and 57 million bases of a configuration polytope defined by 71 inequalities in 60
dimensions. Morextensive computational experience, and an empirical analyses ofatieug
speedups, is reported in Avis[7].
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