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ON THE EXTREME RAYS OF THE METRIC CONE 

DAVID AVIS 

Introduction. A classical result in the theory of convex polyhedra is that 
every bounded polyhedral convex set can be expressed either as the inter
section of half-spaces or as a convex combination of extreme points. It is 
becoming increasingly apparent that a full understanding of a class of convex 
polyhedra requires the knowledge of both of these characterizations. 

Perhaps the earliest and neatest example of this is the class of doubly 
stochastic matrices. This polyhedron can be defined by the system of equations 

P: Z^=i xij = 1» i = 1, 2, . . . ; » 

xtj ^ 0 , i , j = l , 2 , . . . , « . 

Birkhoff [2] and Von Neuman have shown that the extreme points of this 
bounded polyhedron are just the n X n permutation matrices. The importance 
of this result for mathematical programming is that it tells us that the maxi
mum of any linear form over P will occur for a permutation matrix X. In the 
assignment problem a matrix C of weights is given and the permutation 
matrix X is sought that maximizes 

/ ^ 1 ^ i, j ^n CijX ij. 

Therefore we can apply a simplex procedure to the polyhedron P and be 
assured of an integral solution. Since both methods of describing P are straight
forward, it is perhaps not surprising that efficient methods exist for solving 
the assignment problem. 

Recently, many research investigations have sought similar results for 
apparently much more complicated polyhedra. In integer programming, the 
integral extreme points are usually known and a characterization of the system 
of intersecting half spaces is sought. The solution of the matching problem by 
Edmonds [4] is a particularly successful result here. For a systematic treatment 
of this and many interesting examples, the reader is referred to Chvâtal [3]. 

An example of the converse procedure is given by Veinott [8] for the Leontief 
substitution systems. These are matrices A with exactly one positive element 
in each column, and the additional property that 

X(b) = {x: Ax = b, x ^ 0) 
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is nonempty for some positive vector b. I t is shown in [8] tha t the extreme 
points of the sets X(b) have a particular form and this has application in the 
solution of certain inventory models. 

The polyhedra tha t will be examined in this paper are related to finite 

metric spaces. T h e I I = nC2 distances between n points can be represented 

as a vector R+
n C 2 , after a suitable ordering of the distances has been estab

lished. The set of all such vectors is a pointed cone in which the facets are 
triangle inequalities. The major problem addressed is to determine the extreme 
rays of this cone. 

Section 1 provides the necessary définitions and notat ion from the theory 
of metric spaces and finite graphs. The second section contains a proof t ha t the 
complete bi-parti te graph i £ 3 2 induces an extreme ray. This proof is generalized 
to provide a means of showing tha t a large class of graphs induce extreme rays. 
These graphs are the topic of Section 3. The large class of dense mult i -part i te 
graphs are shown to induce extreme rays. Then it is shown tha t ' 'a lmost al l" 
sufficiently large graphs of medium density induce extreme rays. The com
plexity of the set of extreme rays is demonstrated a t the end of this section, 
where it is shown tha t extreme rays can be found with arbi t rary local s t ructure . 
Section 4 deals with non-graphical extreme rays. These can be easily produced 
by including zero distances but this does not produce genuinely "new" 
extreme rays. A "un ion" operation for metric spaces is given here tha t can be 
used to generate non-trivial non-graphical extreme rays. 

1. Pre l iminar ie s . In this section we group most of the terms and notat ion 
used throughout the paper. We will frequently use vectors contained in the 
positive o r than t of Euclidean wC2-space, denoted R+

n<?2. Depending on the 
context, it will be convenient to use different subscripting methods for these 
vectors. For a vector d Ç R+

n C 2 we use the following subscripts interchange
ably: 

(i) d = (du d2, . . . , dnC2) 
(ii) d = (^(1,2), ^(1,3), . . . , d(],n), d(2>3) • . • d(n-it„)) 

(iii) d = (d12, du, . . . , dn_i,n). 

I t will occasionally be necessary to refer to the matrix D £ Rw*w defined by 

(dij i <j 

Dtj=<0 i=j 

[dji i > j . 

Such a vector d is called a metric on n points if it satisfies the triangle inequali
ties 

(1) dtj + djk ^ dik, 1 ^ i,j, k ^ n. 

The set of all metrics on n points is denoted Mn. The notation [#J denotes the 
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greatest integer less than or equal to x\ \x~\ denotes the least integer greater 
than x. 

We require some s tandard terminology from the theory of polyhedral 
convex sets. Brief définitions are given here ; the reader is referred to [7] for 
details. A (convex) polyhedron is the solution set of a finite system of linear 
inequalities. Let K be any convex set. A convex subset W of K is an extreme 
subset of K if none of its points are contained in an open line segment spanned 
by two points of K which are not both in W. A one-dimensional extreme 
subset is called an extreme ray. We frequently refer to an extreme ray as a 
vector; unless specified explicitly, the vector is any nonzero point on the ray. 
K is a convex cone if positive combinations of points in K are again in K. A 
facet of K is an extreme subset with dimension one less than t h a t of K. 

The following proposition summarizes some facts about Mn. 

PROPOSITION 1.1. Mn is an nC^-dimensional convex cone with facets given by 

da + djk — dik = 0, 1 ^ i,j, k ^ n. 

Further, Mn is generated by a finite set of extreme rays. 

The first s t a tement follows easily from the definition of Mn and the second 
is the finite basis theorem, applied to this cone. 

Graphs appear in various places throughout this paper and some basic 
definitions are given here. The notat ion used is normally t ha t of [6], which 
should be consulted by the reader wishing more detail. A graph G = (V, E) 
consists of a finite set V of vertices and a set E of unordered pairs of vertices 
called edges. T h e order of G is the number of vertices in G and is denoted \G\. 
The number of edges of G is denoted ||G[|. By a path in G, we mean a sequence 
of dist inct vertices V\V2 . . . vm+i such tha t ViVi+i is an edge for all 
i — 1, 2, . . . , m. Such a pa th is called a z>iflm+i pa th and has length m. A graph 
is connected if there exists a t least one pa th between each pair of vertices of V. 
Unless otherwise s tated, all graphs considered in this paper are connected. A 
subset of vertices of V is independent if no two are adjacent. 

Each graph G induces a metric denoted dG, where dG(i, j) is the length of the 
shortest pa th in G between vertices i and j . I t is easily verified t h a t dG satisfies 
the triangle inequalities. If G induces an extreme ray of Mn, then G is called an 
extreme ray graph. 

Two special graphs will occur frequently. The complete graph of order n, 
denoted Knj contains all possible nC2 edges. A bi-partite graph is a graph in 
which the vertex set can be part i t ioned into twro non-empty independent sets. 
The complete bi-partite graph, Kmtni contains m + n vertices par t i t ioned into 
independent sets of size m and n with all other mn possible edges between these 
sets. 

The vector d is a graphical metric space if there exists a graph G and a positive 
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constant a such that d = a - dG. F = (Vi, E\) is a subgraph of G = (F, £ ) if 
I"i C F and Ei C £• ^ is an isometric subgraph of G if 

dF(i,j) = dG(i,j) for ail i, 7 Ç TV 

2. A proof technique. In the first part of this section we show that the 
metric induced by Kii2 (Figure 2.1) is an extreme ray of M-0. This argument is 
generalized to give an easy method for proving that a large class of graphs 
induces extreme rays. 

FIGURE 2.1. A \ 2 

Suppose we have x, y £ MO and X in the open interval (0, 1), such that 

(1) dàdG = \x + (1 - \)y. 

Observe that dn — dv2 + d2s. Substituting for d we get 

(2) \xu + (1 - X)yi3 = Xxi2 + (1 - X)yi2 + X*23 + (1 - X)y23. 

But since x, 3/ € Mr, we have 

(3) xu ^ X12 + X23 a n d >'i3 ^ ^12 + 3̂ 23. 

Therefore the equality (2) implies that in fact equalities hold in (3). These 
equations are examples of tight constraints and we have just seen that x and y 
must have the same tight constraints as d. Geometrically, this is the observa
tion that x and y must be contained in any facet that contains d. 

Let us consider the subgraph F induced by the vertices {1, 2, 3, 4}. This is 
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an isometric subgraph since it preserves the distances of K%^. F is a cycle of 
length 4 denoted C4. 

1 2 
• # 

* é 
4 3 

FIGURE 2.2. C4 

The tight constraints for this graph are 
du = ^12 + ^23 <̂ 13 = <̂ 14 + ^34 

^24 = ^12 + ^14 ^24 = ^23 + ^34-

Solving this system we have 

(4) di2 = d34 and d2Z = d1A. 

Since we are dealing with an isometric subgraph, the conclusions are valid for 
the distances in the original graph 2£3,2. By the earlier remarks we see that (4) 
must hold with d replaced by x or y. We have thus proved 

LEMMA 2.1. Let G be a graph with an induced subgraph isomorphic to C4. If 
x G Mn has the same tight constraints as dG then 

#12 = X34 and x 2 3 = X14. 

(We have assumed that the vertices of the cycle were labelled sequentially 
1 ,2 ,3 ,4 . ) 

Returning to our example, repeated application of the lemma yields 

#12 = #34 X34 = X15 Xu = #23 

#23 == #14 #14 — #35 #35 = #12-

Hence all of the above distances are equal to some constant a > 0. We now 
claim that x = a • d. First note that distances between points u and v in G that 
are not adjacent are determined by summing the distances (all equal to one) 
along a shortest zw-path. Since x must satisfy the same tight constraints as d, 
the distance x(u, v) must be determined by the same ''edges" as determined 
d(u,v). Since each of these edges corresponds to a distance of a, x(u,v) = 
a • d(u, v). This proves 
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LEMMA 2.2. Let G be a graph of order n and let x £ Mn be defined as in (1). If 
all distances in x corresponding to edges of G are equal to some constant a, then 
x = a • dG. 

This lemma shows tha t i£3>2 induces an extreme ray of M*>. The proof was 
given in detail as it generalizes to provide a powerful method of proving tha t 
certain graphs induce extreme rays. The next lemma gives a generalization of 
Lemma 2.1. 

LEMMA 2.3. Let G be a graph of order n with an induced isometric cycle of length 
2ft, ft ^ 2 (denoted Cn), and let x £ Mn have the same tight constraints as dG. 
If ab and cd are opposite edges of the cycle then xab = xcd. 

Proof. We assume the vertices of the cycle have been labelled sequentially 
1, 2, . . . , 2ft around the cycle. Consider the two opposite edges (1, 2) and 
(ft + 1, ft + 2). Since x has the same t ight constraints as dG we have 

x ( l , k + 1) = x ( l , k + 2) + x(k + 1, ft + 2) 

x(l,k + 1) = x ( l , 2 ) +x(2, k + 1) 

x(2, k + 2) = x(l, 2) + x(l, k + 2) 

x(2, k + 2) = x(2, k + 1) + x(k + 1, k + 2). 

Hence x ( l , fe + 1) = x(2, jfe + 2) and x ( l , 2) = *(jfe + 1, ft + 2). 

We nowr define an equivalence relation on the edges of a graph G. Two edges 
uv and ab are equivalent if and only if every metric X with the same t ight 
constraints as dG must also satisfy x(u, v) = x(a, b). The equivalence classes 
will be denoted by colors so tha t all equivalent edges receive the same color. 
An isometric cycle coloring (ic-coloring) of G is defined by the following 
procedure: 

(i) Initially all edges of G are uncolored. Pick any edge and give it color 1, 
set ft = 1. 

(ii) Find an uncolored edge tha t is opposite an edge colored ft in some even 
isometric cycle of G. If there is no such edge go to step (iii), otherwise color the 
edge ft and repeat step (ii). 

(iii) If G is not completely colored, pick any uncolored edge, give it color 
ft + 1, set ft <— ft + 1 and go to step (ii). 

A graph is ft-ic-color'able if exactly ft colors are used in the above procedure. 
I t is easy to see tha t the procedure will produce the same color classes, regard
less of how the uncolored edges are chosen. I t is also clear t ha t all edges in the 
same color class will be in the same equivalence class, as defined earlier. 

T H E O R E M 2.4. / / G is l-ic-colorable then dG is an extreme ray of Mn. 

Proof. Assume dG = \x + (1 — \)y. The preceding discussion and Lemma 
2.2 shows tha t dG = a • x = b • y for positive constants a and b. 



132 DAVID AVIS 

Unfortunately the converse to this theorem is false. The graph in Figure 2.3 
is 2-ic-colorable, the color classes denoted by the heavy and light edges. I t is 
also an extreme ray. Indeed, if x is any metric with the same t ight const ra ints 
as àG then x must, also satisfy 

•%uv -^lis "T* Xsv ~XUS 

%uv %ut \ % tv —X?/1-

FIGURE 2.3. A 2-z'c-colorahle extreme ray 

Therefore xus = xut and G induces an extreme ray. This suggests adding a s tep 
(iv) to the ic-coloring procedure: 

(iv) If G is 1-ic-colorable stop. Otherwise for each pair of vertices uv examine 
the shortest /^ -pa ths . Merge the color classes of all such pa ths that: use exactly 
one color. 

I t is clear t ha t Theorem 2.4 holds for the four step coloring procedure. Will 
this modified procedure always succeed? T h e answer is still no; an example 
can be constructed t ha t terminates with the configuration of Figure 2.4. 
Again the color classes denoted by the heavy and light lines can be merged. 
This case could also be handled by a modified step (iv), bu t it is beginning to 
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FIGURE 2.4 

look like we are back to solving the original system of t ight constraints. 
Although ic-coloring a graph is not a practical method of determining whether 
it induces an extreme ray, it will come in very useful in the next section for 
proving tha t large classes of graphs induce extreme rays. 

3. Graphica l e x t r e m e rays . In this section we use ic-coloring to identify a 
large class of graphical extreme rays. I t will also be shown tha t "almost al l" 
sufficiently large graphs with medium density induce extreme rays. Finally a 
construction will be given for producing extreme rays with arbi t rary local 
s t ructure . 

By a dense m-partite graph G we mean a graph in which the vertex set can 
be part i t ioned into independent sets Fi, F2, . . . , Vm with the properties: 

(i) \Vm\ è |T-Vi| ^ . . . ^ \Vi\ ^ 3 

(ii) i |F,-U 7, | | è |F?-| \Vj\ - max \\Vt\, \V)\} + 2, for 1 g i < j g m. 

Roughly speaking, a dense m-part i te graph is a complete m-part i te graph, 
possibly missing a "few" edges, with each par t containing a t least three 
vertices. 

A graph will be called a dense multipartite graph if the decomposition (i) and 
(ii) is possible for some m ^ 2. We now show tha t the dense mult ipar t i te 
graphs induce extreme rays. 

LEMMA 3.1. / / G is a dense bi-partite graph of order n, then dG is an extreme 
ray of Mn. 

Proof. Let 5 = | Vi\ and t = \ F 2 | . Then we claim tha t 
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Vi 

FIGURE 3.1. A dense bi-partite graph 

(i) there exist u, v Ç F2 such that V\ \J {u, v\ induces Ks>2, 
(ii) the minimum degree of G is two. 

To prove (i), note that if it failed, the number of edges in G would be at most 

s + (t - l )(s - 1) = st - t + 1, 

a contradiction. Similarly for (ii), we have 

min degree of G ^ ||G||// = s - (t - l)/t ^ s - 1 ^ 2. 

We now show that (i) and (ii) imply that dG is an extreme ray. In an ic-
coloring of G, all of the edges in the induced Ks2 will be colored the same color, 
say red. Consider some other vertex w in F2. By (ii) it must be adjacent to at 
least two vertices of V\, say a and b (Figure 3.2). 

FIGURE 3.2 

Then uawb is an induced cycle of length 4 and so aw and bw must be colored 
red. The same argument applies to all edges from w, and to all other vertices 
in F?.. The lemma then follows from Theorem 2.4. 
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I t is apparen t from the proof of Lemma 2.1 tha t weaker conditions can be 
found tha t depend more on the structure of G. These are the weakest conditions 
s ta ted merely in terms of the number of edges of G. 

T H E O R E M 3.2. / / G is a dense m-partite graph of order n then dG is an extreme 
ray of Mn. 

Proof. Let G be ic-colored and consider the mC2 pairs of vertex sets Vu V j . 
By the a rgument of Lemma 3.1, each pair will end up with all mutual edges in 
one color class, say ctj. Each pair can be treated independently because the 
a rgument in the lemma uses only induced cycles of length 4 and these will be 
isometric in the original graph G. Note tha t it is not true tha t Vt \J F;- induces 
an isometric subgraph of G. 

Pick any three par ts Fz-, V3, Vk with cardinalities r, s and t respectively. 
Assume r ^ s ^ t. Since \\VjVJ Vk\\ ^ st — t + 2, each point in Vk is ad
jacent to a t least 5 — 1 vertices in Vj. Similarly, each point in Vk is adjacent 
to a t least r — 1 vertices in V{. Let u and v be two vertices in Vk. By the pre
vious remarks and the fact tha t 3 ^ r ^ s, there must exist common neighbors, 
x (j Vi and y G Vj, of n, v (Figure 3.3). Since this induces a C4, color classes 

FIGURE 3.3 

cik and cjk must be identical. Now pick two neighbors 5 and toi urn Vj. Again 
5 and / mus t have some common neighbor z in Vt (Figure 3.4). Thus color 
classes ctj and cjk must be identical. Since the three par ts were chosen arbi
trarily, the theorem follows. 

This theorem gives an easy way to construct a large number of extreme 
rays. If we restrict a t tent ion to those mult ipar t i te graphs with 3 vertices in 

file:////VjVJ


136 DAVID AVIS 

FIGURE 3.4 

each par t , the conditions of the theorem state t ha t between each pair a t most 
one edge can be dropped. I t is easily seen t ha t there are exactly 10nC2 such 
labeled graphs on 3n points, each inducing an extreme ray of M%n. 

We now prove nonconstructively t ha t ' ' a lmost al l" graphs of medium 
density induce extreme rays. T o make this precise we use the concept of 
random graph due to Erdos and Spencer [5]. T h e symbol Gn>p denotes a random 
variable of which the values are graphs on n points with edge probabil i ty 
p (0 < p < 1). T h a t is, for each edge ij, 

Prob (ij e GntV) = p, 

and these probabilities are independent for each edge. 

T H E O R E M 3.3. For any e and p satisfying 

(1) 0 < e < 1/5 and 

(2) n~1/b+e S P(n, e) S 1 ~ n~llA+* 

Prob (Gn.tP induces an extreme ray) = 1 — o ( l ) . 

Proof. We begin by showing t ha t the probabil i ty t ha t Gn>p contains any 
isolated points is o ( l ) . Indeed, 

Prob (GntP contains an isolate) ^ n(\ — p)n~l S ne~p(n~l) 

^ n exp { — (n — l)n~1/b+e\ = o ( l ) , 

over the range (2). We can therefore restrict a t ten t ion to those random 
graphs t ha t have no isolated points. 
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We proceed by obtaining an upper bound on the probabili ty tha t GUtV does 
not induce an extreme ray. This will be denoted Prob (Gn>p not ex.). Observe 
tha t by Theorem 2.4, Gn>p will be an extreme ray if 

(i) Gn?p has no isolates, and 
(ii) for every pair of edges st and uv of Gn>p, the configuration of Figure 

3.5 occurs. 

nA points split into pairs 

FIGURE 3.5 

In Figure 3.5 we have divided the remaining n — 4 points into \_{n — 4) /2J pairs 
t ha t can each be treated independently. The subgraph induced by s, t, u, v, x 
and y showTn in Figure 3.5 has probabili ty pb{\ — p)4. There are a t most 
3WC4 possible choices for st and uv. Therefore, 

Prob (G not ex.) S 3 • („C4)(1 - p5(l - pY)^-W + 0 ( 1 ) 

S 3 • (WC4) exp { -p^l - pYin - 5 ) /2 j + o ( l ) . 

The theorem now follows for any constant value of p in the open interval 
(0, 1). L e t / be defined by 

f(p,n) = pH\ - p)*(n >)/2. 

We now show t h a t / is bounded below by a polynomial in n for p in the range 
(2). Indeed, for p = n~ we have 

f(p, n) ^ n*(l - 4w- 1 / 5 + e ) ( l - 5n~l)/2 ^ W 

for some c\ > 0 and n è 45. For £ = 1 we have 

f(p, n) £ w f(l - 5w- 1 / 4 + e ) ( l ~ 5n~l)/2 ^ c2w« 
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for some c2 > 0 and n g: 54. To complete the proof we note that 

df/dp = (5£4Q - PY ~ 4£5(1 - pY){n - 5)/2, 

^ 0 0 ^ p ^ 5/9 
a//^ ^ 0 5/9 < p ^ 1. 

Therefore f(p,n) ^ cwe for some constant c ^ 0 and all n ^ 45, over the 
range (2). The theorem follows. 

Applying the theorem with p = 1/2 we can easily see that "most" graphs 
induce extreme rays. Indeed, in this case all graphs are equally likely and so 
the theorem shows that there are 2nC2(l — o( l ) ) distinct extreme rays. 

We conclude this section by constructively showing that extreme rays of 
Mn can have arbitrary local structure. A metric is rational if all the distances 
are rational numbers. Given any rational metric x we construct a metric y that 
includes x as a submetric and is an extreme ray of the metric cone of appro
priate dimension. We begin by embedding a graph in a larger extreme ray 
graph. 

For any graph G construct the graph F(G) as follows: 
(i) Make two copies G\ and G2 of G and join each vertex in G\ to its twin 

in G2. 
(ii) For each edge U\V\ of G\ with U\ < V\ and its twin U2V2 of G2 with 

Ui < v2, insert a new vertex x and connect it to U\ and v2. 
Observe that \F\ = 2\G\ + ||G||. Figure 3.6 contains an example of the 

construction. 

4 

43 

* 1 

G F(G) 

FIGURE 3.6. Example of an isometric embedding 

LEMMA 3.4. F(G) includes G as an isometric subgraph and induces an extreme 
ray dF(G). 
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Proof. G is an isometric subgraph of F(G) since if ii\, V\ Ç Gi, the shortest 
U1V1 path outside of Gi has length 

2 + dG2(u2, v2) = 2 + dGl(uu vi). 

Now assume F(G) has been ic-colored. Choose an edge Wiz/i in Gi, and consider 
its twin u2v2 in G2, and the interconnecting vertex x. By construction 
{x, iii, Vu u2, v2\ induce 2£3f2 which is always an isometric subgraph. Therefore 
all the edges of this subgraph will be 1-colored. A repetition of this argument 
together with the assumption that G is connected completes the proof. 

A rational metric d on n points can always be embedded in a graph G so 
that d(u,v) = dG(u,v)/k, where k is the smallest integer that makes k • d 
integral. Simply construct a path of length k • d(i,j) between each pair of 
points i and j (Figure 3.7). 

FIGURE 3.7. Embedding a rational metric in a graph 

If x is a metric on n points and m < n, then the symbol x\m denotes the metric 
induced by x on the points {1, 2, . . . , m). The above observation and lemma 
3.4 may be combined to yield the following theorem. 

THEOREM 3.5. / / x is a rational metric on m points, there exists an integer n 
and an extreme ray d G Mn so that d\m = x. 

4. Non-graphical extreme rays. In this section we discuss extreme rays 
that are not induced by graphs. These are rays, x, such that there does not 
exist a graph G and a constant a satisfying dG = a • x. The easiest way to 
obtain such rays is to include zero distances. The first part of this section shows 
that the inclusion of zero distances does not lead to "new" rays. In the second 
part of this section a method of "patching" together extreme rays is given that 
generates non-graphical extreme rays. 

We define the zero-distance graph Z(d) of a metric d on n points. The vertices 
of Z(d) are the n points and two vertices are joined if and only if the corre
sponding distance in d is zero. 

LEMMA 4.1. Every zero-distance graph Z(d) is a collection of isolated complete 
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subgraphs (cliques) Ci, C2, . . . , Cm. Further if i,j Ç Ci and k is any point, then 

duc = djk-

Proof. From the triangle inequality, for any points i, j , k of d, dtj = 0 and 
djk = 0 imply tha t dik = 0. This proves the first s ta tement . If i, j G Ci and k 
is any point then 

dik ^ djk + dtj S dik + 2dij = dik} 

so rffit = djk. 

For a metric d on n points we define the zero-distance contraction dG by 
picking one point from each of the m cliques in Z(d). If 5 0 is the distinguished 
set, then Lemma 4.1 gives d0 = d\s0-

T H E O R E M 4.2. d is an extreme ray if and only if d{) is an extreme ray. 

Proof. Suppose d is an extreme ray and d0 is not. Then there exists a cons tan t 
X and metrics x0 and yo such t ha t 

(1) do = Xxo + (1 - Ab'o, 0 < X < 1, 

and XQ 7e a • d{) for any constant a > 0. Now extend x0 and y0 to x and y in 
R+

n C 2 by adding zero distances. Then 

(2) d = Xx + (1 - X)y, 0 < X < 1 and x ^ a • d, 

a contradict ion. Conversely, suppose t h a t (2) holds for suitable metrics x, 3> 
and constant a. If d^- = 0 then xtj = ^ z i = 0. Hence the zero distance con
tractions of x and 3/ are metrics and satisfy (1). 

Theorem 4.2 tells us t h a t when looking for newT classes of extreme rays, zero 
distances can be ignored. There is, however, an impor tan t class of extreme rays 
tha t have exactly two cliques in the corresponding zero-distance graphs. 
These are called Hamming extreme rays and the cone they span is called the 
Hamming cone. This cone is the subject of [1]. 

A restricted union operation will now be described between certain metric 
spaces. I t Avili be necessary to distinguish the point sets of different metrics. 
A metric space will be denoted by the ordered pair (S, d) where 5 is a set of n 
points and d is a metric. Two metric spaces (Si, d\) and (52, ^2) overlap if 

|5i C\ 5 2 | ^ 2 and dx\Sl n s2 = d2\si n s2-

T h e union (5, d) of two overlapping spaces is defined by 

(di(x,y) x, y G Si 
Jd2(x, ; 

5 - Si U 52 d(x, y) - <T^m [di(^ z) + d ^ y)] x'e Si I S2 

V2€SinS2 ye S2- S,. 

The metric spaces in Figure 4.1 overlap and their union is shown. T h e weights 
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on the edges of the graphs denote the corresponding distances in the metric 
space. Distances between nonadjacent points are given by the weight of the 
shortest path in the weighted graph. 

FIGURE 4.1. Example of the union operation 

LEMMA 4.3. The union of two overlapping metric spaces is a metric space. 

Proof. I t suffices to check the triangle inequality for x, y (z Si and 
z G S2 — Si, since the other cases are obvious. By the definition of d there 
exist s, t Ç S\ C\ S2 with 

d(x, z) = di{xy s) + d2(s, z) and d(y, z) = di(y, t) + d2(t, z). 

Therefore, 

d(x,z) g d!(x,t) + d2(t,z) ^ dx(x,y) +d1(yj) + d2(t,z) 

= d(x, y) + d(y, z), 

d(x,y) £d1(x,s) +d1(sj) +d1(t,y) g d^x, s) +d2(s,z) 

+ d2(z, t) + d!(t, y) = d(x, z) + d(y} z). 

T H E O R E M 4.4. The union of two overlapping extreme rays is again an extreme 
ray. 

Proof. Let (S i ,d i ) , (S2, d2) and (S,d) be as in the definitions above with 
u\ = |5i| and n2 = \S2\. d\ and d2 are extreme rays. Suppose d is not an extreme 
ray of AfWl+Wo. Then there exists X and metrics x and y satisfying 

d = Xx + (1 - \)y, 0 < X < 1 and 

x 7e a - d for any a > 0. 

But by the definition of d, 

d\Sl = di = \x\Sl + (1 - X)y\si and 

d\S2 = d2 = \x\s, + (1 - \)y\Si. 

Since d\ and d2 are extreme rays there must exist constants a, b > 0 such tha t 

d\si = a • x\si and d\s, = b • x\s,. 



(c) (S, d) 

FIGURE 4.2. A nongraphical extreme ray 

Since (Su d\) and (S2, d2) overlap, a = b. Pick u £ S\ — S2 and v (E S2 ~ Si. 
Then 

d(u, v) = minz€jsi n s2[di(u, z) + d2(z, v)] = dx(u, i) + d2(t, v) 

= a(x(u, t) + x(t, v)) = a • x(u, v) 
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where t was chosen as the minimizing index. This shows that d = a • x, a 
contradiction. 

COROLLARY. There exist nongraphical extreme rays that do not use zero-distances. 

Proof. Consider the metric spaces (a) and (b) of Figure 4.2. These were 
shown to be extreme rays in Section 3. The metric spaces overlap, and by 
Theorem 4.4 their union is an extreme ray. In a graphical metric space, all 
distances must be an integral multiple of the minimum distance of the metric. 
Therefore d is nongraphical. 

5. Conclusions. We have seen that the extreme rays of the metric cone 
have a complicated local structure and have given both constructive and prob
abilistic lower bounds of 2cn2 on their number. Apart from the mathematical 
interest in these lower bounds, they relate to a problem in computer science. 
Indeed, in [9], Yao and Rivest give a procedure for developing a lower bound 
on the decision tree complexity of the all pairs shortest paths problem from the 
number of extreme rays. They show that the minimum depth of such a tree is at 
least a constant times the logarithm of the number of extreme rays. The bounds 
given in this paper thus yield just the trivial 0(n2) bound for the all pairs 
shortest paths problem. The question is thus the following: can the lower 
bounds given in this paper be improved to achieve a non-trivial lower bound for 
the all pairs shortest paths problem. This question has recently been answered 
negatively in [10] where an upper bound on the number of extreme rays of 
22.72̂ 2 -s cle r n o n s trated. 
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