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Fulkerson et al. have given two examples of set covering problems that are empirically 
difficult to solve. They arise from Steiner triple systems and the larger problem, which has a 
constraint matrix of size 330 × 45 has only recently been solved. In this note, we show that the 
Steiner triple systems do indeed give rise to a series of problems that are probably hard to 
solve by implicit enumeration. The main result is that for an n variable problem, branch and 
bound algorithms using a linear programming relaxation, and/or elimination by dominance 
require the examination of a super-polynomial number of partial solutions 

Key words: Set-covering Problem, Branch and Bound, Lower Bounds, Steiner Triple 
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1. Introduction 

Fulkerson et al. [5] have given two empirically difficult to solve set covering 
problems arising from Steiner triple systems. In this note, we use a standard 
construction to generate a series of Steiner triple systems that cannot be solved 
efficiently by branch and bound methods that employ linear programming and/or 
dominance as a fathoming device. Such procedures are the basis of most 
successful approaches to this problem (e.g., Fulkerson et al. [5], Geoffrion [7], 
Lemke et al. [9]). More precisely, we exhibit a family of Steiner triple systems 
with n = 3 k (k = 1, 2,...) variables, for which algorithms of this type require the 
examination of 2 ~ partial solutions. Results along these lines are still some- 
what rare, although it is reasonable to suspect that similar results can be found 
for most NP-hard problems. This note was motivated by a result in the same 
vein for the Knapsack problem, recently obtained by Chvfital [1], where a very 
large class of computationally difficult problems is exhibited. Very deep results 
have been obtained for other NP-complete problems by Chvfital [3], Cook and 
Reckhow [4] and McDiarmid [10]. 

Since the set covering problem is NP-complete, the reader is hardly likely to 
be surprised that there exist problems that cannot be solved by branch and 
bound in a polynomial time bound. However, as pointed out in Fulkerson et al. 
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[5], there are many claims in the literature for  algorithms that solve problems 

with a very large number of variables. The Steiner triple problems provide a set 
of compact  and very easily generated problems that should provide a challenge 

for new ideas and techniques in integer programming. 

2. The problems 

We consider problems of the following form 

w ( A )  = min e-  x, 
A x  >- e, (1) 

x = 0 , 1  

where A = (a~i) is an m × n ze ro-one  matrix, x is a vector  of length n and e is 
the vector  of ones of appropriate length. It is convenient  to consider the columns 
of A as representing elements and the rows of A as representing certain subsets 
of elements. Such matrices are called incidence matrices.  The problem is to find 
a minimum set of elements that represent  all of  the subsets. 

The incidence matrices A that we consider arise f rom Steiner triple systems 
and have precisely 3 ones in each row. These matrices are characterized as 
follows: for  every  pair of columns Jl and J2, there exists exactly one row i such 
that aij~ = aij 2 = 1. We say that {i,/', k} is a triple of A if there exists a row r of A 
such that a~ = a~- = a~, = 1. It is well-known that such matrices exist if and only 

if n -> 3 and n --- l, 3 (rood 6), in which case m = 16n(n - 1) and each column of A 
contains 21(n- 1) non-zero entries. The interested reader is referred to Hall [8] 
for  a wealth of information on this type of structure, which is an instance of a 
balanced incomplete block design. 

We are interested in a class of Steiner systems for which n = 3 k (k -- 1, 2, 3 .... ) 
that are obtained recursively by a standard technique (see Hall [8]). A3 is simply 
1 × 3 matrix of all ones. We obtain Aa, f rom A. as follows. The columns of A3, 
are indexed {(i, j): 1 -< i --- n, ! -< j -< 3}. The set {(i, r), (], s), (k, t)} is a triple of A3, 
if and only if one of the following conditions hold: 

(i) r = s = t and {i, j, k} is a triple of  A,, or 
(ii) i = j = k and {r, s, t} = {1, 2, 3}, or 

(iii) {i, j, k} is a triple of A, and {r, s, t} = {1, 2, 3}. 
To help clarify the construction we give the following informal description. 

The rows of A3, can be divided into three parts corresponding to conditions 
(i)-(iii). The first two parts look like 

An 0 
0 An 
I 
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where I is the identity matrix of suitable dimension. The third part consists of 
3! = 6 blocks corresponding to the permutations of {1, 2, 3}; for each permutation 
7r, the triples of the corresponding block are 

{(i, rr(1)), (j, ~r(2)), (k, ~r(3))} 

where (i, j, k) runs through all triples of A,. 
It is easily verified that A3, is again the incidence matrix of a Steiner triple 

system. An important fact that we will need  later is that three disjoint copies of 
A, appear in A3,. Fig. 1 contains A9, and the three disjoint copies of A3 are 
indicated. A27 has size 117 x 27 

{1, 1} {2, 1} {3, 1} {1, 2} {2, 2} {3, 2} {1, 3} {2, 3} {3, 3}- 

0. 0 0 
0 0 0 
1 0 0 
0 1 0 

zLl9 : 0 0 1 

1 0 0 
1 0 0 
0 1 0 
0 1 0 
0 0 1 
0 0 1 

0 0 0 0 0 0' 
H 1 lX 0 0 0 
o o o i.1. . . . . . . .  1 ... . . . .  1!: 
1 0 0 1 0 0 
0 1 0 0 1 0 
0 0 1 0 0 1 
0 1 0 0 0 1 
0 0 1 0 1 0 
1 0 0 0 0 1 
0 0 1 1 0 0 
1 0 0 0 1 0 
0 1 0 1 0 0 

Fig. 1. 

and is the first of the two problems described in Fulkerson et al. [5]. They have 
solved (1) with constraint matrices A9 and A27 obtaining w(A9) = 5 and w(A27) = 
18. Their larger problem, which has size 330 x 45, has only recently been solved 
by H. Ratliffe (personal communication, 1979), who shows that w(A45) = 30. The 
solution of this problem involved over 2½ hours of computation on the large 
Amdahl V7. 

We conclude this section by grouping the combinatorial properties of these 
incidence matrices that will be used in the proofs in Sections 4 and 5. 

(P1) Every row of A, contains exactly 3 ones. 
(P2) Every column of A, contains exactly Zz(n - 1) ones. 
(P3) For every pair of rows of A,, there is exactly one column in which they 

both contain a one. 
(P4) For every triple {(i, r), (j, s), (k, t)} of A3, either r = s = t or {r; s, t} = 

{1,2,3}. 

3.  R e e u r s i v e  a l g o r i t h m s  

For the class of algorithms that we consider, we borrow the following model 
from Chvfital [1]. A recursive algorithm to solve (1) considers partial vectors of 
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the form xj = {xj: j E J} such that J C {1, 2 . . . . .  n} and each x~ is zero or one. At 
each stage we have a list of such vectors along with some feasible solution 
x* = (x*, .. . ,  x*) of (1). Some partial vector extends to an optimal solution, or 
else x* is optimal; this property is preserved throughout. We begin with J = 0 
and some feasible solution (x* = e will always work). For each partial vector xj 
we define the set U(xj) of uncovered rows of A by 

U(xj)= {i: ~ aijxj=O}. 
j~J 

An iteration of the algorithm consists of one of the following alternatives: 
(1)(a) (Branching). Replace some partial vector xj on the list by partial 

vectors YK and zK such that K = J U { k }  for some k ~ J ,  Yk = 1, z~ = 0  and 
yj =z j  =x j  whenever j E J. (b) (Augmenting). Extend zK to ZKu~t, where z~ = e 
and 

M = {lfE K: ~_, aii = ail = l for some i E U(ZK)}. 
j~K 

(2) (Bounding). Consider a partial vector xj on the list and the linear pro- 
gramming relaxation 

ff(xj) = min ~ xj + e .  xj, 
j~J 

~, aijxj >-- 1 (i ~ U(xj)), (2) 
j~J 

0_<xj___l ( j~  j ) .  

If (2) has no solution or if its optimal solution is at least e .  x*, then xj is 
bounded and is deleted from the list. 

(3) (Dominating). Choose partial vectors xj and yj. If e . x j  >_ e . y j  and 
U(yj) C U(xj), then yj dominates xj and xj is removed from the list. 

(4) (Improving the current solution). If the list contains a feasible solution x of 
(1) such that e • x < e • x*, then replace x* by x and delete x from the list. 

The algorithm terminates when the list becomes empty, at which point x* is an 
optimal solution of (1). One often describes the operation of such algorithms in 
terms of searching a binary tree. The root of such a tree is just the empty partial 
vector. Step l(a) corresponds to taking a node of the tree and adjoining two 
descendants, each corresponding to a partial vector. The depth of a partial 
vector xj is the distance to the root from the corresponding node in the search 
tree, or alternatively the number of times Step l(a) was executed in arriving at 
xj. A general description of implicit enumeration schemes as well as many 
detailed examples is contained in Garfinkel and Nemhauser  [6]. 

We have used the structure of the set covering problem to allow the augment- 
ing phase of Step 1, which arises from the following simple observation. We can 
consider the columns of A corresponding to zeroes in the partial solution vector 
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xj as being deleted. If there remain uncovered rows in the reduced matrix with 
exactly one non-zero entry, then the variables corresponding to these columns 
must be set to one in any feasible extension of xj. We assume that such variables 
are set to one as part of Step 1, that is, that Step l(b) always follows Step l(a). 
This is referred to as a reduction in Garfinkel and Nemhauser [6, p. 302]. It 
implies that for the matrices described in Section 2, the LP relaxation in Step 2 
will always be feasible, and fathoming only occurs if the relaxation yields a 
higher objective value than the current feasible integer solution. The inclusion of 
Step l(b) simplifies the analysis of these algorithms, although Theorem 1 remains 
true for algorithms that do not use the augmentation feature. 

4. The main result 

In this section we prove the following theorem. 

Theorem 1. Every recursive algorithm for solving (1) with constraint matrix A,, 
n -> 27, requires the creation of at least 2~-drpartial vectors. 

Proof. We will show that at level q = [~/2---~] in the search tree, there exist 2 q 
nodes (Ix] is the smallest integer greater or equal to x). That is, neither Step 2 
nor Step 3 will remove any partial vectors from the tree until a depth greater 
than q is reached. Let  xj be any partial vector in the tree. We make the 
following definitions: 

j0 = number of variables x~ (i ~ J) fixed at zero, 
il = number of variables xj (j ~ J) fixed at one by branching, 
1"2 = number of variables x i (j ~ J)  fixed at one by augmenting, 

It is easily seen that the following relationships hold: 

IJl=Jo+Jl+j2, q=jo+j,, j2<-½jo(jo-1). 

The inequality follows from property (P3): since no two rows of A, can have 
ones in the same two columns, every pair of variables that is set to zero forces at 
most one additional variable to be set to one. We will now obtain an upper 
bound on the value ~(xj) of the LP relaxation with fixed variables xj. 

A feasible solution to this program may be obtained by setting xj = 12(jE J), 
provided we perform Step l(b) after Step l(a). Therefore 

~(x j )<~(n-IJ l )+j l+ j2<_12n+12j l±i ;2  z; 
- -  ~ 4 J O  - -  4 1 0  

= ~ .  + 4 ~ U o + j ~ ) ~ - ~ U o + j , ) - U d ,  ~ .2 - 4  j l  + j~-Xdo 

-<12n+~q2-~q-4-2-1<l-+~(q-1)2<~n for n>_27. 

To show that xj is not fathomed, we need to show that w(A,)>--Zn. This follows 
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f rom the fact  that w(A27)= 18 (see Fulkerson et al. [1]) and the fact that A3n 
contains three disjoint copies of  An, therefore  w(A3n) > 3w(An). 

We will now show that elimination by dominance does not remove any partial 
vector  f rom the list. Let  xj and y~ be defined as in Step 3 and let i be some index 
such that xi = 1 and yi = 0. If such an index does not exist then xj = yj which is 
impossible. By (P2), column i of A contains ( n -  1)/2 non-zero entries. The 
corresponding rows of A must be covered by yj, because these rows are covered 
by xj and U(yj)_C U(xj). Let  I denote the index set of these rows. Since all 
these rows have a non-zero entry in column i, by (P3) there exists no other 
column in which any pair of these rows both contain a one. Therefore  yj 
contains at least (n - 1)/2 non-zero elements, one to cover  each row of I. At a 
depth q in the search tree the number of non-zeroes in any partial vector  is 

j~+j2<_j~+~jo(Jo- 1)___21q(q - 1)<21(n - 1) for  n >27.  

Therefore  elimination by dominance can remove no partial vector  f rom the list 
at a depth of q or less. 

5. An upper bound 

In this section we derive an upper bound on w(An). We begin with a definition. 
Let  J be a set of columns of An and let I be defined by 

I = Ii: ~ aii= 3 }. (3) 
j~J 

We say that a subset K of J is a cover (of J)  if 

~_~ aij>-I ( iEI ) .  

The importance of a cover  derives f rom the fact that any partial vector  xj can be 
extended into a feasible solution of (1) if XK = e. In particular, if J = {1, 2, ..., n}, 

then IK[ is an upper bound on w(An). In what follows, let c = 1/log2 3. 

Theorem 2. Every set J of columns of An admits a cover of size at most [J[ - IJ[ c. 

Proof. The theorem is easily verified for A3. We assume inductively that the 
result is true for An. We label the columns of A3n by the ordered pair (i, j) as 
described in Section 2. Let  J be any set of columns of A3n and set q = IJ I. Let  qj 
(j = 1, 2, 3) be the number of columns of J which are labelled with last co- 
ordinate j. We may assume, by relabeling if necessary, that ql---q2-< q3. The 
cover  of J is constructed as follows. 

Begin by taking the ql columns of J with last co-ordinate 1. Delete all the row 
indices f rom the corresponding set I, defined by (3), that correspond to rows that 
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have now been covered. It follows from property (P4) that the remaining 
elements in I correspond to rows of A3n in which all the ones occur in columns 
with the s a m e  last index: either 2 or 3. Thusthe original problem reduces to two 
subproblems, to each of which we can apply the inductive hypothesis. It follows 
that a cover of size at most f (q l ,  q2, q3) can be found, where 

f ( q b  q2, q3) = q l  + q2 -- q~ + q3 --  q~. 

To see how large f (q l ,  q2, q3) can get, we consider the program: 

maximize f (q l ,  q2, q3), 

subject to ql + q2 + q3 = q,  

q2 - q3 ~ O, 

ql - q2 ~> O, 

ql -----0. 

It is easily verified that f is a convex function. As is well-known, the maximum 
of such a function occurs at an extreme point of the feasible region. Here it can 
be seen by inspection that the maximum occurs simultaneously at the extreme 
points (0,0, q) and (~q,~q,~q)  with objective value q -  qC. Thus the theorem 
follows. 

Corollary. w(An)  <- n - 2 k, where n = 3 k. 

This result has an interesting relationship to a certain heuristic solution of the 
original problem (1). This heuristic, known as GREEDY, operates by selecting a 
column of A with the maximum number of ones. This column is deleted from A 
together with all rows that had a one in this column. The procedure is repeated 
until a cover is found. We make this procedure definite by adding the rule that 
ties will be broken in the column selection process by choosing the column of 
least index. Worst case bounds are given by Chvfital [2] for GREEDY, but in 
this case we can compute the solution exactly. It turns out to be the cover 
constructed in Theorem 2 with weight n -  2 k. As an example of Theorem 2 
consider the submatrix of A9 given in Fig. 2, with IJI = 7. The method used in the 
proof of the theorem constructs the cover consisting of columns {{1, 1}, {2, 1}, 
{1, 3}} with cardinality 3, which agrees with the theorem. 

{1, 1}{2, 1}{2, 2}{3, 2}{1, 3}{2, 3}-{3, 3} 

1 0 0 1 0 1 
0 1 0 1 1 0 
0 1 1 0 0 1 

. 0  0 0 0 1 1 

Fig. 2. 
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