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Abstract

The cut polytope and its relatives are good models of the correlations that can be
obtained between events that can be well described by classical physics. Bell’s Theorem
and subsequent experiments demonstrate that correlations obtainable between events
at the quantum level cannot be modelled in this way. This raises the question of
whether a “good” mathematical characterization of quantum correlation vectors can be
obtained. An important special case was completely solved by Tsirelson, who showed
that a projection of the elliptope provides the desired body. (This parallels the well
know semi-definite programming approach to approximating max-cut.) I will survey
this material and present some new joint work with Hiroshi Imai and Tsuyoshi Ito on
a possible direction for extending Tsirelson’s theorem.

1 Classical Correlations

Let A1, ..., An be a collection of n 0/1 valued random variables that belong to a common
joint probability distibution. For 1 ≤ i < j ≤ n, we define new random variables Ai△Aj

that are one when Ai = Aj and zero otherwise. Denote by 〈A〉 the expected value of a
random variable A. The full correlation vector x based on A1, ..., An is the vector of length
N = n+ n(n− 1)/2 given by the expected values:

x = (〈Ai〉 , 〈Ai△Aj〉) ≡ (〈Ai〉1≤i≤n , 〈Ai△Aj〉1≤i<j≤n).

Note that each element of the above vector lies between zero and one. Now consider any
vector x = (x1, ..., xn, x12, ..., xn−1,n) ∈ [0, 1]N indexed as above, which we will call an
outcome. We consider two related computational questions:

Recognition. When is an outcome x a full correlation vector?

Optimization. For any c ∈ RN what is the maximum value of cTx over all possible full
correlation vectors x?

It turns out that the recognition problem is NP-complete, and the optimization problem
is NP-hard. This follows from the fact that the set of full correlation vectors is in fact the
cut polytope CUTn+1 defined on the complete graph Kn+1. This polytope is defined as
the convex hull of the 2N full correlation vectors obtained by deterministically setting each
random variable Ai to either zero or one. For details of the above and other facts about cut
polytopes, see the book by Deza and Laurent [8]. For a vector u = (u1, ..., ud) the L1-norm
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of u is given by ‖u‖1 =
∑d

i=1 |ui|. We have the following well-known characterization of the
cut polytope.

L1-characterization of full correlation vectors.
The following two statements are equivalent:

• An outcome x ∈ [0, 1]N is a full correlation vector.

• There exist vectors ui, vj ∈ Rd, 1 ≤ i, j ≤ n, d ≤ N , for which

xi = ‖ui‖1, xij = ‖ui − uj‖1.

Full correlation vectors provide an adequate model for correlations obtained in physical
experiments at the classical level. Let us call the random variables observables. For example,
with n = 3, A1, A2, A3 could obtain the value one if a given McGill student has blond hair,
weighs more than 80 kg or is more than 180cm high, respectively. We could obtain a full
correlation vector by determining these three observables for all McGill students.

In a quantum setting, things are very different. Firstly, it is difficult to apply the above
model directly since at the quantum level it may be impossible to measure directly different
observables for a given particle. Therefore the above model is replaced by a bipartite
setting where the 0/1 random variables (observables) are labelled A1, ..., Am and B1, ..., Bn

respectively.
The (bipartite) correlation vector x based on random variables A1, ..., Am and B1, ..., Bn

is the vector of length M = m+ n+mn given by the expected values:

x = (〈Ai〉 , 〈Bj〉 , 〈Ai△Bj〉) ≡ (〈Ai〉1≤i≤m , 〈Bj〉1≤j≤n , 〈Ai△Bj〉1≤i≤m,1≤j≤n). (1)

As we will be concerned only with the bipartite case, we will simply use the term
correlation vector where no confusion arises. As before, we call any vector x ∈ [0, 1]M

indexed as in (1) an outcome. Again we may define a polytope by considering the convex
hull of the 2m+n correlation vectors formed by letting each of the m+ n random variables
take value either zero or one. This polytope is called the Bell polytope Bm,n and was
apparently first considered by Froissart [9]. It turns out the membership and optimization
problems given above are still NP-complete and NP-hard respectively (for references, see,
e.g., [2] ). The characterization theorem generalizes in a natural way.

L1-characterization of bipartite correlation vectors.
The following two statements are equivalent:

• An outcome x ∈ [0, 1]M is a bipartite correlation vector.

• There exist vectors ui, vj ∈ Rd, 1 ≤ i ≤ m, 1 ≤ j ≤ n, d ≤M , for which

xi = ‖ui‖1, xm+j = ‖vj‖1, xij = ‖ui − vj‖1.

The Bell polytope has been much studied. Valid inequalities for the Bm,n are often called
Bell inequalities, although here we will reserve this term for the facets of Bm,n. These
inequalities have been studied by many researchers, see for example [10], [14], [7]. The
CHSH inequality is the only non-trivial facet of B(2, 2) and is given by

〈A1△B1〉 − 〈A1△B2〉 − 〈A2△B1〉 − 〈A2△B2〉 ≤ 0
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or equivalently
x11 − x12 − x21 − x22 ≤ 0. (2)

Although few Bell inequalities were known until recently, much is known about facets of
the cut polytope, including several large classes of facets. In [1] a method is given to
generate Bell inequalities from facets of the cut polytope, producing a large number of new
inequivalent Bell inequalities.

The correlation vector with m = 2, n = 2 given by

x = (
1

2
,
1

2
,
1

2
,
1

2
,
2 +

√
2

4
,
2 −

√
2

4
,
2 −

√
2

4
,
2 −

√
2

4
) (3)

clearly violates the CHSH inequality (2), so it follows there is no joint distribution function
for the four random variables. This correlation vector cannot arise as the result of an exper-
iment for which the rules of classical physics apply. An outstanding prediction of quantum
theory, apparently confirmed by numerous experiments, is that this correlation vector can
arise from observations at the quantum level. This fact has lead to many surprising appli-
cations in quantum information theory, see for example Cleve et al.[6]. It raises the issue
of whether there is a good characterization of such quantum correlation vectors, the topic
of the rest of the paper.

2 Quantum Correlations

The postulates of quantum theory give a complete statistical description of the outcome
of experiments at the quantum level. A two party quantum correlation experiment can
be described by a quantum state and set of observables A1, ..., Am, B1, ...Bn on a bipartite
Hilbert space. It is assumed the two parties are spatially separated and that the observations
are performed simultaneously. For a given experimental outcome, the vector x defined by
(1) is called a quantum correlation vector. The description given by the postulates does
not appear to provide any tractable method to answer the recognition, optimization and
characterization questions when applied to quantum correlation vectors. Such answers are
provided, however, for one important case by a theorem of Tsirelson. A quantum correlation
function is a vector y ∈ Rmn defined by taking the last mn coordinates of a quantum
correlation vector, i.e.,

y = (〈Ai△Bj〉) ≡ (〈Ai△Bj〉1≤i≤m,1≤j≤n). (4)

Tsirelson’s Theorem (0/1 version)[4] [13].
The following three statements are equivalent:

• y = (〈Ai△Bj〉) ∈ [0, 1]mn is a quantum correlation function.

• x = (1/2, 1/2, ..., 1/2, 〈Ai△Bj〉) ∈ [0, 1]M is a quantum correlation vector.

• There exist vectors ui, vj ∈ Rd, 1 ≤ i ≤ m, 1 ≤ j ≤ n, d ≤ m+ n, for which

xi = ‖ui‖ =
1

2
, xm+j = ‖vj‖ =

1

2
, xij = ‖ui − vj‖.

where ‖u‖ ≡ uTu.
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We call an experimental outcome unbiased if for all i and j we have 〈Ai〉 = 〈Bj〉 = 1/2, oth-
erwise it is biased. A remarkable result implied by this theorem is that the recognition and
optimization problems for correlation functions and unbiased quantum correlation vectors
can be solved in polynomial time by semi-definite programming(SDP). Using the theorem,
we can verify that (3) is a quantum correlation vector by exhibiting the vectors:
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Furthermore, it can be verified by SDP that this is the maximum violation of (2), although in
this case Tsirelson [4] has provided an analytic proof. These maximum quantum violations
have many interesting applications, see e.g. [6]. The maximum quantum violation of any
Bell inequality (like CHSH) that does not have terms involving the expectations 〈Ai〉 or 〈Bj〉
can likewise be found by using SDP. Unfortunately, most of the Bell inequalities produced
recently [1] do not satisfy these conditions. For these inequalities the maximum quantum
violation may only be achieved by a biased quantum correlation vector, and the above
method cannot be directly applied.

Tsirelson’s theorem may not hold for experimental outcomes that are biased. Consider
the outcome for m = n = 1 given by x = (3/4, 3/4, 3/4). If we set u1 = (

√
3/4, 3/4) and

v1 = (−
√

3/4, 3/4) then

x1 = ‖ui‖, x2 = ‖v1‖, x12 = ‖u1 − v1‖,

and the corresponding vector y = (3/4) is obviously a quantum correlation function. How-
ever x is not a quantum correlation vector because it violates the nosignalling condition.
This condition derives from the fact that the expectations 〈Ai〉 , 1 ≤ i ≤ m should be the
same regardless of which measurement j the other party decides to make, due to the spatial
separation of the two parties. Similar conditions should hold for the expectations 〈Bj〉. It
is shown in [2] that a vector x satisfies the nosignalling condition if and only if it belongs
to the rooted semimetric polytope defined by the inequalities:

xi + xj + xij ≤ 2, xi + xj − xij ≥ 0, xi − xj + xij ≥ 0, − xi + xj + xij ≥ 0. (6)

It is easy to see that unbiased quantum correlation vectors satisfy the no-signalling condi-
tion. However, the vector x = (3/4, 3/4, 3/4) violates the first of these inequalities.

It is tempting to conjecture that an outcome x is a quantum correlation vector if it satis-
fies the nonsignalling conditions (6) and the corresponding vector y is a quantum correlation
function. However, consider the vectors
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The outcome x satisfies (6), and y is a quantum correlation function, as shown by the
vectors given in (5). Nevertheless, it is proved in [3] that x is not a quantum correlation
vector. Perhaps even more surprising is an outcome they exhibit for the case m = n = 3:

xi =
1

3
, 1 ≤ i ≤ 6, x11 = x22 = 0, xij =

2

3
for all other 1 ≤ i, j ≤ 3.
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This gives an outcome x which satisfies (6) and for which the corresponding correlation
function can even be obtained classically. For example with vectors

u1 = v1 = (0, 0, 0, 1/3), u2 = v2 = (0, 0, 1/3, 0), u3 = (1/3, 0, 0, 0), v3 = (0, 1/3, 0, 0)

we have
xij = ‖ui − vj‖1 1 ≤ i < j ≤ 3.

and can use the L1 characterization theorem given in the previous section.
Even though Tsirelson’s theorem does not give a characterization of quantum correlation

vectors, it can be extended to give a necessary condition that can be combined with the
nosignalling condition.

Necessary conditions for quantum correlation vectors [2].
If x = (〈Ai〉 , 〈Bj〉 , 〈Ai△Bj〉) ∈ [0, 1]M is a quantum correlation vector then

• x must satisfy the nosignalling conditions (6), and

• There exist vectors ui, vj ∈ Rd, 1 ≤ i ≤ m, 1 ≤ j ≤ n, d ≤ m+ n, for which

xi = ‖ui‖, xm+j = ‖vj‖, xij = ‖ui − vj‖.

where ‖u‖ ≡ uTu.

Using this theorem, it can be shown that in the two previous examples the outcomes are not
quantum correlation vectors. Although it is not known if the conditions above are sufficient,
they do provide an efficient means of bounding the maximum quantum violation of general
Bell inequalities by SDP. If the conditions are in fact sufficient, this bound would be tight,
and the recognition and optimization problems for quantum correlation vectors would be
solvable efficiently by SDP.
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3 Appendix: Proof of Tsirelson’s Theorem

In this section we give an elementary description of Tsirelson’s proof [13] of his theorem.
For the proof, it is convenient to let the observables A1, ..., Am, B1, ..., Bn take values ±1
rather than 0/1, and to consider the products 〈AiBj〉 rather than the differences 〈Ai△Bj〉.
An outcome is now given by

x = (〈Ai〉 , 〈Bj〉 , 〈AiBj〉) ≡ (〈Ai〉1≤i≤m , 〈Bj〉1≤j≤n , 〈AiBj〉1≤i≤m,1≤j≤n),

and is called a quantum correlation vector if it can result from a quantum experiment. Simi-
larly we redefine a quantum correlation function. In this section we use the ket-bra notation
where |u〉 denotes a (possibly complex) vector, 〈u| denotes the transpose of its complex con-
jugate, and 〈u|v〉 denotes inner product. Using these new notations, the theorem takes the
following equivalent form.

Tsirelson’s Theorem (±1 version) [4] [13].
The following three statements are equivalent:

(a) y = (〈AiBj〉) ∈ [−1, 1]mn is a quantum correlation function.

(b) x = (0, 0, ..., 0, 〈AiBj〉) ∈ [−1, 1]m+n+mn is a quantum correlation vector.

(c) There exist vectors ui, vj ∈ Rd, 1 ≤ i ≤ m, 1 ≤ j ≤ n, d ≤ m+ n, for which

xij = yij = 〈ui|vj〉 .
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If (a) holds, some quantum correlation vector x′ must be consistent with y. By switching
the outcomes +1 and -1 we see that the vector x′′ formed by setting x′′i = −x′i, i = 1, ...,m+n
and otherwise setting x′′ij = x′ij is also a quantum correlation vector. The implication
(a) ⇒ (b) then follows from the convexity of the set of quantum correlation vectors by
setting x = (x′ + x′′)/2.

The implication (b) ⇒ (c) follows from the postulates of quantum theory. Indeed, cor-
responding to the given quantum correlation vector there must exist observables A1, ..., Am

on a Hilbert space HA, observables B1, ..., Bn on a Hilbert space HB, and a pure quantum
state |ψ〉 given as a unit vector on HA ⊗HB, where ⊗ denotes tensor (Kronecker) product.
For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let |ai〉 = Ai ⊗ IB |ψ〉 and |bj〉 = IA ⊗ Bj |ψ〉. Then |ai〉 and
|bj〉 are (possibly complex) unit vectors of length, say, t, such that 〈ai|bj〉 = 〈AiBj〉. We
may replace them with real vectors ui and vj of length 2t by writing the real and complex
coefficients as separate coordinates, maintaining the same values of the inner products. The
set of m+ n real vectors u1, ..., um, v1, ..., vn have all the properties of part (b) except pos-
sibly their dimension 2t > m+ n. However the unit vectors lie in a subspace of dimension
d ≤ m+ n, which preserves their inner products.

The “hard” part of the theorem is the implication (c) ⇒ (a). Let u1, ..., um and v1, ..., vn

be m+n unit vectors in Rd, for d ≥ 1. We need to exhibit a pure state |ψ〉 and observables
A1, ..., Am, B1, ..., Bn such that for all i, j we have

〈ui|vj〉 = 〈AiBj〉 ≡ 〈ψ|Ai ⊗Bj |ψ〉 (7)

The observables are Hermitian matrices with dimensions at most 2⌈d/2⌉ by 2⌈d/2⌉, where |ψ〉
is a unit vector of appropriate dimension. The proof is constructive and involves expressing
a d dimensional vector as a linear combination of specially constructed matrices X1, ...,Xd,
rather than its usual representation as a linear combination of d orthogonal unit vectors.
More precisely, the vector z = (z1, ..., zd) ∈ Rd will be represented as

X(z) = z1X1 + ...+ zdXd. (8)

The matrices are chosen to satisfy the following conditions for 1 ≤ i, j ≤ d and i 6= j:

X2
i = I, XiXj +XjXi = 0. (9)

For all d, such a collection of matrices exist, with matrix dimensions 2⌈d/2⌉ by 2⌈d/2⌉. They
are said to form a Clifford Algebra (eg., see Ch. 11 of [11] ). Tsirelson’s construction is
essentially the following. Let

A =
1

d
(X1 ⊗X1 + ... + Xd ⊗Xd). (10)

He shows A has maximum eigenvalue one, and defines |ψ〉 as the corresponding eigenvector
normalized to be a unit vector. The observables are defined using (8) by

Ai = X(ui), Bj = X(vj), i = 1, ...,m j = 1, ..., n, (11)

The next two subsections give constructions for d = 2, 3. A final subsection gives a general
construction.
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3.1 The Case d = 2

Let u1, ..., um and v1, ..., vn be m+ n unit vectors in R2 and let z = (z1, z2). Define

C(z) =

[

z1
z2

z2
−z1

]

.

Now define observables

Ai = C(ui), Bj = C(vj), i = 1, ...,m j = 1, ..., n.

Let |ψ〉 = [1/
√

2, 0, 0, 1/
√

2]T which corresponds to the state |00〉+|11〉√
2

. Then it is easy to

verify that (7) holds. For example, with

u1 = [1, 0]T , u2 = [0, 1]T , v1 = [1/
√

2, 1/
√

2]T , v2 = [1/
√

2, −1/
√

2]T

we may verify, for instance, that

〈u2|v1〉 = 〈ψ|C(u2) ⊗ C(v1)|ψ〉 =
1√
2
.

Here is how the quantum setting is obtained. We start with

X1 =

[

1
0

0
−1

]

X2 =

[

0
1

1
0

]

.

It is easy to verify that (9) holds and that C(z) = X(z) as given by (8). To get the state
|ψ〉 we first construct the operator A given by

2A = X1 ⊗X1 + X2 ⊗X2 =









1
0
0
1

0
−1
1
0

0
1
−1
0

1
0
0
1









.

Using Maple we find that A has maximum eigenvalue 1 with corresponding eigenvector
[1, 0, 0, 1]T . When normalized, this eigenvector gives the state |ψ〉 above.

3.2 The case d = 3

Let u1, ..., um and v1, ..., vn be m+ n unit vectors in R3 and let z = (z1, z2, z3). Define

C(z) =









z3
0
z2
z1

0
z3
z1
−z2

z2
z1
−z3
0

z1
−z2
0

−z3









.

Now define observables by

Ai = C(ui), Bj = C(vj), i = 1, ...,m j = 1, ..., n,

and state |ψ〉 by

|ψ〉 =
|0000〉 + |0101〉 + |1010〉 + |1111〉

2
=

1

2
[ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ]T
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It is tedious but easy to verify that (7) holds. Proceeding as before, we start this time with

X1 =









0
0
0
1

0
0
1
0

0
1
0
0

1
0
0
0









X2 =









0
0
1
0

0
0
0
−1

1
0
0
0

0
−1
0
0









X3 =









1
0
0
0

0
1
0
0

0
0
−1
0

0
0
0
−1









.

which satisfy (9) and so form a Clifford algebra. Again observe that C(z) = X(z) as given
by (8). To get the state |ψ〉 we first construct the operator A given by

A =
1

3
( X1 ⊗X1 + X2 ⊗X2 + X3 ⊗X3 ) .

Multiplying out we obtain the following 16 by 16 matrix representation for 3 A:

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 -1 0 0 1 0

0 0 -1 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 -1 0 0 0 0 0 -1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0 -1 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 -1 0 0 1 0 0 -1 0 0 0

0 0 0 0 0 0 0 -1 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1 -1 0 0 0 0 0 0 0

0 0 0 -1 0 0 1 0 0 -1 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 -1 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 -1 0 0 0 0 0 -1 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 -1 0 0

0 1 0 0 -1 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

Using Maple we find that A has maximum eigenvalue 1 with two corresponding eigen-
vectors, one of which is [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ]T , which when normalized gives the
state |ψ〉 as above. Incidentally, the other eigenvector is [ 0 1 0 0 −1 0 0 0 0 0 0 −1 0 0 1 0 ]T .

3.3 General Construction

The construction of Clifford algebras is particularly easy when the matrices Xi are allowed
to have complex entries and the dimension is even. In fact one can be built from products
of Pauli matrices (eg., Snygg [11], p. 292). Start with

σ1 =

[

0
1

1
0

]

σ2 =

[

0
−i

i
0

]

.

and initially set X1 = σ1 and X2 = σ2. The construction for even dimensions is as follows.
Suppose we have a Clifford algebra Xi for i = 1, ..., 2d. Then we define

Yi = σ1 ⊗Xi, i = 1, ..., 2d, Y2d+1 = idσ1 ⊗ (X1X2...X2d), Y2d+2 = σ2 ⊗ I.

It is not difficult to show that Y1, ..., Y2d+2 is a Clifford algebra.

9



Given a Clifford algebra compute the operator A by (10) and define observables by (11).
The quantum state |ψ〉 is an eigenvector of A corresponding to eigenvalue 1. For d = 2 and
this construction, we get a realization that is slightly different from that in Section 2.

2A = X1 ⊗X1 + X2 ⊗X2 =









1
0
0
1

0
1
1
0

0
1
1
0

1
0
0
1









.

Using Maple we find that A has maximum eigenvalue 1 with corresponding eigenvectors
[1, 0, 0, 1] and [0, 1, 1, 0]. Setting |ψ〉 = [0, 1/

√
2, 1/

√
2, 0] we can satisfy (7) above.

(Using the first eigenvector we get 〈ψ|X(x) ⊗X(y)|ψ〉 = x1y1 − x2y2.)
The proof that (7) holds follows from the following.
Lemma 1.2 of [13]

〈ψ|X(x) ⊗X(y)|ψ〉 = 〈x|y〉 .
Proof: Following Tsirelson, A is the mean over all unit vectors x of X(x) ⊗X(x), and so
the mean of 〈ψ|X(x) ⊗X(x)|ψ〉 is equal to 〈ψ|A|ψ〉 = 1, since |ψ〉 is an eigenvector of A
corresponding to eigenvalue one. For all unit vectors x 〈ψ|X(x) ⊗X(x)|ψ〉 ≤ 1 and so in
fact

〈ψ|X(x) ⊗X(x)|ψ〉 = 1 (12)

for all unit vectors x. By choosing a unit vector x with xi = 1, xj = 0, i 6= j we have

〈ψ|Xi ⊗Xi|ψ〉 = 1 i = 1, ..., d. (13)

For 1 ≤ i < j ≤ d define the unit vector x with xi = xj = 1/
√

2, and all other components
zero. From (12) we have

1 = 〈ψ| 1√
2
(Xi +Xj) ⊗

1√
2
(Xi +Xj)|ψ〉

=
1

2
[ 〈ψ|Xi ⊗Xi|ψ〉 + 〈ψ|Xj ⊗Xj |ψ〉 + 〈ψ|Xi ⊗Xj |ψ〉 + 〈ψ|Xj ⊗Xi|ψ〉 ]

=
1

2
[2 + 〈ψ|Xi ⊗Xj |ψ〉 + 〈ψ|Xj ⊗Xi|ψ〉 ]

by (13). Therefore
〈ψ|Xi ⊗Xj |ψ〉 + 〈ψ|Xj ⊗Xi|ψ〉 ] = 0. (14)

Combining (13) and (14) we have for any unit vectors x and y

〈ψ| X(x) ⊗X(y)|ψ〉 = 〈ψ|(x1X1 + ... + xdXd) ⊗ (y1X1 + ... + ydXd)|ψ〉

=
d

∑

i=1

xiyi 〈ψ|Xi ⊗Xi|ψ〉 +
∑

1≤ij≤d

xiyj(〈ψ|Xi ⊗Xj |ψ〉 + 〈ψ|Xj ⊗Xi|ψ〉)

= 〈x|y〉 .

3.4 Notes.

1. Probably one can get the eigenvector of the operator A with eigenvalue 1 directly without
computing the full matrix representation of A.
2. Tsirelson proves in Lemma 1.1 of [13] that the eigenvalue 1 of A occurs with multiplicity
one, but I found in the constructions above that it could have multiplicity 2.
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