
Noname manuscript No.
(will be inserted by the editor)

A portable parallel implementation of the lrs vertex
enumeration code

David Avis and Gary Roumanis

the date of receipt and acceptance should be inserted later

Abstract We describe a parallel implementation of the vertex enumeration
code lrs that automatically exploits available hardware on multi-core comput-
ers and runs on a wide range of platforms. The implementation makes use of
a C++ wrapper that essentially uses the existing lrs code with only minor
modifications. This allows the simultaneous development of the existing single
processor code with the speedups available from multi-core systems. It makes
use of the restart feature of reverse search that allows for independent subtree
search and the fact that no communication is required between these searches.
As such it can be readily adapted for use in other reverse search enumeration
codes.

Keywords vertex enumeration, reverse search, parallel processing

Mathematics Subject Classification (2000) 90C05

1 Introduction

Since its discovery in the 1990s the reverse search technique[3] [4] has been
used to solve a large number of unstructured enumeration problems of which
perhaps the most widely used is vertex enumeration using the lrs program
[2]. From the outset it was realized that reverse search was imminently suit-
able for parallelization. The first such code, prs was developped by Ambros
Marzetta using his ZRAM parallelization platform, as described in [6] and

David Avis
School of Informatics, Kyoto University, Kyoto, Japan and
School of Computer Science, McGill University, Montréal, Québec, Canada
E-mail: avis@cs.mcgill.ca

Gary Roumanis
Microsoft Research, Seattle, USA
E-mail: groumanis@gmail.com
This work is supported by NSERC and JSPS.

2 David Avis and Gary Roumanis

available online at [10]. In this case the parallelization was built into the lrs
code itself leading to problems of maintennance and upgrading as newer paral-
lel libraries developed. Another parallelization of reverse search was developed
by Christophe Weibel for computing Minkowski sums [11]. This used a recur-
sive version of reverse search where a backtrack stack is employed and some
message passing is allowed during parallel execution. We discuss it further in
Section 2.3.

The lrs code is rather complex and has been under development for over
twenty years incorporating a multitude of different functions. It has been used
extensively and basic functionality is very stable. Directly adding paralleliza-
tion code to such legacy software is extremely delicate and can easily produce
bugs that are difficult to find. The approach we use avoids this completely as
the parallelization occurs in a separate layer. This allows independent devel-
opment of both parallelization ideas and basic improvements in the underlying
code. Parallelization is obtained by using the built in restart features of lrs
with a completely separate multi-thread scheduler. The concept was tested by
a shell script, tlrs developed by John White in 2009. Here the paralleliza-
tion is achieved by scheduling independent processes for subtrees via the shell.
Although good speedups were obtained several limitations of this approach
materialized as the number of processors available increased. In particular job
control becomes a major issue: there is no single controlling process. A strong
point of the approach used in tlrs was that no modification of the underlying
lrs code was required.

The approach we describe here lies somewhere between the approaches of
Marzetta and White. We built a C++ wrapper that compiles in the original
lrslib library essentially maintaining the integrity of the underlying lrs code.
The parallelization is achieved by multithreading using an initial bounded
depth run of lrs and and an additional process is used to concatenate the
output streams. Job control is easily available since one process is in charge
of all threads. Furthermore the development of the parallelization techniques
can proceed independently of the original lrs code itself.

The paper is organized as follows. In the next section we begin with back-
ground on reverse search and explain the simple modifications necessary to
prepare for parallelization. We use the example of generating permutations as
an illustration. We then give a high level description of the parallelization tech-
nique illustrating on the permutation example. In Section 3 we describe the
vertex enumeration problem and some of the properties that may potentially
limit parallel speedups. In Section 4 we describe the wrapper constructed to
schedule the parallel lrs executions, detailing various design decisions taken.
Section 5 gives numerical experiments on a wide variety of polyhedra with
bench marks against the standard solvers cddr+ [8] and lrs . We conclude
with some observations and directions for improving the parallelization per-
formance.

A portable parallel implementation of the lrs vertex enumeration code 3

2 Background

2.1 Reverse search

Reverse search is a technique for generating large, relatively unstructured, sets
of discrete objects. We give an outline of the method here referring the reader
to [3] [4] for further details.

In its most basic form, it can be viewed as the traversal of a spanning
tree, called the reverse search tree T , of a graph G = (V,E) whose nodes are
the objects to be generated. Edges in the graph are specified by an adjacency
oracle, and the subset of edges of the reverse search tree are determined by
an auxiliary function, which can be thought of as a local search function f for
an optimization problem defined on the set of objects to be generated. One
vertex, v∗, is designated as the target vertex. For every other vertex v ∈ V
repeated application of f must generate a path in G from v to v∗. The set of
these paths defines the reverse search tree T , which has root v∗.

A reverse search is initiated at v∗, and only edges of the reverse search tree
are traversed. When a node is visited the corresponding object is output. Since
there is no possibility of visiting a node by different paths, the nodes are not
stored. Backtracking can be performed in the standard way using a stack, but
this is not required as the local search function can be used for this purpose.
This means that it is not necessary to keep more than one node of the tree at
any given time, and this memoryless property is the main feature of reverse
search. For a given problem, there may be many choices of adjacency oracle
and local search function.

However, in the basic setting described here, a few properties are required.
Firstly, the underlying graph G must be connected and an upper bound on the
maximum vertex degree, ∆, must be known. The performance of the method
depends on G having ∆ as low as possible. The adjacency oracle must be
capable of generating the adjacent vertices of some given vertex v sequentially
and without repetition. This is done by specifying a function Adj(v, j), where
v is a vertex of G and j = 1, 2, ...,∆. Each value of Adj(v, j) is either a vertex
adjacent to v or null. Each vertex adjacent to v appears precisely once as j
ranges over its possible values. For each vertex v 6= v∗ the local search function
f(v) returns the tuple (u, j) where v = Adj(u, j) such that u is v’s parent in T .
The algorithm is shown in Algorithm 1. The order that the vertices are output
is called the reverse search order. For convenience later, we do not output the
root vertex v∗.

These ideas can be illustrated on a simple example: generating all permu-
tations of a set of integers. Here the goal is to generate all pemutations of the
integers {1, 2, ..., n}. The underlying graph Gn = (V,E) is defined as follows.
The vertices are n-tuples, v = v1v2...vn, representing the n! permutations of
the n integers. We set the target v∗ = (12...n). The adjacency oracle simply
interchanges two consecutive integers in a permutation, and is given by

Adj(v, i) = (v1v2...vi−1vi+1vi...vn) i = 1, 2, ..., n− 1.

4 David Avis and Gary Roumanis

Algorithm 1 Generic Reverse Search
1: procedure rs(v∗, ∆, Adj, f)
2: v ← v∗ j ← 0
3: repeat
4: while j < ∆ do
5: j ← j + 1
6: if f(Adj(v, j)) = v then . forward step
7: v ← Adj(v, j)
8: output v
9: j ← 0
10: end if
11: end while
12: if v 6= v∗ then . backtrack step
13: (v, j)← f(v)
14: end if
15: until v = v∗ and j = ∆
16: end procedure

So Gn is regular of degree ∆ = n − 1. Finally we set the local search func-
tion f to interchange the first two consecutive integers that are out of order
numerically:

f(v) = (v1v2...vi−1vi+1vi...vn) for the smallest i s.t. vi > vi+1.

Figure 1 shows G4 which has 24=4! vertices and is regular of degree 3. The
edges chosen by the local search function f are shown with arrows directed
towards the root 1234. So for example starting at vertex 4231 f generates the
path

4231 7→ 2431 7→ 2314 7→ 2134 7→ 1234.

The set of all arcs with arrows defines the reverse search tree T .

2.2 Extended reverse search

To achieve parallelization of Algorithm 1 we make use of the lack of memory
property that allows it to be restarted from any node in the reverse search
tree T . After a restart, all remaining nodes of T will be generated. We adapt
this to allow for a subtree to be enumerated from its given root.

When calling the reverse search procedure we now supply four additional
parameters:

– start vertex is vertex from which the reverse search should be initiated
and replaces v∗

– depth is initially the depth in T of start vertex and will be updated to be
the depth in T of the vertex v currently being considered in the search

– max depth is the depth at which forward steps are terminated
– min depth is the depth at which backtrack steps are terminated

A portable parallel implementation of the lrs vertex enumeration code 5

Fig. 1 Permutahedron: n = 4

Algorithm 2 Extended Reverse Search
1: procedure rs2(start vertex, ∆, Adj, f , depth, max depth, min depth)
2: j ← 0 v ← start vertex
3: repeat
4: while j < ∆ and depth < max depth do
5: j ← j + 1
6: if f(Adj(v, j)) = v then . forward step
7: v ← Adj(v, j)
8: output v
9: j ← 0
10: depth← depth+ 1
11: end if
12: end while
13: if depth > 0 then . backtrack step
14: (v, j)← f(v)
15: depth← depth− 1
16: end if
17: until depth = min depth and j = ∆
18: end procedure

The modified algorithm is shown in Algorithm 2.
Comparing Algorithm 1 and Algorithm 2 it is clear that the modifications

are very simple. However they enable us to extend the function of Algorithm
1 in several ways. For any vertex v in T we denote its depth by depth(v).
Initially we have depth(v∗) = 0. For the generic version of reverse search we
set start vertex = v∗, depth = min depth = 0 and max depth = +∞. For a
restart from vertex v we set start vertex = v, depth = depth(v),min depth =
0 and max depth = +∞. To output all nodes in the subtree of T rooted
at v we set start vertex = v, depth = depth(v),min depth = depth(v) and

6 David Avis and Gary Roumanis

max depth = +∞. To initialize the parallelization process we will generate
the tree T down to a fixed depth k by setting start vertex = v∗, depth =
min depth = 0 and max depth = k.

Returning to the example in Figure 1 we could do a restart from v = 2143
with depth = 2 obtaining the output 2413 4213 1423 4123. To list all nodes in
the subtree rooted at v we would in addition set min depth = 2 producing the
output 2413 4213. To do a partial enumeration down to depth = 2 we would
set start vertex = 1234, depth = min depth = 0,max depth = 2 generating
the output 2134 2314 1324 3124 1342 1243 2143 1423.

2.3 Parallelization

In this subsection we describe how the extended reverse search algorithm can
be parallelized without requiring further modification. We give a rather generic
description of the parallelization which is by nature somewhat oversimplified.
The details of the actual implementation with the lrs program will be given
in Section 4

We proceed in three phases. In the first phase we generate the reverse
search tree T down to a fixed depth init depth. Rather than ouput the nodes
of the tree, we store them in a list L. In the second phase we schedule threads
in parallel from L using the subtree enumeration feature. For this we require
the parameter max threads giving the maximum number of parallel threads
to that can run at the same time. We will also control where the output
stream is sent. In Phase 1 it will be directed to the list L. From L all vertices
that have depth less than init depth are removed and output. In Phase 2 we
schedule parallel threads from the nodes in L using the subtree enumeration
feature. When the list L becomes empty we move to Phase 3 in which the
parallel threads terminate one by one until there are no more running and the
procedure terminates. We make use of a collection process which concatenates
the output from the parallel threads into a single output stream. The procedure
is outlined in Algorithm 3.

It is clear from the pseudocode the only interaction between the parallel
threads is the common output collection process. The only signalling required
is when a thread terminates.

Let us return to the example in Figure 1. Suppose we set the init depth = 2
and max threads = 3. We initiate the computation with the call

PRS(1234, 3, Adj, f, 2, 3)

This will generate the output list

L = {2134 2314 1324 3124 1342 1243 2143 1423}

in line 3. In line 6 we remove and output 2134 1324 1243 which have depth < 2
leaving L = {2314 3124 1342 2143 1423} which are at depth = 2. We assume
L is processed in left to right order. In lines 8-10 we initiate three calls to RS2:

RS2(2314, 3, Adj, f, 2,∞, 2), RS2(3124, 3, Adj, f, 2,∞, 2), andRS2(1342, 3, Adj, f, 2,∞, 2).

A portable parallel implementation of the lrs vertex enumeration code 7

Algorithm 3 Parallel Reverse Search
1: procedure prs(start vertex, ∆, Adj, f , init depth, max threads)
2: num threads← 0
3: redirect output to a list L . Phase 1
4: RS2(start vertex, ∆, Adj, f , 0, init depth, 0)
5: redirect output to collection process
6: remove all v ∈ L with depth(v) < init depth and output(v)
7: while num threads < max threads and L 6= ∅ do . Phase 2
8: remove any v ∈ L
9: RS2(v, ∆, Adj, f , depth(v), ∞, depth(v))

10: num threads← num threads+ 1
11: end while
12: while num threads > 0 do
13: wait until a termination signal is received
14: if L 6= ∅ then
15: remove any v ∈ L
16: RS2(v, ∆, Adj, f , depth(v), ∞, depth(v))
17: else . Phase 3
18: num threads← num threads− 1
19: end if
20: end while
21: end procedure

After each of the first two threads terminate, in lines 15-16, two further calls
are made: RS2(2143, 3, Adj, f, 2,∞, 2) and RS2(1423, 3, Adj, f, 2,∞, 2). Then
L = ∅ and each subsequent termination decrements num threads until all
threads have completed.

In analyzing Algorithm 3 we observe that in Phase 1 there is no paral-
lelization, in Phase 2 all available cores are used, and in Phase 3 the level of
parallelization drops monotonically as threads terminate. Looking at the over-
head compared with Algorithm 1 we see that this almostly entirely consists of
the ammount of time required to restart the reverse search process. This leads
to conflicting issues in setting the critical init depth parameter. A larger value
implies that:

– only a single thread is working for a longer time
– the list L will be typically be larger requiring more overhead in restarts,

but
– the time spent in Phase 3 will typically be reduced.

The success in parallelization clearly depends on the structure of the tree T . In
the worst case it is a path and no parallelization occurs in Phase 2. In the best
case the tree is balanced balanced so that the list L can be short reducing over-
head and all threads terminate at more or less the same time. Success therefore
heavily depends on the structure of the underlying enumeration problem.

For the vertex enumeration problem, discussed in the next section, both of
these extremes and everything in between is possible. We will see experimental
results to illustrate this in Section 5.

We conclude by comparing the method of Algorithm [?] with that used
by Weibel [11] for computing Minkowski sums by reverse search. The latter

8 David Avis and Gary Roumanis

method uses a more sophisticated approach. Firstly the search is recursive so
that all nodes are stored in the backtrack path. As we noted, for vertex enu-
meration it is not possible in general to keep a full bactrack stack since it may
contain all of the LP dictionaries and exhaust memory. An approximation to
this included in the original lrs code, which employs a user specified parameter
k and caches the last k nodes of the backtrack stack. In this way memory is
not exhausted and the number of cache misses is usually rather low.

Secondly the rather than executing a distinct Phase 1, in Weibel’s method
a given process is designated the boss and can either execute normally or spin
off nodes to other threads to be executed in parallel. When the boss runs out
of work another node is designated to be the boss and messages are sent to
inform all other nodes.

Computational experience is given for up to 8 parallel processors with
reported speedups of 5.5 to 8 times.

3 Vertex enumeration

3.1 Reverse search vertex enumeration method

The initial application of reverse search was to the vertex enumeration problem
[3]. From this paper the lrs program was derived and a full description of its
implementation is given in [1]. We give a simplified description here.

Given an m×n matrix A = (aij) and an m dimensional vector b, a convex
polyhedron, or simply polyhedron, P is defined as:

P = {x∈Rn : b+Ax≥0}.

A polytope is a bounded polyhedron. For simplicity in this description we
will assume that we are dealing input data A, b that define full dimensional
polytopes. A point x∈P is a vertex of P iff it is the unique solution to a
subset of n inequalities solved as equations. The vertex enumeration problem
is to output all vertices of a polytope P . Figure 2 shows a typical input which
defines the polytope P sketched in Figure 3 with 5 vertices.

Fig. 2 A, b and its polyhedron P

Fig. 3 P has 5 vertices

A portable parallel implementation of the lrs vertex enumeration code 9

The computations are based on dictionaries, as is done for the simplex
method of linear programming. To get a dictionary for P = {x∈Rn : b+Ax≥0}
we add one new nonnegative variable for each inequality:

xn+i = bi +

n∑
j=1

aijxj , xn+i≥0 i = 1, 2, ...,m.

These new variables are called slack variables and the original variables are
called decision variables.

In order to have any vertex at all we must have m≥n, and normally m
is significantly larger than n, allowing us to solve the equations for various
sets of variables on the left hand side. The variables on the left hand side
of a dictionary are called basic, and those on the right hand side are called
non-basic or, equivalently, co-basic. We use the notation B = {i : xi is basic}
and N = {j : xj is co-basic}.

A pivot interchanges one index from B and N and solves the equations
for the new basic variables. A basic solution from a dictionary is obtained by
setting xj = 0 for all j∈N . It is a basic feasible solution(BFS) if xj≥0 for
every slack variable xj . A dictionary is called degenerate if it has a slack basic
variable xj = 0. As is well known, each BFS defines a vertex of P and each
vertex of P can be represented as one or more (in the case of degeneracy)
BFSs. For the example a typical BFS and dictionary are shown in Figure 4.

Fig. 4 Decision variables are all basic, N = {6, 7, 8}

To apply reverse search to this problem we first define the relevant graph
G = (V,E). Each node in V corresponds to a BFS and is labelled with the
cobasic set N . Each edge in E corresponds to a pivot between two BFSs.
Formally we may define the adjacency oracle as follows. Let B and N be
index sets for the current dictionary. For i ∈ B and j ∈ N

Adj(N, i, j) =

{
N − j + i if this gives a feasible dictionary
∅ otherwise

(The notation N − j + i is used as a convenient shorthand for N \ {j} ∪ {i}.)
For the example the graph G is shown in Figure 5. Observe that the vertex
(0, 0,−1) is degenerate and is represented by four cobases. The target v∗ for
the reverse search is found by solving a linear program over this dictionary
with any objective function z = cTx that defines a unique optimum vertex.
We use the objective function z and a non-cycling pivot selection rule to define

10 David Avis and Gary Roumanis

Fig. 5 The graph of feasible dictionaries for Figure 2

the local search function f . In the case of lrs we use Bland’s least subscript
rule for selecting the variable which enters the basis and a lexicographic ratio
test to select the leaving variable. This lexicographic rule simulates a simple
polytope which greatly reduces degeneracy. In the example only two of the
four bases defining vertex (0, 0,−1) would be generated. For details see [1].

3.2 Parallelization issues

In this subsection we discuss issues affecting how successful we can expect
Algorithm 3 to be when applied to vertex enumeration. Referring back to the
analysis at the end of Section 2.3 we recall the worst case is when the reverse
search tree T is a path, as no parallelization is achieved. This in fact can
happen!

The Klee-Minty examples [9], and their relatives, are specially constructed
polytopes so that the simplex method with a given pivot rule will follow a
Hamiltonian path on the polytope’s skeleton. This is precisely the case when
no parallelization occurs. This creates no problem for single processor codes,
as the tree shape is largely irrelevant. Examples of various types of polytopes
are given in Section 5.

4 Implementation description

As discussed earlier, the first attempt at parallelization was unfortunately
ineffective, unportable and most importantly unmanageable. The approach
essentially used POSIX threads to initiate a system call of lrs on subtrees.
Concatenating the output to a standard location proved difficult as interpro-
cess communication is not easily achieved. To circumvent this issue, tempo-
rary files were used to store output data. This was inefficient with regards to

A portable parallel implementation of the lrs vertex enumeration code 11

memory requirements for a given problem. These short comings were carefully
reviewed when the parallelization problem was attacked for a second time.

In the second approach, several open source, multi-threading libraries were
considered. It was decided that the C++ Boost library offered the greatest per-
formance, adaptability and maintainability. Moreover, Boost works on almost
any modern operating system, including UNIX and Windows variants; ensur-
ing the portability of the final solution. Although C++ is not a strict superset
of C, the language provides mechanisms for mixing code that is compiled by
compatible C and C++ compilers. This allowed us to create a lightweight
C++ wrapper around the lrs codebase using the g++ compiler.

On a high level, plrs has a multi-producer single consumer architecture.
What this equates to is that several producer threads travers subtrees of the
vertex enumeration problem, while a single consumer thread concatenates out-
put to a unified location. Note that threads within a process share the same
state, and same memory space. This is in contrast to processes which are inde-
pendent execution units that contain their own state information. This leads
to the fact that inter-thread communication is easily achieved.

The Boost.Atomic library is used to coordinate these multiple threads
through atomic variables. The implementation makes use of processor-specific
instructions where possible and falls back to emulating atomic operations
through locking; ensuring the portability of the solution. A lock-free multiple
producer single consumer queue is used to maintain output. The specific func-
tion compare exchange weak is used to post output from the producer threads
to the single consumer thread. For more details, please visit the Boost.org web
site [5].

The boost::thread class is responsible for launching the consumer thread
while the boost::thread group class is used for launching and managing all
producer threads. In order to wait for the execution of all producer threads
to finish, the join all() member function is used. Essentially, this blocks the
main process thread from completing until vertex enumeration has exhausted.
A similar function, join(), is used on the consumer thread to ensure all output
is captured before the completion of the entire process.

5 Numerical experiments

We describe here some experimental results using the plrs code on two com-
puters, mai12 1 and mai64 2 with respectively 12 and 64 cores and similar
processor speeds. We initially benchmarked the two computers by running an
lrs job (single thread) when the computers were idle and then with increasing
load averages. With a load average of 12, mai12 performed essentially the same
as with a load average of one, as one would wish for comparative experiments.
In a similar test on mai64 the performance deteriorated noticeably with high
load averages. At load averages of 32, 48, and 64 on mai64 the processing times

1 Xeon X5640, 2.66GHz, 12 core, 24GB memory, 60GB hard drive
2 Opteron 16core 6272 X 4, 2.1GHz, 64 core, 64GB memory, 500GB hard drive

12 David Avis and Gary Roumanis

Name Input Output lrs cddr+
H/V m n V/H size bases depth secs secs

mit H 729 9 4861 196K 1375608 101 809 505
bv7 H 69 57 5040 867K 84707280 17 11851

perm7 H 127 8 5040 127K 5040 21 0.6 15.0
c30-15 V 30 16 341088 73.8M 319770 14 80 4652
perm10 H 1023 11 3628800 127M 3628800 45 3193
c40-20 V 40 21 40060020 15.6G 20030010 19 22458

Table 1 Polyhedra tested: lrs ,cddr+ times on mai12

were respectively 1.15, 1.41 and 1.46 times longer then with a load average of
one. We therefore restricted tests to a maximum of 32 threads on this machine
and, even so, these results probably underestimate the speedup by about 15%.
The mai12 results are more robust.

We chose a few representative polyhedra that are shown in Table 1. For
each example we first give the input file name, type (H or V-representation)
and input dimensions (m rows and n columns). We then give the output size
(number of vertices or facets, respectively) and space, which ranges from 127K
to an enormous 15.6G. For lrs we give the number of bases generated, the
maximum tree depth and running time in seconds. The cddr+ times were ob-
tained using the default settings and are only given to emphasize the difference
between pivoting and double description methods. No attempt was made to
optimize the settings. No value implies that the cddr+ run did not terminate
with 48 hours. Input files are available from the web site [2].

The polytope mit is a configuration polytope which required about a month
of computer time for its vertex enumeration by cdd and lrs when first run in
1993 [7]. It is a rather degenerate polytope. c40-20 is a cyclic polytope and
is simple, ie, non-degenerate. perm7 and perm10 are permutation polytopes
written in their standard formulations, and are also simple polytopes. The
vertices of perm n are the n! permutations of 1, 2, ..., n. The standard formu-
lation using n variables has 2n − 2 inequalities and one linearity. bv7 is an
alternative formulation that has polynomial size in n as it is based on the
Birkhoff-Von Neumann polytope. It has n2 inequalities and 3n− 1 linearities
in n2 +n variables. We included perm7 only for comparison purposes with bv7
and do not use it in parallelization experiments.

In Tables 2 and 3 we present speedup results for plrs runs on mai12 and
mai64 respectively for the problems presented in Table 1. The initial depth
parameter was chosen fairly arbibtrarily to give a reasonable size list L of
problems to solve in parallel. On mai12 we observe that the speedups are
roughly comparable except for the last problem, c40-20, which are considerably
smaller. As remarked, it has huge output size. On mai64 in addition c30-15
shows very small speedups as the number of threads increases. Note that it has
short running time relative to its output size. On both machines the speedups
are largest for the highly degenerate bv7 which generates very little output.
Together this is evidence that the collection process may be the bottleneck in
these cases.

A portable parallel implementation of the lrs vertex enumeration code 13

Name lrs mt = 4 mt=8 mt=12
secs secs su secs su secs su

L id L id L id
mit 809 232 3.5 142 5.7 104 7.8

284 4 613 5 1213 6
bv7 11851 3117 3.8 1580 7.5 1104 10.7

645 2 645 2 7554 3
c30-15 80 27 3.0 15 5.3 12 6.7

1716 6 1716 6 1716 6
perm10 3193 983 3.2 517 6.2 421 7.6

4489 7 4489 7 4489 7
c40-20 22458 9633 2.3 5600 4.0 3697 6.1

220 3 715 4 2002 5

Table 2 Times and speedups (su): no. of threads =mt, initial depth=id (mai12)

Name lrs mt = 4 mt=8 mt=16 mt=32
secs secs su secs su secs su secs su

L id L id L id L id
mit 1125 339 3.3 190 5.9 123 9.1 110 10.2

284 4 613 5 1213 6 2121 7
bv7 17381 4513 3.85 2345 7.4 1215 14.3 707 24.5

645 2 645 2 7554 3 7554 3
c30-15 75 34 2.2 22 3.4 20 3.8 21 3.6

1716 6 1716 6 1716 6 1716 6
perm10 4295 1317 3.3 683 6.3 566 7.6 570 7.6

4489 7 4489 7 4489 7 4489 7
c40-20 17538 9802 1.8 6707 2.6 4902 3.6 4106 4.3

220 3 715 4 2002 5 5005 6

Table 3 Times and speedups (su): no. of threads =mt, initial depth=id (mai64)

Fig. 6 mit: mt=12, id=3, mai12 Fig. 7 mit: mt=12, id=4, mai12

The only user parameter for plrs is the initial depth parameter. If this
parameter is too low the list of jobs L may be too short to provide adequate
parallelism. On the other hand if it is too large a relatively large amount of
time will be spent in phase 1 using only one thread, and also in restarting each
job in L during phase 2. This is illustrated in Figures 6 to 9. These show the

14 David Avis and Gary Roumanis

Fig. 8 mit: mt=12, id=6, mai12 Fig. 9 mit: mt=12, id=10, mai12

Name lrs id = 2 id = 3 id=4 id=5 id=6
secs L secs L secs L secs L secs L secs

mit 809 35 183 115 127 284 102 613 104 1213 108
bv7 11851 645 1144 7554 1104 60966 1126 349984 1499 - -

c30-15 80 36 34 120 23 330 17 792 13 1716 12
perm10 3193 44 405 155 457 440 507 1068 530 2298 551

Table 4 Comparison of various init depth(id) values with max threads(mt)=12 (mai12)

load average during runs of plrs on mit using 12 cores and depths 3,4,6, 10
respectively. One can clearly see the three phases of execution: a short startup
with one core, a period with all 12 cores active while L is depleted, then the
final phase as each process terminates. The area under the graph is the total
execution time. Depths of 4 and 6 achieve the fastest elapsed time, but total
execution time is higher at depth 6. With depth 10 the first two phases are
longer, the third phase shorter, the total execution time longer. However the
elapsed time to complete the run is about 20% longer than at depth 4.

In Table 4 we show the dependence on the initial depth of speedup results
for plrs on four of the polytopes. Although there are differences in performance
they are less important than we expected. Given the previous discussion, one
would expect increasing speedups as the depth increases from a small value to
a minimum then decreasing speedups as the depth increases. Although this is
somewhat observed in the data there are obviously other competing factors at
play and the situation is more complicated.

6 Conclusions and future work

We have demonstrated that very useful speedups can be obtained by a portable
parallelization of lrs that does not disturb the underlying code. The method
allows for independent development of the lrs code and the parallelization
process itself. We expect that similar results can be obtained by a wide range
of applications using the reverse search approach. The installation is straight

A portable parallel implementation of the lrs vertex enumeration code 15

forward and no special purpose hardware is required. Very noticeable improve-
ments are found using just quad-core personal computers.

Figure 7 shows the limitations of our approach. For the polytope mit an
initial depth of 4 achieves the shortest elapsed time. However for only 60% of
the time are all 12 cores busy. In fact for a quarter of the time only two cores
are active.

To rememedy this one can imagine interupting long running tasks and
then using plrs recursively to split them into subproblems, repopulating L.
We performed some preliminary experiments along these lines, but the results
were mixed. As this increases overhead, the final result may sometimes be
worse, depending on the search tree shape. It is a fruitful area for future
research. Another possibility is to use the built in estimator function of lrs .
For each leaf obtained in phase 1 it is possible to get an unbiased estimate of
the size of the subtree that it roots by using a random probe. One could then
schedule jobs from L using a list decreasing heuristic, so that longer runs are
done first. The tradeoff is again overhead: the random probes may require a
lot of processing time if the tree is unbalanced.

7 Acknowledgments

The authors would like to thank Kenji Okuda for preparing Figures 6 to 9.

References

1. Avis, D.: lrs: A Revised Implementation of the Reverse Search Vertex Enumeration
Algorithm. In: G. Kalai, G. Ziegler (eds.) Polytopes - Combinatorics and Computation,
pp. 177–198. Springer (2000)

2. Avis, D.: (2013). http://cgm.cs.mcgill.ca/~avis/C/lrs.html

3. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of
arrangements and polyhedra. Discrete & Computational Geometry 8, 295–313 (1992)

4. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathematics
65, 21–46 (1993)

5. Boost.org: (2013). http://www.boost.org/doc/libs/1_53_0/doc/html/lockfree.html

6. Brungger, A., Marzetta, A., Fukuda, K., Nievergelt, J.: The parallel search bench ZRAM
and its applications. Ann. Oper. Res. 90, 45–63 (1999)

7. Ceder, G., Garbulsky, G., Avis, D., Fukuda, K.: Ground states of a ternary fcc lat-
tice model with nearest- and next-nearest-neighbor interactions. Phys Rev B Condens
Matter 49(1), 1–7 (1994)

8. Fukuda, K.: (2012). http://www.inf.ethz.ch/personal/fukudak/cdd_home

9. Klee, V., Minty, G.J.: How Good is the Simplex Algorithm? In: O. Shisha (ed.) Inequal-
ities III, pp. 159–175. Academic Press Inc., New York (1972)

10. Marzetta, A.: (2008). Maintained by D. Bremner: http://www.cs.unb.ca/~bremner/

software/zram/

11. Weibel, C.: Implementation and parallelization of a reverse-search algorithm for
minkowski sums. In: ALENEX, pp. 34–42 (2010)

http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://www.boost.org/doc/libs/1_53_0/doc/html/lockfree.html
http://www.inf.ethz.ch/personal/fukudak/cdd_home
http://www.cs.unb.ca/~bremner/software/zram/
http://www.cs.unb.ca/~bremner/software/zram/

	1 Introduction
	2 Background
	3 Vertex enumeration
	4 Implementation description
	5 Numerical experiments
	6 Conclusions and future work
	7 Acknowledgments

