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Abstract

In this paper we study the directed cut cone and polytope which are the positive
hull and convex hull of all directed cut vectors of a complete directed graph, respec-
tively. We present results on the polyhedral structure of these polyhedra. A relation
between directed cut polyhedra and undirected cut polyhedra is established that pro-
vides families of facet defining inequalities for directed cut polyhedra from those known
for undirected cut polyhedra.

1 Introduction

Let ~Kn = (Vn, An) denote the complete directed graph with n nodes, Vn, and n(n−1) arcs,
An, one for each distinct ordered pair of vertices. The mapping δ+ : S → {0, 1}|An|, S ⊆ Vn,
defines the set of directed cut vectors, which we will usually refer to as dicut vectors, where
δ+(S)ij = 1, if i ∈ S and j /∈ S, and is zero otherwise. A dicut vector is therefore the arc
incidence vector of all arcs ij with i ∈ S and j /∈ S. Note that the dicut vectors for S and
its complement, Vn \S, are different, except when S = ∅ or S = Vn. Hence there are 2n−1
distinct dicut vectors for ~Kn. The directed cut cone, DCUTn, is the positive hull of the set
of all directed cut vectors, and the directed cut polytope, DCUT2

n , is their convex hull.
We contrast the above definitions with corresponding definitions for the undirected

complete graph Kn = (Vn, En), where Vn is a set of n nodes and En the set of all n(n−1)/2
undirected edges. The mapping δ : S → {0, 1}|En|, S ⊆ Vn, defines the set of cut vectors,
where δ(S)i,j = 1, if precisely one of i and j is in S, and is zero otherwise. A cut vector
is therefore the edge incidence vector of all edges with precisely one endpoint in S. Note
that the cut vectors for S and its complement, Vn \ S, are identical, and that there are
2n−1 distinct cut vectors for Kn. The cut cone, CUTn, is the positive hull of the set of all
cut vectors, and the cut polytope, CUT2

n , is their convex hull.
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The cut cone and polytope arise in many fields and have been intensively studied. The
book by Deza and Laurent [8] provides an encyclopedic reference. Directed cut polyhedra
have been much less studied. This is somewhat surprising, as the celebrated Ford-Fulkerson
algorithm computes a minimum weight dicut in a network with non-negative edge weights
which separates two given vertices. However, Karp [14] showed that the undirected max-
imum cut problem with non-negative weights is NP-hard. By replacing each weighted
undirected edge by two oppositely directed arcs, each with the original weight, this result
applies to the directed case also. Hence for arbitrary edge weights both the minimum and
maximum dicut problems are NP-hard. This has prompted attempts to get good approx-
imation algorithms. For the maximum cut problem with non-negative edge weights good
worst case bounds are known in both the directed and undirected cases. These methods
are usually based on semi-definite programming, see [10] and [11] for example.

In mining optimization, the original Ford-Fulkerson algorithm has long been used to
compute what is called the ‘optimum pit’ for open pit mining with slope constraints. How-
ever the addition of other realistic constraints, such as the maximum amount of material to
be removed, renders the problem NP-hard [12]. The corresponding optimization problem
can be formulated as optimizing over the directed cut polytope with an additional knap-
sack constraint. Commercial software has had success applying techniques like Lagrangian
relaxation [4] and branch and cut [5]. However, in order to effectively incorporate branch
and cut type procedures for these hard problems, a study of the structure of directed cut
polyhedra is essential.

As far as we know, this paper presents the first systematic study of directed cut poly-
hedra. The only related work we are aware of is the study of the directed cut polyhedra
restricted to the series parallel directed graphs [7] rather than the complete directed graph.
The recent study of the dominant of the s-t-cut polytope, for which the complete facet
structure is known [13], is also a related polyhedra.

The paper is organized as follows. In the next section we provide basic background
on the cut polyhedra and their LP-relaxations, the semimetric and rooted semimetric
polyhedra, and give analogues for directed cuts. In Section 3 we give the dimension of
the directed cut polyhedra and prove the validity of the LP-relaxations given in Section
2. In Section 4 we link the directed cut and cut polyhedra in a fundamental way. This
allows us to generate facets of the dicut polyhedra from facets of the cut polyhedra, as is
demonstrated in Section 5. In Section 6 we show that the well known technique of zero-
lifting a facet to higher dimensions applies to directed cut polyhedra. Finally in Section 7
we completely analyze the facets of directed cut polytopes on three and four vertices.

2 Distances, semimetrics, and LP-relaxations

In the sequel we will use the term arc for a directed edge and often simply call an undirected
edge an edge. Since we will be defining variables on both arcs and edges, we will use the
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notation xij to denote a variable defined on the arc ij, and the notation xi,j to denote a
variable defined on the undirected edge (i, j). In this way xij and xji are distinct variables,
whereas xi,j is identical to xj,i. The edge and arc variables will be referred to as edge and
arc weights.

If C ⊆ E(G) is a cycle of undirected graph G and |F | is odd for F ⊆ C then the
inequality: ∑

e∈F
xe −

∑
e∈C\F

xe ≤ |F | − 1

is defined as a cycle inequality. For the special case where |C| is 3 this cycle inequality is
referred to as a triangle inequality.

Following Deza and Panteleeva [9] a quasi-semimetric1 d on a set S is a function d : S2 →
R such that for all distinct i, j, k in S, d(i, j) ≥ 0, d(i, i) = 0 and the triangle inequality is
satisfied:

d(i, k) ≤ d(i, j) + d(j, k). (1)

If in addition d is symmetric, that is for all i, j ∈ S d(i, j) = d(j, i), then it is called a
semimetric.

Semimetric spaces have a fundamental polyhedral connection to cut polyhedra. As
before, let Kn = (Vn, En) be the undirected complete graph. For the following facts, the
reader is referred to [8]. We define polyhedra

METn = {x ∈ R|En| : xi,k ≤ xi,j + xj,k, 1 ≤ i, j, k ≤ n, distinct}

and

MET2
n = {x ∈ R|En| : xi,k ≤ xi,j + xj,k, xi,j + xj,k + xi,k ≤ 2, 1 ≤ i, j, k ≤ n, distinct},

where in the above definitions we formally identify xi,j = xj,i for all indices i, j. Let S = Vn.
Given a semimetric d, we may further identify xi,j = d(i, j) and see that x is contained
in METn. Here we note that the non-negativity constraints are implied by the triangle
inequalities. Similarly any x ∈METn corresponds to a semimetric d, which justifies calling
METn the semimetric cone. It is well known that each non-zero cut vector generates an
extreme ray of METn. Similarly, the set of cut vectors form vertices of the semimetric
polytope MET2

n . In fact they are the only integral vertices. Therefore MET2
n is a natural

LP-relaxation for CUT2
n .

We can get a weaker LP-relaxation by considering the rooted semimetric polytope
RMET2

n , which is defined by the subset of triangle inequalities obtained by fixing one
of the indices, say by setting k = 1. The rooted semimetric cone, RMETn, is defined
similarly. From the above discussion it is clear that

CUTn ⊆METn ⊆ RMETn and CUT
2
n ⊆MET2

n ⊆ RMET2
n . (2)

1In [6], Charikar et al. call this a directed semimetric.
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We will develop analogous polyhedra for dicuts. As before, ~Kn = (Vn, An) denotes
the complete directed graph. Firstly we note that dicut vectors are not symmetric and in
fact they exhibit a partial asymmetry. Nevertheless, they do possess a weaker three point
symmetry:

δ+(S)ij + δ+(S)jk + δ+(S)ki = δ+(S)ji + δ+(S)kj + δ+(S)ik. (3)

This is evident as both sides of equation (3) are equal to 0 if i, j, k ∈ S or i, j, k /∈ S.
If S contains only one of i, j, k say i and j, k /∈ S then δ+(S)ij = 1 and the other two
terms on the left hand side of (3) are equal to 0 while the right hand side has δ+(S)ik = 1
and the other two terms are equal to zero. Finally, if S contains two nodes, say i, k and
j /∈ S then δ+(S)ij = 1 and δ+(S)kj = 1 and all other terms are 0, so (3) is satisfied.
By relabeling nodes if needed it is easy to see that (3) holds for all possible sets S. An
interesting consequence of (3) is that it implies that, unlike CUT2

n , DCUT2
n is not full

dimensional. We return to this issue in the next section.
We define a 3-semimetric as a quasi-metric d that satisfies the three point symmetry,

that is

d(i, j) + d(j, k) + d(k, i) = d(j, i) + d(k, j) + d(i, k) (4)

for all distinct i, j, k ∈ S. Note that this equation trivially holds for semimetrics. We
call (S, d) a 3-semimetric space. One can easily check that with S = Vn, (S, δ+) is a
3-semimetric space. We define the 3-semimetric cone

3METn = {x ∈ R|An| : xij + xjk + xki = xji + xkj + xik

xik − xij − xjk ≤ 0, xij ≥ 0, 1 ≤ i, j, k ≤ n, distinct}.

To define the 3-semimetric polytope we add perimeter inequalities which say that the sum
of arc variables around each directed triangle is at most one:

3MET2
n = {x ∈ R|An| : xij + xjk + xki = xji + xkj + xik ≤ 1

xik − xij − xjk ≤ 0, xij ≥ 0, 1 ≤ i, j, k ≤ n, distinct}.

In these definitions, note that the order of the indices is crucial and that the non-negativity
inequalities are now included. We will show various analogies with the undirected case.
As an initial observation, it is easy to verify that the dicut vectors are members of these
polyhedra.

If we only consider the triangle inequalities and cycle equalities that involve a given
node 1 ∈ Vn we can define rooted relaxations of the 3-semimetric cone and polytope. We
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define the rooted 3-semimetric cone, R3METn, as the cone defined by:

x1i + xij + xj1 = x1j + xji + xi1 (5)

x1i − x1j − xji ≤ 0 (6)

xi1 − xij − xj1 ≤ 0 (7)

xij − xi1 − x1j ≤ 0 (8)

xij ≥ 0 for each ij ∈ An. (9)

The rooted 3-semimetric polytope, R3MET2
n is the polytope defined by the inequalities

above and the perimeter inequalities:

x1i + xij + xj1 ≤ 1 (10)

where we take all ij ∈ An. From the definitions and discussion above we have the following
relationships:

DCUTn ⊆ 3METn ⊆ R3METn and DCUT
2
n ⊆ 3MET2

n ⊆ R3MET2
n . (11)

Observe that these relationships are analogous to those given above for the undirected
case. We strengthen the analogy in the following sections. In Section 3 we compute the
dimension of these polyhedra, and prove that dicut vectors are vertices of 3MET2

n and
R3MET2

n . In Section 4 we give a fundamental relationship between DCUT2
n and CUT2

n .
This is used in Section 5 to prove that the inequalities used to define 3MET2

n are facets of
DCUT2

n , and to give additional classes of facets for this polytope.

3 Basic properties of DCUT2
n , 3MET2

n and R3MET2
n

Unlike the polyhedra related to cuts in an undirected graph, the polyhedra related to dicuts
defined in the previous section are not full dimensional. This is evident from the linearities
in the definitions. Their dimension is given by the next result.

Proposition 1 All polyhedra listed in (11) have dimension
(
n
2

)
+ n− 1.

Proof. We first show an upper bound on the dimension of R3METn. By repeated use of
equation (5) for each arc ji ∈ An, one can replace xji with x1i +xij +xj1−x1j −xi1 where
j > i ≥ 2. This eliminates

(
n
2

)
− n + 1 variables, since each variable xji only occurs in

one of the set of equations chosen. This leaves
(
n
2

)
+ n− 1 variables and proves the upper

bound.
Next we give an identical lower bound on the dimension of DCUT2

n . For this, a set of(
n
2

)
+ n − 1 linearly independent dicut vectors is constructed. Let Si,j = {k ∈ Vn : k ≤

i} ∪ {k ∈ Vn : j < k ≤ n} for 1 ≤ i < j ≤ n, and let Ti = {k : 2 ≤ k ≤ i} for 2 ≤ i ≤ n.
We claim that the dicut vectors C = {δ+(Si,j) : 1 ≤ i < j ≤ n} ∪ {δ+(Ti) : 2 ≤ i ≤ n} are
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linearly independent. By construction, the matrix formed by using these dicut vectors as
the rows where the columns are ordered lexicographically by ij for 1 ≤ i < j ≤ n, followed
by the columns j1, 2 ≤ j ≤ n, is lower triangular with all 1’s on the diagonal. These(
n
2

)
+ n − 1 vectors along with the dicut vector corresponding to the empty set, S = ∅,

form
(
n
2

)
+ n affinely independent vectors.

The proposition now follows by using the inclusions in (11) and the trivial inclusions
DCUT2

n ⊆ DCUTn and R3MET2
n ⊆ R3METn.

It is useful to project the dicut polyhedra onto a lower dimensional space where they
are full dimensional. Consider the directed cut polytope and cone on the graph ~Jn with
n nodes and arc set A( ~Jn) = {ij : 1 ≤ i < j ≤ n} ∪ {i1 : 2 ≤ i ≤ n} as opposed to the
complete directed graph ~Kn. The polyhedra DCUTn, DCUT2

n , 3METn, 3MET2
n , R3METn

and R3MET2
n become full-dimensional when restricted to the arc set A( ~Jn). Depending

on the situation, we will use either one or the other of these two representations.

2

1

5

4 3

Figure 1: The directed graph ~J5.

The sets of inequalities that define 3METn, 3MET2
n , R3METn and R3MET2

n will be
rewritten slightly as some of the arcs used to index the inequalities do not exist in A( ~Jn).
As mentioned in the proof of Theorem 1 we can substitute

xji = xij + x1i − xi1 + xj1 − x1j whenever j > i ≥ 2. (12)

This yields the following set of inequalities that define the cone 3METn.
For 2 ≤ i ≤ n,

xi1 ≥ 0, x1i ≥ 0. (13)

For 2 ≤ i < j ≤ n,

xij ≥ 0 (14)

−xij + xi1 − x1i + x1j − xj1 ≤ 0 (15)

−xij + xi1 − xj1 ≤ 0 (16)

−xij − x1i + x1j ≤ 0 (17)

xij − xi1 − x1j ≤ 0. (18)
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For 2 ≤ i < j < k ≤ n,

−xij + xik − xjk ≤ 0 (19)

xij − xik − xjk + x1k − xk1 + xj1 − x1j ≤ 0 (20)

−xij − xik + xjk + xi1 − x1i + x1j − xj1 ≤ 0. (21)

The inequalities (13)-(15) above are the non-negativity constraints, and the remaining in-
equalities are the triangle inequalities. All of the above inequalities along with the following
perimeter inequalities define 3MET2

n .
For 2 ≤ i < j ≤ n,

x1i + xij + xj1 ≤ 1. (22)

For 2 ≤ i < j < k ≤ n,

xij + xjk + xik + x1i − xi1 + xk1 − x1k ≤ 1. (23)

Using a vertex enumeration software, such as lrs [1][2], we can easily check that the ver-
tices of 3MET2

3 are precisely the seven dicut vectors, so the 10 inequalities (13)-(18),(22)
obtained when n = 3 are the complete set of facets of DCUT2

3 . See Section 7 for fur-
ther information. The situation mirrors that of MET2

3 and CUT2
3 . However there is an

important difference. The vertices of CUT2
n , n ≥ 3, are all equivalent under an automor-

phism called the switching operation, that will be reviewed in Section 5. However this
is not the case with DCUT2

3 . The dicut vector δ+(S) with S = {∅} is contained on 9
facets - all except the perimeter inequality (22). However all other dicut vectors lie on
7 facets. For example, the dicut vector δ+(S) with S = {2} does not lie on the facets
x21 ≥ 0, x23 ≥ 0,−x12 + x13 − x23 ≤ 0. This fundamental difference greatly complicates
the study of the dicut polyhedra.

The following result shows that R3MET2
n and 3MET2 are LP-relaxations of the di-

rected cut polytope.

Theorem 2 The only integral vectors that are contained in R3MET2
n are the dicut vectors

δ+(S) for S ⊆ Vn and every dicut vector is a vertex of R3MET2
n .

Proof. In the first part of the proof we will use the original definition of R3MET2
n given

in terms of all n(n − 1) variables to show that the only integral vectors of R3MET2
n are

dicut vectors. In the second part of the proof we show that every dicut vector is a vertex
of R3MET2

n .
The non-negativity and the perimeter inequalities imply that the only integral vectors

in R3MET2
n are 0/1 valued. Let x ∈ R3MET2

n ∩ {0, 1}|An|. Let I = {i : xi1 = 1} and
J = {i : x1i = 1}. We will first show that one of |I| = 0 or |J | = 0 holds. Indeed, if i ∈ I
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and j ∈ J , i 6= j, the rooted perimeter inequality xi1 +x1j+xji ≤ 1 would be violated by x.
Otherwise, if there exists i ∈ I ∩ J then x1i + xi1 = 2 but summing R3MET2

n inequalities:

x1i + xij + xj1 ≤ 1 (24)

xi1 − xij − xj1 ≤ 0 (25)

together yields

x1i + xi1 ≤ 1. (26)

If both I and J are empty then x corresponds to the cut δ+(Vn) or δ+(∅) since xij = 1
implies that at least one of xi1 = 1 or x1j = 1 by (8).

Assume I 6= ∅, consider an index i ∈ I. For any j ∈ I, i 6= j, the perimeter inequalities
(10) for arcs ij and ji prove that xij = xji = 0. Therefore all arcs ij with both endpoints
in I have xij = 0.

Now consider any j /∈ I. The perimeter inequality (10) for ji implies that xji = x1j = 0.
As this inequality is satisfied as an equation, by the linearity (5) we have that

x1i + xij + xj1 = 1.

However, xj1 = 0 since j /∈ I and x1i = 0 by (26), so xij = 1. Lastly, if j, k /∈ I then
xjk = 0 follows from the fact that xjk ≤ xj1 + x1k, xj1 = 0 and x1k = 0 as J is empty. We
have shown that x = δ+(I).

Assume J 6= ∅, then by the inequalities given by R3MET2
n we can show as above that

xij = 0 if i, j ∈ J , i, j /∈ J or j ∈ J and i /∈ J and xij = 1 if i ∈ J and j /∈ J . This proves
that x = δ+(J).

To show that every dicut vector is a vertex of R3MET2
n we use induction on n. In this

part of the proof we use the full dimensional definition of R3MET2
n formed by eliminating

variables xji for j > i ≥ 2 using the linearities. This makes verification of linear indepen-
dence simpler. For the base case n = 3, one can easily check that R3MET2

3 =DCUT2
3 . See

Section 7 for a complete description of DCUT2
3 .

By a root of an inequality we mean a vector x for which it is satisfied as an equality.
For n ≥ 4 we assume inductively that a dicut vector x that corresponds to a directed cut
δ+(S) in ~Kn−1 and is a root of

(
n−1

2

)
+ (n− 1)− 1 linearly independent inequalities. Call

this set of inequalities T . We will extend T to a set of
(
n
2

)
+ n − 1 linearly independent

inequalities from R3MET2
n that are satisfied with equality. Doing so involves considering

the possible cases of whether or not nodes 1 and n are in S.
Case 1: 1 ∈ S and n ∈ S.

The vector corresponding to δ+(S) is a root of the inequalities xin ≥ 0 for i = 1, ..., n− 1
and xn1 ≥ 0. These n inequalities along with the inequalities in T are linearly independent.

Case 2: 1 /∈ S and n /∈ S.
The vector δ+(S) is a root of the inequalities xn1 ≥ 0, xin ≥ 0 for i /∈ S, i 6= n, and
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xin + xn1 + x1i ≤ 1 for i ∈ S. These n inequalities along with the inequalities in T are all
linearly independent.

Case 3: 1 ∈ S and n /∈ S.
Firstly suppose |S| = n− 1. Then δ+(S) is a root of the n inequalities xin + xn1 + x1i ≤ 1,
2 ≤ i ≤ n − 1, xn1 ≥ 0, and −x1n + x2n + x12 − x21 + xn1 ≥ 0 (corresponding to
xn2 ≥ 0). Together with the inequalities in T they are also linearly independent. Otherwise,
|S| ≤ n − 2. Then δ+(S) is a root of the n inequalities xin ≥ 0 for i /∈ S, i 6= n, xn1 ≥ 0,
x1i + xin + xn1 ≤ 1 for all i ∈ S, i 6= 1, and −x1n + xjn + x1j − xj1 + xn1 ≥ 0 for some
j /∈ S, j 6= n. Note that the last inequality corresponds to xnj ≥ 0 and the index j exists
by the assumption on the cardinality of S. These inequalities along with the inequalities
in T are all linearly independent.

Case 4: 1 /∈ S and n ∈ S.
The vector δ+(S) is a root of the n inequalities xin ≥ 0 for i = 1, ..., n−1 and xn1+x1i+xin ≤
1 for some i /∈ {1, n}. Together with the inequalities in T they are all linearly independent.

The following corollary is evident as R3MET2
n contains a subset of the inequalities that

define 3MET2
n and no directed cuts violate inequalities of 3MET2

n .

Corollary 3 The only integral vectors of 3MET2
n are the directed cut vectors δ+(S) for

S ⊆ Vn and every dicut vector is a vertex of 3MET2
n .

4 A fundamental relationship between DCUT2
n and CUT2

n

Our most powerful tool for obtaining results about directed cut polyhedra is to show a
fundamental relation to cut polyhedra. Then we will be able to use many of the known
results on cut polyhedra, such as classes of facets for example, to obtain results for directed
cut polyhedra. To begin with we extend two basic operations for cut polyhedra, permuting
and collapsing, to our setting. We will leave the operation of zero-lifting, until later.

For a permutation σ of the nodes {1, ..., n} and a vector v ∈ R|An| we define σ(v) ∈ R|An|

as σ(v)ij = vσ(i)σ(j). The following lemma trivially holds as the nodes in ~Kn can be
relabelled.

Lemma 4 Given v ∈ R|An|, v0 ∈ R and σ a permutation of {1, ..., n}, the following
statements are equivalent:

• The inequality vTx ≤ v0 is valid (resp. facet inducing) for DCUT2
n .

• The inequality σ(v)Tx ≤ v0 is valid (resp. facet inducing) for DCUT2
n .

We can define a similar type of collapsing operation that constructs a valid inequality
for DCUT2

m from a valid inequality for DCUT2
n , where m < n. Let π = (M1, ...,Mm) be a
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partition of Vn into m non-empty sets. If v ∈ R|An|, the collapse of v according to π is:

vπij =
∑

s∈Mi,t∈Mj

vst. (27)

The directed collapsing operation has many similar properties as the undirected col-
lapsing operation. For instance, if Sπ is defined to be

⋃
k∈SMk for S ⊆ {1, ...,m} then

vπT δ+(S) = vT δ+(Sπ). This gives the following lemma which has the undirected equivalent
stated as Lemma 26.4.1 in Deza and Laurent’s book [8], and whose proof is straightforward.

Lemma 5 Let v ∈ R|An|, v0 ∈ R and π = (M1, ...,Mm) be a partition of the vertices of Vn
into m non-empty sets. The following are true:

1. If vTx ≤ v0 is a valid inequality for DCUT2
n then vπTx ≤ v0 is a valid inequality for

DCUT2
m.

2. If δ+(S), for some S ⊆ {1, ...,m}, is a root of inequality vπTx ≤ v0, then δ+(Sπ) is
a root of vTx ≤ v0.

We now move to the main topic of this section where we will be working with the full
dimensional representations of dicut polyhedra described in the previous section. We begin
by considering a partition of the set of all subsets of nodes of ~Jn, V ( ~Jn) = {1, ..., n}, into
two families, S1 and S2, where S1 contains all subsets S such that 1 ∈ S and S2 contains
all subsets S with 1 /∈ S.

Define the polytope Pn,1 to be the convex hull of dicut vectors associated with the
subsets of S1, Pn,1 = conv{δ+(S) : S ∈ S1}. Similarly, define Pn,2 = conv{δ+(S) : S ∈ S2}.
Clearly, the directed cut polytope is the convex hull of the two polytopes Pn,1 and Pn,2 with

the two polytopes only intersecting in a single point, the cut vector δ+(V ( ~Jn)) = δ+(∅).
The benefit of defining polytopes Pn,1 and Pn,2 is the fact that both are bijections of

the undirected cut polytope. We define the mappings

ξ1 : R(n2) → (R(n2), {0}n−1) and ξ2 : R(n2) → (R(n2), {0}n−1)

between the cut polytope CUTn and Pn,1 and Pn,2 respectively. The co-ordinates of the

range space, (R(n2), {0}n−1) are labelled (xij : 1 ≤ i < j ≤ n, xi1 : 2 ≤ i ≤ n). In Section 5,
these mappings are used to obtain valid inequalities and facets of the directed cut polytope
from valid inequalities and facets of the cut polytope.

The mapping ξ1 is defined by
xi1 = 0 for 2 ≤ i ≤ n,
x1i = x1,i for 2 ≤ i ≤ n,
xij = 1

2(xi,j + x1,j − x1,i) for 2 ≤ i < j ≤ n,
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equivalently ξ−1
1 is defined by{

x1,i = x1i for 2 ≤ i ≤ n,
xi,j = xij + xji = x1i − x1j + 2xij for 2 ≤ i < j ≤ n.

The mapping ξ2 is defined by
xi1 = x1,i for 2 ≤ i ≤ n,
x1i = 0 for 2 ≤ i ≤ n,
xij = 1

2(xi,j + x1,i − x1,j) for 2 ≤ i < j ≤ n,

equivalently ξ−1
2 is defined by{

x1,i = xi1 for 2 ≤ i ≤ n,
xi,j = xij + xji = xj1 − xi1 + 2xij for 2 ≤ i < j ≤ n.

For any S ⊆ S1, ξ1 has the property that,

ξ1(δ(S)) = δ+(S). (28)

Figure 2 is an example of these mappings for n = 4, S = {1, 4}. Referring to the figure:

2

1 4

3

S S

2

1 4

3

Figure 2: The mappings ξ1 and ξ−1
1 : solid edges weight zero, dashed weight one

ξ−1
1 (δ+

~J4
(S)) = ξ−1

1 (x12, x13, x14, x23, x24, x34, x21, x31, x41)

= ξ−1
1 ((1, 1, 0, 0, 0, 0, 0, 0, 0))

= (1, 1, 0, 0, 1, 1)

= (x1,2, x1,3, x1,4, x2,3, x2,4, x3,4) = δK4(S)

Similarly, for any subset S of S2,

ξ2(δ(S)) = δ+(S). (29)

Figure 3 is an example of these mappings for n = 4, S = {2, 3}. Referring to the figure:
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S S

2

1 4

32

1 4

3

Figure 3: The mappings ξ2 and ξ−1
2 : solid edges weight zero, dashed weight one

ξ−1
2 (δ+

~J4
(S)) = ξ−1

2 (x12, x13, x14, x23, x24, x34, x21, x31, x41)

= ξ−1
2 ((0, 0, 0, 0, 1, 1, 1, 1, 0))

= (1, 1, 0, 0, 1, 1)

= (x1,2, x1,3, x1,4, x2,3, x2,4, x3,4) = δK4(S)

It follows from (28) and (29) that ξ1(CUTn) = Pn,1 and ξ2(CUTn) = Pn,2. This observation
yields the following proposition:

Proposition 6 The directed cut polytope is the convex hull of the linear transformation
of two cut polytopes (undirected) that only intersect in a single point, the directed cut
δ+(Vn) = δ+(∅) = (0, 0, · · · , 0).

Balas’s [3] work on the union of polyhedra states:

Theorem 7 [3] Given polyhedra Pi = {x ∈ Rn : Aix ≥ bi} 6= ∅, i ∈ Q, Q is an index set,
the closed convex hull of ∪i∈QPi is the set of those x ∈ Rn for which there exist vectors
(yi, yi0) ∈ Rn+1, i ∈ Q, satisfying

x−
∑

(yi : i ∈ Q) = 0

Aiyi − biyi0 ≥ 0

yi0 ≥ 0∑
(yi0 : i ∈ Q) = 1.

This theorem provides a framework for optimizing over the directed cut polytope
through the knowledge of the structure of polytopes Pn,1 and Pn,2 (or the undirected
cut polytope). With this strong relationship to the well studied undirected polytope, a
natural question arise as to why try and study the directed cut polyhedra structures? Our
main motivation for better understanding this natural structure is that many industrial
problems can be formulated as a directed cut problem with side constraints. These side
constraints often have a well studied structure. For instance, in the case of open pit mining
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a common type of side constraint takes the form of a classic knapsack type inequality. As
these types of constraints are well studied and cutting planes for them are implemented
efficiently in commercial mixed integer program solvers, we would like to preserve their
structure. The linear transformation defined by the mappings ξ1 and ξ2 can alter the
knapsack type constraints so that some variables contain negative coefficients, eliminating
their knapsack structure.

The relation between CUT2
n , Pn,1 and Pn,2 gives rise to the following proposition which

has a similar flavour as Proposition 5.2.7 of [8]. A sum where the range is empty is taken
to have value zero.

Proposition 8 The inequality, ∑
1≤i<j≤n

ai,jxi,j ≤ α (30)

is valid (resp. facet defining) for the cut polytope if and only if the inequality

n∑
i=2

(
a1,i −

i−1∑
j=2

aj,i +
n∑

j=i+1

ai,j
)
x1i + 2

∑
2≤i<j≤n

ai,jxij ≤ α (31)

is valid (resp. facet defining) for the polytope Pn,1 which is in turn valid (resp. facet
defining) if and only if the inequality

n∑
i=2

(
a1,i +

i−1∑
j=2

aj,i −
n∑

j=i+1

ai,j
)
xi1 + 2

∑
2≤i<j≤n

ai,jxij ≤ α (32)

is valid (resp. facet defining) for the polytope Pn,2.

Proof. We first observe that substituting xi,j , 1 ≤ i < j ≤ n, in (30) using the mapping ξ−1
1

we get (31), and using the mapping ξ−1
2 we get (32). Since these mappings are bijections

they preserve validity and roots, so the proposition follows.
We obtain the following table of relations between facets of CUT2

n , Pn,1 and Pn,2.

CUT2
n Pn,1 Pn,2

x1,j − x1,i − xi,j ≤ 0 x1j − x1i − xij ≤ 0 xij ≥ 0
x1,i − x1,j − xi,j ≤ 0 xij xi1 − xij − xj1 ≤ 0 ≥ 0
xi,j − x1,i − x1,j ≤ 0 xij ≤ x1j xij ≤ xi1
x1,i + xi,j + x1,j ≤ 2 x1i + xij ≤ 1 xj1 + xij ≤ 1

Table 1: 2 ≤ i < j ≤ n
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CUT2
n Pn,1 Pn,2

xi,k − xi,j − xj,k ≤ 0 xik − xij − xjk ≤ 0 xik − xij − xjk ≤ 0
xi,j − xi,k − xj,k ≤ 0 xij − xik − xjk − x1j + x1k ≤ 0 xij − xik − xjk + xj1 − xk1 ≤ 0
xj,k − xi,j − xi,k ≤ 0 xjk − xik − xij + x1j − x1i ≤ 0 xjk − xik − xij + xi1 − xj1 ≤ 0

xi,j + xj,k + xi,k ≤ 2 xij + xik + xjk + x1i − x1k ≤ 1 xij + xik + xjk − xi1 + xk1 ≤ 1

Table 2: 2 ≤ i < j < k ≤ n

5 Facets of the directed cut polytope and cone

In this section we will use the relation between the directed and undirected cuts estab-
lished by the mappings ξ1 and ξ2 to extend previously known structural properties of the
cut polyhedra to the directed cut polyhedra. Theorem 9 below allows us to characterize
many different facets of the directed cut polytope from knowledge of past work on the cut
polytope.

To begin, we will need to define some terms and notation. For a graph G = (V,E)
the support graph, G(a) = (V (a), E(a)), of a vector a ∈ R|E| is the graph with edges
E(a) = {e : ae 6= 0, e ∈ E} and nodes V (a) such that every node in V (a) is an endpoint
of at least one edge in E(a). For a ∈ R|E| and α ∈ R inequality aTx ≤ α is said to be
completely supported by F ⊂ E when E(a) ⊆ F . As before, sums with empty range are
taken to be zero.

Theorem 9 If aTx ≤ α is a facet of CUT2
n then

2
∑

2≤i<j≤n
ai,jxij +

n∑
i=2

a1,i −
i−1∑
j=2

aj,i +
n∑

j=i+1

ai,j

x1i

+
n∑
i=2

a1,i +
i−1∑
j=2

aj,i −
n∑

j=i+1

ai,j

xi1 ≤ α (33)

is a facet of DCUT2
n .

To prove Theorem 9 we need the following lemma, which is the non-homogeneous analogue
to Lemma 26.5.2(ii) of [8]. Before stating the lemma, we introduce some terminology and
notation from [8] (p. 404, 414). Let δ(S) be a cut vector for Kn. For a vector a ∈ R|En|

let aδ(S) ∈ R|En| be defined by

a
δ(S)
i,j :=

{
−ai,j , if δ(S)i,j = 1,

ai,j , if δ(S)i,j = 0.

We say that the inequality

(aδ(S))Tx ≤ α− aT δ(S) (34)
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is obtained from the inequality aTx ≤ α by switching on the cut vector δ(S). Let ∆ denote
the set symmetric difference operator. We observe that {T : T ⊆ {1, ..., n}} = {T∆S : T ⊆
{1, ..., n}} for any S ⊆ {1, ..., n} and δ(S∆S) is the origin. So in view of (34), switching
on the cut vector δ(S) takes an inequality with root δ(S) to one with the origin as a root.
The corresponding affine bijection, called the switching mapping, is given by

rδ(S)(x)i,j :=

{
1− xi,j , i, j ∈ δ(S),
xi,j , i, j /∈ δ(S).

It follows that the cut polytope looks the same as the cut cone at any vertex. This
property is unfortunately not inherited by the dicut polytope, however it will be of use in
generating some of its facets.

Given a subset F of En, set F := En \ F . If x ∈ R|En|, let

xF := (xe)e∈F .

If X is a subset of R|En|, define

XF := {xF : x ∈ X}, XF := {x ∈ X : xF = 0}.

Lemma 10 Let aTx ≤ α be a valid inequality for CUT2
n and let R(a, α) denote its set of

roots. Let F be a subset of En. If the inequality aTx ≤ α is facet inducing and aF̄ 6= 0
(resp. aF̄ = 0) then rank(R(a, α)F ) = |F | (resp. rank(R(a, α)F ) = |F | − 1).

Proof. The proof makes use of various results contained in [8]. Since aTx ≤ α is facet
inducing it has many roots which are cut vectors. Let δ(S) be one of them. Then switching
on the edge-cut (S, S) we get an inequality

(aδ(S))Tx ≤ 0. (35)

By Corollary 26.3.7 the inequality (35) is also facet inducing for CUT2
n . Let R(aδ(S), 0)

denote its set of roots. By Lemma 26.5.2(ii) R(aδ(S), 0) has the properties that if a
δ(S)

F̄
6= 0

(resp. a
δ(S)

F̄
= 0) then rank(R(aδ(S), 0))F = |F | (resp. rank(R(aδ(S), 0)F = |F | − 1).

However, if δ(A) is a root of (35) then it is easy to verify that δ(A∆S) is a root of
aTx ≤ α, where symmetric difference is taken with respect to Vn. Therefore the roots
in R(a, α) can be obtained from those in R(aδ(S), 0) by this operation, which by Lemma
26.3.3 (iii) preserves linear independence. Then lemma follows.

With Lemma 10 in hand we can proceed with the proof of Theorem 9. A graph is called
a star if it has a node that is incident to every edge.

Proof of Theorem 9. First we show that (33) is valid for DCUT2
n . Consider a dicut

vector δ+(S) with S ∈ S1, i.e., 1 ∈ S, then xi1 = 0, i = 2, ..., n, and (33) reduces to (31)
and hence is valid. Similarly if S ∈ S2, i.e., 1 /∈ S. Then x1i = 0, i = 2, ..., n, and (33)
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reduces to (32) and hence is valid. Since DCUT2
n is the convex hull of S1 ∪ S2 validity

follows.
To show that (33) defines a facet, we begin by considering the case where G(a) is not

a star in which all edges contain vertex 1. Since aTx ≤ α is a facet of the cut polytope,
it follows that we can find

(
n
2

)
affinely independent roots δ(Si) (1 ≤ i ≤

(
n
2

)
) of aTx ≤ α.

Since for any cut vector, δ(A) = δ(A), we may assume that 1 ∈ Si for all i. Choose
F = {(1, 2), (1, 3), · · · , (1, n)}, applying Lemma 10 we get that rank(R(a)F ) = |F | = n− 1
as G(a) is not a star where all edges contain vertex 1. Let δ(Ti) (1 ≤ i ≤ n− 1) be n− 1
roots of aTx ≤ α whose projections on F are linearly independent. We can assume that
1 /∈ Ti, by replacing Ti by Ti if necessary, and so δ+(Ti) = ξ2(δ(Ti)).

We claim that the dicut vectors in C = {δ+(Si) : 1 ≤ i ≤
(
n
2

)
}∪{δ+(Ti) : 1 ≤ i ≤ n−1}

are
(
n
2

)
+ n − 1 affinely independent roots of the inequality (33). By construction, every

cut in C is a root, so we simply need to show that they are affinely independent.
Consider the square matrix M whose rows are first the

(
n
2

)
dicut vectors δ+(Si) followed

by the n− 1 vectors δ+(Ti), index the columns of M by the sets I ∪ J where I = {ij : 1 ≤
i < j ≤ n} and J = {i1 : 2 ≤ i ≤ n}. M has the form:

M =

(
X 0
Z Y .

)
The matrix X is affinely independent as the vectors δ+(Si) are affinely independent. The
matrix Y has full row rank, since its rows δ+(Ti)J = δ(Ti)F are linearly independent.

To complete the proof, we will show that the support graph G(a) cannot be a star with
all edges containing vertex 1. For suppose it was, then the inequality aTx ≤ α becomes∑

1j∈E(G(a))

a1,jx1,j ≤ α. (36)

Let the cut vector δ(S) be a root of (36), so that aT δ(S) = α. We may assume that 1 ∈ S.
Suppose first that for each j ∈ S, a1,j > 0. If S = {1}, (36) does not define a facet, since it
is a non-negative combination of valid inequalities of the form a1,jx1,j ≤ 1. Otherwise let k
be any other element of S. If a1,k > 0 then we have a contradiction, since aT δ(S \{k}) > α.
So a1,k < 0 for all k ∈ S and it follows that (36) does not have any roots besides δ(S), a
contradiction. Therefore there must be some j ∈ S for which a1,j < 0. We again have a
contradiction because aT δ(S ∪ {j}) > α.

5.1 The triangle inequalities

Using Theorem 9 one can obtain sets of facets for DCUTn and DCUT2
n from the triangle

inequalities of the cut cone and polytope. Recall that the triangle inequalities for the cut
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cone and polytope are:

xi,k − xi,j − xj,k ≤ 0

xi,j − xi,k − xj,k ≤ 0 (37)

xj,k − xi,j − xi,k ≤ 0

for 1 ≤ i < j < k < n. The additional triangle inequalities, known as the perimeter
inequalities, for the cut polytope are:

xi,j + xi,k + xj,k ≤ 2 (38)

for 1 ≤ i < j < k < n. These inequalities appear in the first column of Tables 1 and 2.
We apply Theorem 9 to the first three rows of Table 1 and Table 2 to obtain facets for

DCUTn.

Corollary 11 The following inequalities:

x1j − x1i − xij ≤ 0

xi1 − xj1 − xij ≤ 0

−xi1 − x1j + xij ≤ 0

−xij + xik − xjk ≤ 0

xij − xik − xjk + x1k − xk1 + xj1 − x1j ≤ 0

−xij − xik + xjk + xi1 − x1i + x1j − xj1 ≤ 0

for 2 ≤ i < j < k ≤ n are facet defining inequalities of DCUTn.

We can observe that the last three inequalities are the same as (19)-(21) used to define
3METn.

Similarly, using the fact that the perimeter inequalities (38) are facet inducing inequal-
ities of CUT2

n and applying Theorem 9 to the last row of each of Table 1 and 2 yields the
following.

Corollary 12 The inequalities:

x1i + xij + xj1 ≤ 1

xij + xjk + xik + x1i − xi1 + xk1 − x1k ≤ 1

for 2 ≤ i < j < k ≤ n are facet inducing inequalities of DCUT2
n .

We observe that these are the inequalities (22) and (23) used to define 3MET2
n .
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5.2 Pentagonal inequalities

The first class of facets for CUT2
n that are not triangle inequalities are the pentagonal

inequalities that appear when n ≥ 5. They have the three general forms, where we assume
that the indices 1 ≤ i, j, k, l,m ≤ n are distinct:

p1 := xi,j + xj,k + xi,k + xl,m − (xi,l + xj,l + xk,l + xi,m + xj,m + xk,m) ≤ 0. (39)

p2 := xi,j + xi,k + xi,l + xj,k + xj,l + xk,l − (xi,m + xj,m + xk,m + xl,m) ≤ 2. (40)

p3 := xi,j + xi,k + xi,l + xi,m + xj,k + xj,l + xj,m + xk,l + xk,m + xl,m ≤ 6. (41)

The first form is illustrated in Figure 4.

j

i

k

l

m

Figure 4: The pentagonal inequality (40) implies that the sum of weights on the dashed edges must
be at least as large as the sum of weights on the solid edges

Applying Theorem 9 we obtain facets of the dicut polyhedra. As with the triangle
inequalities, the pentagonal inequalities take different forms when expressed in terms of
the variables for the full dimensional dicut polytope. For example, with 2 ≤ i < j < k <
l < m ≤ n we obtain the following facets of DCUT2

n :

xj1 − x1j + 2(xk1 − x1k + x1l − xl1) + x1m − xm1 + p1 ≤ 0

x1i − xi1 + xk1 − x1k + 2(xl1 − x1l + x1m − xm1) + p2 ≤ 1

2x1i − 2xi1 + x1j − xj1 + xl1 − x1l + 2xm1 − 2x1m + p3 ≤ 3.

Other forms are more elegant. With i = 1, j = 3, k = 5, l = 2,m = 4 we obtain the
facet

x13 + x15 + x35 + x24 ≤ x12 + x14 + x23 + x34 + x25 + x45 (42)

for DCUTn and DCUT2
n when n ≥ 5. In the next section we describe how to generate

systematically all pentagonal inequalities by relating them to the more general hypermetric
inequalities.
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5.3 Hypermetric inequalities

The hypermetric inequalities are valid inequalities for CUT2
n and CUTn which generalize

the triangle and pentagonal inequalities (see [8]). Let b = (b1, · · · , bn) be an integral
vector such that

∑n
i=1 bi = 2k + 1 is odd, and there is some S ⊆ {1, 2, ..., n} for which∑

i∈S bi = 1 +
∑

i/∈S bi. The inequality∑
1≤i<j≤n

bibjxi,j ≤ 0 (43)

is called a hypermetric inequality. Every hypermetric inequality is known to be valid for
CUTn. We observe that we get the triangle inequalities (37) by setting b = (1,−1, 1),(1, 1,−1)
and (−1, 1, 1) respectively. The triangle inequality (38) corresponds to b = (1, 1, 1) and the
three classes of pentagonal inequalities (40)-(41) correspond to b = (1, 1, 1,−1,−1),(1, 1, 1, 1,−1)
and (1, 1, 1, 1, 1) respectively. It is known that when n is odd and bi = ±1 the corresponding
hypermetric inequality generates a facet of CUTn. These are known as pure hypermetric
inequalities.

Theorem 9 has the following corollary.

Corollary 13 The inequality

n∑
i=2

(b1 −
i−1∑
k=2

bk +

n∑
j=i+1

bj)bix1i +

n∑
i=2

(b1 +

i−1∑
k=2

bk −
n∑

j=i+1

bj)bixi1

+2
∑

2≤i<j≤n
bibjxij ≤ 0 (44)

corresponding to the hypermetric inequality (43) is valid for DCUTn, and is a facet for
DCUTn whenever (43) is a facet of CUTn.

We note that (42) corresponds to b = (1,−1, 1,−1, 1). We may generalize this to a
vector b = (1,−1, 1, ...,−1, 1) of length n to obtain the following facet of DCUTn and
DCUT2

n : ∑
1≤i<j≤n

bibjxij ≤ 0. (45)

6 Zero-lifting the directed cut polytope

Zero-lifting is a standard way of deriving facets of higher dimensional polytopes from lower
dimensional ones. For v ∈ R|An| we define the zero-lifting v′ ∈ R|An+1| by

v′ij = vij ij ∈ An, v′i n+1 = 0 1 ≤ i ≤ n.
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We say that inequality (v′)Tx ≤ 0 is obtained by zero-lifting the inequality vTx ≤ 0.
In this section we prove a zero-lifting theorem for the directed cut cone. We will work

with the full dimensional projection of the directed cut cone, with coordinates indexed by
the arc set A( ~Jn) = {ij : 1 ≤ i < j ≤ n} ∪ {i1 : 2 ≤ i ≤ n} of the graph ~Jn with vertex
set Vn, as discussed in Section 3. We begin by showing that Lemma 14 of [8], which we
discussed earlier in Section 4 in terms of the cut polytope, can be extended to the directed
cut cone.

Lemma 14 Let vTx ≤ 0 be a valid inequality for DCUTn and let R(v) denote its set of
roots. Let F be a subset of A( ~Jn).
(i) If rank(R(v)F ) = |F | and rank(R(v)F ) = |F̄ | − 1, then the inequality vTx ≤ 0 is facet
inducing.
(ii) If the inequality vTx ≤ 0 is facet inducing and vF 6= 0 (resp. vF̄ = 0), then
rank(R(v)F ) = |F | (resp. rank(R(v)F ) = |F | − 1).

The proof of Lemma 14 follows the same argument as the proof of Lemma 26.5.2 in [8].
We include it here for completeness but it required no substantial alterations.

Proof. (i) By the assumptions, a set A of |F | linearly independent roots can be found
whose projections on the arcs F are linearly independent. Likewise, a set B of roots of
vTx ≤ 0 can be found whose projections on F are the zero vector where the vectors of B
are linearly independent and |B| = |F̄ | − 1. It is easy to see that the vectors A ∪ B are a
set of

(
n
2

)
+ n − 2 linearly independent roots of vTx ≤ 0 which along with the empty set

dicut vector form
(
n
2

)
+ n− 1 affinely independent roots. Therefore, vTx ≤ 0 is a facet of

DCUTn.
(ii) If vTx ≤ 0 is a facet of DCUTn, we can find a set A of

(
n
2

)
+n−2 linearly independent

roots of vTx ≤ 0. If we construct a matrix M by using the vectors A as the rows, we have
a (
(
n
2

)
+ n− 2)× (

(
n
2

)
+ n− 1) matrix with linearly independent rows. This means that all

but one column of M are linearly independent.
If the columns corresponding to arcs of F are linearly dependent then rank(AF ) = |F |−

1. Let T1 ⊆ A be |F |−1 vectors whose projection on F are linearly independent, let T2 ⊆ A
be the vectors of A whose projection on F are the zero vector and let T3 = A \ (T1 ∪ T2).

For x ∈ T3 we can express xF (the projection of x onto the arcs of F ) as a convex
combination of vectors of T1, i.e. xF =

∑
yi∈T1 λi(yi)F . A new set T ′3 can be constructed

where for each x in T3, we add x′ = x−
∑

yi∈T1 λiyi to T ′3. The vectors in the set T2∪T ′3 are

linearly independent. It follows that vF̄ = 0 as we have |T2∪T ′3| = |F̄ | linearly independent
vectors satisfying vTx = 0 with xF = 0.

If the columns corresponding to the arcs of F are linearly independent then rank(AF̄ ) =
|F̄ | − 1 and a similar argument as above can be applied to show that vF̄ 6= 0.

We can now state and prove our zero-lifting theorem for the directed cut cone. In the
proof we use a similar approach to the proof of Theorem 26.5.1 on page 415 of [8].
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Theorem 15 Given v ∈ RA( ~Jn) and zero-lifted v′ ∈ RA( ~Jn+1) the following are equivalent.

• vTx ≤ 0 is facet inducing for DCUTn.

• v′Tx ≤ 0 is facet inducing for DCUTn+1.

Proof. Assume that v′Tx ≤ 0 is facet inducing for DCUTn+1 and let R(v′) denote its
roots. Let F = A( ~Jn) and let F̄ = {(1, n + 1), ..., (n, n + 1)} ∪ (n + 1, 1). Using Lemma
14(ii) and the fact that v′

F̄
= 0 we know that the rank of R(v′)F is equal to

(
n
2

)
+ n − 2,

we can use
(
n
2

)
+ n− 2 linearly independent roots from R(V ′)F and with the dicut vector

corresponding to the empty set to form
(
n
2

)
+n−1 affinely independent roots. This implies

that vTx ≤ 0 is a facet of DCUTn.
Assume that vTx ≤ 0 is facet inducing for DCUTn and let F = {1n, 2n, ..., (n− 1, n)}.

As v 6= 0 we can assume that vF̄ 6= 0 by using the permutation operation described in
Lemma 4. By Lemma 14, rank(R(v)F ) = |F |. Let Tj ⊆ Vn, j = 1, ..., n − 1, be |F |
subsets such that the projections of δ+(Tj) j = 1, ..., n− 1, onto the arc set F are linearly
independent. Note that this implies that vertex n is not in any subset Tj , since if it were,
the projection onto F would be the zero vector. Let Sk, k = 1, ...,

(
n
2

)
+ n− 2, be subsets

of Vn such that δ+(Sk) are linearly independent roots of vTx ≤ 0.
Let S′k = Sk ∪ {n + 1} for k = 1, ...,

(
n
2

)
+ n − 2. We claim the vectors δ+(S′k) ∪

δ+(Tj) ∪ δ+({1, ..., n}) ∪ δ+({n + 1}) for j = 1, ..., n − 1 and k = 1, ...,
(
n
2

)
+ n − 2 form

n− 1 +
(
n
2

)
+ n− 2 + 2 =

(
n+1

2

)
− (n+ 1)− 2 = Dim(DCUTn+1)− 1 linearly independent

roots of v′Tx ≤ 0. These Dim(DCUTn+1) − 1 dicuts vectors along with the dicut vector
corresponding to the empty set form Dim(DCUTn+1) affinely independent root vectors.
This proves that v′Tx ≤ 0 is facet inducing for DCUTn+1.

To see that this claim is true consider the matrix M consisting of the vectors δ+(S′k),
δ+(Tj), δ

+({1, ..., n}), and δ+({n + 1}) as rows for j = 1, ..., n − 1 and k = 1, ...,
(
n
2

)
+

n− 2. Let the columns of M be indexed by the arcs: A( ~Jn) followed by (1, n+ 1), (2, n+
1), ..., (n, n+ 1) and finally (n+ 1, 1). The matrix M has the form:

M =


X 0 0 d
Z Y 0 0
0 e 1 0
0 0 0 1 .


Matrix X has linearly independent rows as it corresponds to the

(
n
2

)
+ n − 2 linearly

independent vectors δ+(S′k). The entry d is a column vector corresponding to the (n+1, 1)
entry of the δ+(S′k) vectors. e is a row vector of all ones. Submatrix Y ’s columns correspond
to the arcs (1, n+1), (2, n+1)..., (n−1, n+1). Recall that n /∈ Tj , j = 1, ..., n−1. Therefore
the entries of (i, n + 1) are identical to (i, n) in the δ+(Tj) vectors, it follows that Y has
linearly independent rows. The final two rows independence follow from their definitions.
The last row can be used to eliminate the column vector d. The resulting matrix is then
easily seen to have linearly independent rows.
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Corollary 16 The non-negativity inequalities xij ≥ 0 define facets of DCUTn for all n ≥
3.

Proof. We will prove that x12 ≥ 0 defines a facet for all n ≥ 3 and then use the permutation
operation. For n = 3 it is straightforward to verify that the four dicut vectors defined by
S = {1, 2}, S = {2}, S = {2, 3} and S = {3} are a set of roots that are linearly independent.
For n ≥ 4 the result follows from Theorem 15.

As remarked earlier, the non-negativity inequalities do not form facets of CUTn. There-
fore this corollary could not be proved by use of Theorem 9. In the next section we will
similarly use Theorem 15 to show that a further family of inequalities are facets of DCUTn.

In this section we presented a zero-lifting lemma for DCUTn, which as we observed
earlier, is similar to a similar result for the cone CUTn. In the latter case, by switching on
cuts, the result immediately holds for the polytope CUT2

n . However, there does not seem
to be such an easy way to prove a zero-lifting lemma for DCUT2

n . Such a result, subject
to a few technical conditions, is contained in Meagher [12].

7 Facets of DCUT2
3 and DCUT2

4

In this section we give a complete characterization of the facets of DCUT2
3 and DCUT2

4 ,
using results from the paper and the output of lrs computer runs. Except where noted,
all results in this section will be in terms of the full dimensional dicut polytopes defined
on the variables xij , 1 ≤ i < j ≤ n, and xi1, 2 ≤ i ≤ n, so that the facets have a unique
representation.

DCUT2
3 is defined by a set of 15 dicut vectors in 5 dimensions and has 10 facets as

follows:

• Six non-negativity constraints:

x12, x13, x23, x21, x31 ≥ 0, x23 + x12 − x21 + x31 − x13 ≥ 0.

• Three homogeneous triangle inequalities (first three inequalities of Corollary 11):

x13 ≤ x12 + x23, x21 ≤ x23 + x31, x23 ≤ x21 + x13.

• One perimeter triangle inequality (first inequality of Corollary 12):

x12 + x23 + x31 ≤ 1.

DCUT2
4 is defined by a set of 31 dicut vectors in 9 dimensions and has 40 facets as

follows:
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• Twelve non-negativity constraints:

xij ≥ 0, 1 ≤ i < j ≤ 4, xi1 ≥ 0, 2 ≤ i ≤ 4,

xij + x1i − xi1 + xj1 − x1j ≥ 0, 2 ≤ i < j ≤ 4.

• Twelve homogeneous triangle inequalities (Corollary 11):

xij ≤ xi1 + x1j , xi1 ≤ xij + xj1, x1j ≤ x1i + xij , 2 ≤ i < j ≤ 4

−x23 + x24 − x34 ≤ 0, x23 − x24 − x34 + x14 − x41 + x31 − x13,≤ 0

−x23 − x24 + x34 + x21 − x12 + x13 − x31 ≤ 0.

• Four perimeter triangle inequalities (Corollary 12):

x12 + x23 + x31 ≤ 1, x12 + x24 + x41 ≤ 1, x13 + x34 + x41 ≤ 1,

x23 + x34 + x24 + x12 − x21 + x41 − x14 ≤ 1.

• Six new homogeneous inequalities (see Figure 5):

xik + xjl ≤ xij + xkl + xil + xjk

where {i, j, k, l} = {1, 2, 3, 4}, i < j, and we have used the full coordinate system for
simplicity.

• Six new non-homogeneous inequalities (see Figure 6):

xk1 + x1i + xij ≤ 1 + xi1 or x1k + xi1 + xji ≤ 1 + x1i

where {i, j, k} = {2, 3, 4} (inequality depends on whether i < j or j < i).

2

1 3

4

Figure 5: Example of new homogeneous facet: x13 + x24 ≤ x12 + x34 + x14 + x23

We observe that two new classes of facets were needed to complete the description
of DCUT2

4 . Again we find a significant difference between the family of cut and dicut
polytopes, since CUT2

4 is described completely by the set of triangle inequalities. As there
are no new facets for CUT2

4 , we cannot obtain the new facets of DCUT2
4 directly from

Theorem 9. For the homogeneous facets, we can use the lifting theorem to show that they
are also facets of DCUT2

n for all n ≥ 4. Due to the permutation operation described in
Lemma 4 we need to consider only one member of the family.
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1 3

4

Figure 6: Example of new non-homogeneous facet: x31 + x12 + x24 ≤ 1 + x21

Theorem 17 The inequality:

xik + xjl ≤ xij + xkl + xil + xjk (46)

is facet inducing for DCUTn for all n ≥ 4.

Proof. As DCUT4 has dimension 9, listing 9 affinely independent roots proves that (46)
is a facet of DCUT4. The dicut vectors δ+(S) where S ranges over the following subsets:

∅, {j}, {i, j}, {i, j, l}, {i, l}, {j, k}, {j, k, l}, {k, l}, {l}

are such a set. Applying Theorem 15 gives the result that (46) is a facet inducing inequality
for DCUTn and DCUT2

n , for n ≥ 4.
To prove that the new non-homogeneous inequalities are facet defining inequalities, a

zero lifting result for non-homogeneous inequalities can be used. As remarked earlier, such
a result is contained in [12].

For completeness we conclude this section with a vertex description of the relaxation
3MET2

4 of DCUT2
4 . It has a total of 21 vertices, of which 15 correspond to dicuts and 6 are

half-integral fractional vertices. The fractional vertices are as follows. Let {i, j} ∪ {k, l} =
{1, 2, 3, 4} be any partition of V4. Then

xik = xjk = xil = xjl = 0, else xuv =
1

2
, uv ∈ A4,

is a vertex of DCUT2
4 .
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