
Enumerating Planar Minimally Rigid Graphs

David Avis1, Naoki Katoh2 ?, Makoto Ohsaki2,
Ileana Streinu3 ??, and Shin-ichi Tanigawa2

1 School of Computer Science, McGill University, Canada. avis@cs.macgill.ca
2 Department of Architecture and Architectural Engineering, Kyoto University, Kyoto 615-8450 Japan,

ohsaki,naoki,is.tanigawa@archi.kyoto-u.ac.jp.
3 Dept. of Comp. Science, Smith College,Northampton, MA 01063, USA, streinu@cs.smith.edu.

Abstract. We present an algorithm for enumerating without repetitions all the planar (non-
crossing) minimally rigid (Laman) graphs embedded on a given generic set of n points. Our
algorithm is based on the Reverse search paradigm of Avis and Fukuda. It generates each
output graph in O(n4) time and O(n) space, or, with a slightly different implementation, in
O(n3) time and O(n2) space.
In particular, we obtain that the set of all planar Laman graphs on a given point set is
connected by flips which remove an edge and then restore the Laman property with the
addition of a non-crossing edge.

1 Introduction

Let G = (V, E) be a graph with n = |V | vertices and m = |E| edges. G is a Laman graph if
m = 2n−3 and every subset of n′ ≤ n vertices spans at most 2n′−3 edges. An embedding
G(P) of the graph G on a set of points P = {p1, · · · , pn} ⊂ R2 is a mapping of the vertices
V to points in the Euclidian plane i 7→ pi ∈ P . The edges ij ∈ E are mapped to straight
line segments pipj . An embedding G(P) is planar or non-crossing if no pair of segments
pipj and pkpl corresponding to non-adjacent edges ij, kl ∈ E, i, j 6∈ {k, l} have a point in
common.

Laman graphs embedded on generic point sets enjoy the special property of being
minimally rigid [14, 10], when viewed as bar-and-joint frameworks with fixed edge-lengths,
which motivates the tremendous interest in their properties.

In this paper we give an algorithm for enumerating all the planar Laman graphs G(P)
embedded on a given generic point set P .

Novelty. To the best of our knowledge, this is the first algorithm proposed for enumer-
ating (without repetitions, in polynomial time and without using additional space) all the
planar Laman graphs. We achieve O(n4) time per graph in O(n) space (or, with a slightly
different implementation, in O(n3) time and O(n2) space) by using Reverse Search.

Historical Perspective. The Reverse Search enumeration technique of Avis and
Fukuda [2, 3] has been successfully applied to a variety of combinatorial and geometric
enumeration problems. The necessary ingredients to use the method are an implicitly de-
scribed connected graph on the objects to be generated, and an implicitly defined spanning
tree in this graph. In this paper we supply these ingredients for the problem of generating
Laman graphs.
? Supported by JSPS Grant-in-Aid for Scientific Research on priority areas of New Horizons in Computing.

?? Supported by NSF grant CCF-0430990 and NSF-DARPA CARGO CCR-0310661.

Relevant to the historical context of our work are the results of Bereg [6, 7] using
Reverse Search combined with data-specific lexicographic orderings to enumerate triangu-
lations and pointed pseudo-triangulations of a given point set. We notice in passing that
there exist several other algorithms for enumerating (pseudo-)triangulations [9, 8, 1], but
they are based on different techniques.

Also relevant is the pebble game algorithm of Jacobs and Hendrickson [11] for 2-
dimensional rigidity, see also [5]. Our complexity analysis relies on the recent results, due
to Lee, Streinu and Theran [15, 16], regarding the detailed data-structure complexity of
finding and maintaining rigid components during the pebble game algorithm. Indeed, the
time-space trade-off of our algorithm is inherited from [16]: without the data structure
details, the overall complexity would be O(n3) steps and linear space for the storage of
the current output graph.

Search and flips in pointed pseudo-triangulations To better put our problem (and
solution) in context and relate it to previous work, we briefly discuss now the difference
between generating arbitrary planar Laman graphs, as opposed to just pointed pseudo-
triangulations.

A pointed pseudo-triangulation is a special case of a planar Laman graph on a given
point set [20], where every vertex in the embedding is incident to an angle larger than π.

Pseudo-triangulations are connected via simple flips, in which the removal of any non-
convex-hull edge leads to the choice of a unique other edge that can replace it, in order to
restore the pointed pseudo-triangulation property.

The flip graph of all pointed pseudo-triangulations is a connected subgraph of the
graph of all the Laman graphs. In fact, it is the one-skeleton of a polytope [18], and the
reverse search technique can be directly applied to it. Bereg’s efficient algorithm makes
use of specific properties of pointed pseudo-triangulations which do not extend to arbi-
trary planar Laman graphs. In particular, remove-add flips are not unique, relative to the
removed edge, in the case of planar Laman graphs. Moreover, it is not even known a priori
whether the set of all the planar Laman graphs of p is connected via these flips.

Motivating application. Although applications are not the main focus of our paper,
we describe now briefly how this problem came to our attention via the work of the
third author. Graph theoretical approaches are widely used in structural mechanics [12],
where the edges and vertices in the graph represent the bars and rotation-free joints of
a structure called a truss. It is well-known [4] that the stiffest truss under static loads is
statically determinate, a concept directly related to the previously defined Laman-graph
property. Ohsaki and Nishiwaki [17] presented a method for generating multi-stable flexible
bar-joint system, and found that the optimal structure is statically determinate. Since the
optimal topology is found by removing the unnecessary nodes and members from the highly
connected initial structure, the computational cost of this procedure can be reduced if the
candidate set of Laman graphs are first enumerated. In a related direction, Kawamoto et
al. [13] presented a method based on the enumeration of planar graphs to find an optimal
mechanism. Although this is a problem of high practical interest in structural mechanics,
none of these papers give a general approach for the systematic enumeration of rigidity-
constrained structures - which is the topic of our paper.

2

Organization. We define flips in planar Laman graphs and review the Reverse Search
technique in Section 2. The search-tree structure underlying the algorithm is defined in
Section 3. In Section 4, we prove the correctness of the search-tree definition, and thus of
the Reverse Search-based enumeration algorithm. The data structure specific details of the
implementation and the complexity analysis are done in Appendix A. In the Conclusions,
we mention two open problems which may help reduce the complexity of our algorithm.

2 Preliminaries

Let G(P) be a planar embedded Laman graph on the generic point set P . The planar
subdivision induced by the embedding will be denoted as G = (V, E, F), with V , E and
F , respectively, being the vertices, edges and faces.

Since all throughout the paper we consider only generic point sets, purely combinatorial
graph-theoretic properties correspond to intuitive, rigidity-theoretic properties such as
rigid, flexible, degree of freedom, etc. We will use this physically inspired terminology, as
well as body, joint and mechanism, instead of a more technical graph-theoretic language.

A mechanism is a flexible framework obtained by removing one or more edges from
a generic Laman framework. Its number of degrees of freedom or dof’s, is the number of
removed edges. We will encounter mostly one-degree-of-freedom (1dof) mechanisms, which
arise from a Laman graph by the removal of one edge.

In particular, a mechanism with k dofs has exactly 2n− 3− k edges, and each subset
of n′ vertices spans at most 2n′ − 3 edges. A subset of some n′ vertices spanning exactly
2n′ − 3 edges is called a rigid block. A maximal block is called a rigid component or a
body. The edge set of a mechanism is partitioned into bodies, with some bodies possibly
containing just one edge each. Two bodies are either disjoint (vertex-wise), or may share
one vertex. A joint is a vertex shared by at least two bodies. These properties, as well as
efficient algorithms for computing rigid components in Laman mechanisms, can be found
in [11, 5, 15, 16].

The Laman graphs on n vertices form the set of bases of the generic rigidity matroid in
dimension 2, see [10]. The ground set of the matroid is the set of edges E. The bases have
all the same size 2n− 3. Bases may be related via the basis exchange operation, which we
will call a flip between two Laman graphs. Two Laman graphs G1 and G2 are connected
by a flip if their edge sets agree on 2n− 4 positions. The flip is given by the pair of edges
(e1, e2) not common to the two bases, e1 ∈ G1 \G2, e2 ∈ G2 \G1. Using flips, we can define
a graph whose nodes are all the Laman graphs on n vertices, and whose edges correspond
to flips.

Remove-Add flips. When we remove an edge from a Laman graph G, we obtain
a 1dof mechanism G′ ⊂ G whose edge set can be partitioned into rigid components. If
we add now to G′ any edge of Kn \ G whose endpoints do not belong to the same rigid
component, we obtain a new Laman graph. Therefore the set of all remove-add flips from
a Laman graph G can be systematically generated as follows: consider the set of all the
edges e1 ∈ G. For each one, compute the rigid components of the corresponding 1dof
mechanism G−e1 = G\{e1}. For each edge e2 ∈ Kn \G−e1 whose endpoints do not belong
to the same rigid component, its addition leads to a new Laman graph G−e1,+e2 .

3

(a) (b)

Fig. 1. (a)The root planar Laman graph on a set of 7 points. (b)A non-root Laman framework.

It is well-known that the graph whose nodes are the bases of a matroid connected via
flips, is connected. But a priori, the subset of planar Laman graphs may not necessarily
be. We will prove this later in Section 4.

Reverse Search. This technique is a memory efficient method for visiting all the nodes
of a connected graph that can be defined implicitly by an adjacency oracle. It can be used
whenever a spanning tree of the graph can be defined implicitly by a parent function. This
function is defined for each vertex of the graph except a prespecified root. Iterating the
parent function leads to a path to the root from any other vertex in the graph. The set of
such paths defines a spanning tree, known at the search tree.

3 The Search Tree

In this section we define the main structure required by Reverse Search, a search tree on
the set of all the planar Laman graphs of a given point set. We choose a certain Laman
framework to be the root. Then we define a parent for every non-root Laman graph. To
show that the parent function defines a search tree we associate an index to every Laman
graph, such that the parent function always returns a Laman graph with smaller index.
This gives a forest structure. To prove that it is connected and thus a search tree, we will
show in Section 4 that the parent of every non-root node indeed exists.

Root. We choose the root of the search tree to be a greedy pseudo-triangulation cor-
responding to a fixed direction. The simplest way to define it is relative to the horizontal
direction (x-axis).

We first sort the points by x-coordinate and label them as {1, 2, · · · , n} in this order.
Then we construct a Henneberg I pointed pseudo-triangulation as follows. Start with the
edge 12 and continue for n− 2 steps. At each step, the next vertex (in x-sorted order) is
added (vertex i + 2 at step i, i = 1, · · · , n− 2), together with the two tangents from point
pi to the (convex hull of) the framework constructed so far. Fig. 1(a) illustrates the root,
and Fig. 1(b) gives an example of a non-root framework.

Index. Given a non-root planar Laman framework G, we define its index as a pair
index(G) = (c, d), where c = c(G) ∈ {2, · · · , n} and d = d(G) ∈ {1, · · · , n} are, respec-
tively, the label of the critical vertex of G and the critical degree of the critical vertex,
defined below.

4

The critical vertex (with respect to the root) is the largest label of a vertex whose
incident edges differ from the corresponding set of incident edges in the root framework.
For instance, the critical vertex for the non-root graph in Fig. 1 is 6. Since all the vertices
with labels at least c + 1 have the same edges as their counterparts in the root graph, it
follows easily that the subgraph of G spanned by the vertices {1, · · · , c} is Laman. The
critical edge set is the set of mismatched edges incident to the critical vertex. An edge is
mismatched if it doesn’t exist in the root. The critical degree is the number of mismatched
edges incident to the critical vertex. Notice that the critical degree is always at least 1,
or else the vertex is not critical. For example, the non-root graph in Fig. 1(b) has index
(6, 1): the critical vertex is 6, and it is incident to three edges, two of which exist in the
root and one doesn’t.

We use the index as a measure of how far a node (Laman framework) is from the root,
whose index is, by definition, (1, 0).

Parent Rule. The parent of a node (Laman framework) is defined in terms of its
critical vertex via a certain Remove-add flip. The removed edge which does not exist in
the root will be incident to the critical vertex, and the added edge will be chosen so that
it will decrease the index of the critical vertex.

In general there will be several choices of such flips. To uniquely define the parent, we
will use a lexicographic ordering of these flips and choose the smallest one. The efficiency of
the Parent function depends on the lexicographic ordering. We will discuss it in Appendix.

The correctness of the Parent definition follows from our Main Theorems:

Theorem 1. Every non-root planar Laman graph has a parent whose index is smaller
than that of the current node.

The proof of the above theorem relies on properties of planar Laman graphs described
in the next section. Based on Theorem 1, we will propose a reverse search algorithm by
following the standard techniques devloped by [2, 3]. It is well known [2, 3] that the reverse
search can be developed if we can define two basic operations, i.e., parent function and
adjacency function. Given a non-root planar Laman graph G, the parent function returns
another planar Laman graph which is parent of G. Given a planar Laman graph G, the
adjacency function returns a planar but possibly non-Laman graph G′ such that G′ is
obtained by a single remove-add operation.

The detailed description of the parent and adjacency function will be given in the
appendix and the complexity analysis of these functions will also be proved in the appendix.

Theorem 2. The set of all planar Laman graphs on a given point set can be reported
in O(n3) time per planar Laman graph using O(n2) space and in O(n4) time using O(n)
space.

4 Remove-Add flips in planar minimally rigid graphs

This section contains the proof of Theorem 1: every non-root planar Laman graph has a
parent. The proof follows from a sequence of Lemmas.

In a graph G, a subgraph induced by a vertex set V ′ ⊂ V is a cut if its removal
disconnects the graph.

5

Lemma 1. A rigid component cannot be a cut in a 1dof mechanism.

Proof. Let G = (V,E) be a 1dof mechanism, and G′ = (V ′, E′) be one if its rigid compo-
nents. Assume, for the sake of a contradiction, that G′ is a cut. Then the complement of
G′, the subgraph G/(V \V ′) induced on V \V ′, can be partitioned into two disjoint subsets
V1 and V2 with no edges between them. Let with n = |V |, n′ = |V ′|, ni = |Vi|, i = 1, 2,
with n = n′ + n1 + n2. Since G′ is a body, |E′| = 2n′ − 3. Consider the two subgraphs
induced on V ′ ∪ Vi, i = 1, 2. It is not possible that both of them have at least 1dof, be-
cause otherwise the whole graph G would have more dofs, as it would span less than
2(n′ + n1)− 4 + 2(n′ + n2)− 4− (2n′ − 3) = 2(n′ + n1 + n2)− 5 edges. Therefore, at least
one has zero dofs, contradicting the maximality of G′ as a component. ut

For planar mechanisms, we can say more. The following statements are better under-
stood if we forget for a moment the geometry of the embedding of the planar Laman graph
in the Euclidean plane, and think of G as a spherical (topological) embedding.

Proposition 1. In a topologically embedded planar Laman graph, each face cycle is simple
and subdivides the sphere into two disk-like regions.

Proof. This is a direct consequence of the fact that a Laman graph is always 2-connected.
ut

Lemma 1 shows that a body cannot disconnect the graph, therefore for each cycle in
a body, only one (but not both) of the two (spherical) disk-like regions induced by it may
contain vertices not in the body. Since a face is empty, if its boundary cycle is part of a
body, we will say that the face belongs to the body. Notice that a body may thus contain
the outer face. We obtain:

Lemma 2. In a planar 1dof Laman mechanism, the union of all the faces belonging to
the same body form a topological disk.

Proof. Assume that the subset V ′ ⊂ V spans a component G′ = (V ′, E′) of G. By Lemma
1, the removal of G′ cannot disconnect G, therefore there exists a cycle C in G containing
the entire G′ in one of its two induced disk-like spherical regions. Since G′ is planar and
at least 2-connected, and it inherits a face structure from G, it follows that the cycle C
falls in one of these induced faces of G′. In fact, the whole complement of G′ in G must
fall inside this face of G′, since otherwise G′ would be a cut of G. Therefore, all the other
faces of G′ are empty of other vertices of G and thus the union of faces has no holes (it is
topologically a disk). ut

We stated this topological property on the sphere, not in the plane. If the removed edge
does not belong to the outer face of a planar embedding of G, then the complement of G′

may fall inside an interior face and the union of the (embedded) interior faces of G′ may
look like an annulus. See Fig. 2. Therefore notice that, for the uniformity of the argument,
when the outer face of a planar Laman mechanism belongs to a rigid component, we
defined the rigid body as the union of all the empty faces (thus including the outer face).

Lemma 2 implies that the faces of the planar framework can be divided into two
categories: rigid, if they belong to a rigid body and flexible, otherwise. In fact, we will

6

(a) (b)

Fig. 2. Removing the red edge results in a 1dof mechanism. (a) The removed edge is interior. The high-
lighted body is not a topological disk (the other bodies are just bars). In (b), the outer body is made out
of all the black bars, and each of the blue bars is a separate body.

not be concerned with separate rigid faces, only with the rigid bodies (which are disk-like
unions of their faces) and the flexible faces. A body bounds a flexible face, if they share
at least one edge. Since Laman graphs are 2-connected, all the rigid bodies are made out
of simple faces, and therefore the boundary of a body is also a simple cycle. For flexible
faces, this may not be true.

The next Lemmas give some useful properties of flexible faces. We split the analysis
into two cases: when the mechanism is 2-connected, and when it is only 1-connected.
Indeed, it is well-known that a Laman graph is at least 2-connected, so the removal of one
edge produces a graph that is at lest 1-connected.

Lemma 3. All the flexible faces of a 2-connected 1dof planar Laman mechanism have at
least four bounding bodies.

Proof. Two-connectivity implies that each face is a simple cycle. This cycle either lies inside
a body or is bounded by some bodies. Two bodies cannot have more than one vertex in
common: if they have two, their union is a larger Laman subgraph, which contradicts the
maximality of the body. A face cannot be bounded by two bodies only, because then those
bodies would have two vertices in common and their union would then be over-constrained.
A face also cannot be bounded by only three bodies, because in that case the union of
the three bodies would be a larger rigid body, and the face would be a face of that larger
body, not a flexible face. So each flexible face is bounded by at least four bodies. ut

Lemma 4. If the 1dof planar Laman mechanism G is not 2-connected, then all but one
face are as in Lemma 3. The unique exception is a special flexible face incident to exactly
two bodies, and whose bounding cycle is not simple.

Proof. Let G be a 2-connected but not 3-connected Laman graph, and remove an edge to
obtain a mechanism. Since a Laman graph is 2-connected, a 1dof mechanism is at least
1-connected. It is not possible that the endpoints of the removed edge belong to the same
body in the mechanism, because otherwise Laman’s property would have been violated on
the union of the body and the edge. If the mechanism is not 2-connected, then exactly one
endpoint of the removed edge belongs to a pair of vertices that would have disconnected
G. ut

7

(a) (b)

Fig. 3. The special type of flexible face which is incident to two bodies only. (a) Unbounded and (b)
Bounded face. Notice that the original graph is 2- but not 3-connected, and the removed edge (thin red)
is incident to the cut pair.

The situations described in Lemma 4 are illustrated in Fig. 3.
From these properties of planar Laman graphs and 1dof mechanisms, we now sketch the

proof for our main theorem. In the proof we work with a coarser planar structure, possibly
ignoring some vertices, edges and faces in a 1dof mechanism. This coarser structure is
given by the collection of bodies, joints connecting them and flexible faces.

Proof. of Theorem 1. Let pc be the critical vertex of a given planar Laman graph G.
Then the subgraph induced by {p1, p2, . . . , pc} is still a planar Laman graph (denoted by
G′). From the definition of the critical vertex, pc is always on the outer face in G′ and
there is at least one non-root edge incident to pc. Then we delete the non-root edge pcpi

from G′ in the Parent function. It suffices to prove that there always exists an edge in
G′ satisfying: (i) after inserting the edge to G′ \ {pcpi}, we obtain a planar Laman graph,
and (ii) the edge is disjoint from pc or a root edge incident with pc. Adding such an edge
creates another planar Laman graph for {p1, . . . , pc} and the number of mismatched edges
incident with pc decreases by one. Thus adding pc+1, pc+2, . . . , pn together with two hull
edges produces a planar Laman graph with a smaller index.

The proof has two cases depending on whether pcpi is on the outer face or not.
Case 1: pcpi is not on the outer boundary. In this case, 1dof mechanism G′ \ {pcpi}

satisfies the properties proven in the previous lemmas: all the components are topological
disks with the possible exception of the component containing, spherically, the outer face,
which may be an annulus in the Euclidean embedding. Then, the case 1 also has two cases:
the mechanism has a special face, an annulus-like body or not.

(1-a) The 1dof mechanism G′ \{pcpi} does not have an annulus-like body. In this case
all flexible faces are incident to at least four bodies and four distinct joints (see Fig.4(a)).
We call a pair of joints incident if they belong to the same body. Consider the geodesic
paths between any pair of non-incident joints, and call them geodesic diagonals of the
faces. There are at least two such geodesic diagonals in each face, since each face has at
least four joints. A geodesic diagonal may lie entirely on the boundaries of the bodies
incident to the face, in which case it must also go through the joints between those bodies,
or may have at least one segment lying inside the face. Moreover, such a segment may go
between vertices belonging to the same body, or may go between two different bodies. In
this last case, we say that the segment is free. We claim that there exists at least one free

8

segment, on at least one geodesic diagonal path in all the flexible faces of the mechanism
(see Fig.4(b)).

Suppose that there is more than one flexible face in G′ \{pcpi}. Since each of them has
at least one free segment, there always exist at least two free segements one of which is not
incident to pc. Then, we consider the case where there is only one flexible face in G′\{pcpi}.
Note that all the joints are on the outer face and the flexible face. If all four joints are the
convex hull vertices, then the interior face contains two distinct free segments, and one
of which is not incident to pc. Otherwise, suppose the interior face contains only one free
segment pcpi. Then, there exists one free segment in the outer face which is certainly not
incident to pc.

(1-b) The 1dof mechanism G′ \{pcpi} has an annulus-like body. Then its inner bound-
ary is a simple polygon P . Hence P must consist of at least three vertices including pc. Let
pa and pb be two of these vertices different from pc. Since the vertex pi does not belong to
this annulus-like body, there is another disk-like body lying inside P to which pi belongs.

When G′ \ {pcpi} is 1-connected. Since two bodies cannot have more than one vertex
(joint) in common, at least one vertex of pa and pb does not belong to the body to
which pi belongs, (see Fig.5(a)). Let pa be such a vertex. (The vertex pb may be a joint.)
Consider the two paths inside the flexible face between pairs of vertices (pc, pi) and (pa, pi)
respectively: they must contain at least two distinct line segments lying entirely inside the
face (diagonals). These two paths connect vertices lying on two distinct bodies of the
mechanism (one is the annulus-like body), so each of them can be added as a bar to create
a Laman graph. Furthermore, the diagonal between pi and pa is not incident to pc.

When G′ \ {pcpi} is 2-connected. Then all the flexible faces have at least four bound-
ing bodies from Lemma 3. Therefore, there are at least two flexible faces inside P (see
Fig.5(b)). Then, as we remarked in the case (1-a), each of them has at least one free
segment, and there exist at least two free segments one of which is not incident to pc.

Case2: pcpi is on the outer boundary. At least one of the upper and lower hull edges
incident to pc is missing in G′ because pcpi is not on the convex hull of {p1, . . . , pc}.
Without loss of generality, we assume the upper hull edge is missing, and let pup

c be the
endpoint of upper hull edge other than pc.

Suppose that pc and pup
c belong to different bodies. Adding pcp

up
c to G′ \{pcpi} creates

another planar Laman graph which satisfies the desired property that the added edge is a
root edge. Then, we consider the case where pc and pup

c belong to the same body. We add an
auxiliary vertex p̄ incident to pc and pup

c such that G′∪{p̄pc, p̄pup
c } is a planar Laman graph.

Such graph can always be constructed by a Henneberg I move. Let Ḡ = G′ ∪ {p̄pc, p̄pup
c }.

Consider the 1dof mechanism Ḡ\{pcpi}. It has an annulus-like body and its inner boundary
is a simple polygon P . This must consist of at least four vertices including p̄, pc and pup

c .
In this case, there is at least one free segment not incident to pc and p̄, in the same way
as in the case (1-b). Deleting p̄ and adding this free edge produces a planar Laman graph
for G′. Note that the added edge is not incident with pc.

This completes the proof of Theorem 1: the Search Tree for Reverse Search is well
defined. ut

Remark. Notice that the Flip operation is not always valid when the removed edge is
on the convex hull. Fig. 3(b) illustrates a Laman graph where the removal of the top thin

9

c
p

i
p

(a)

c
p

i
p

(b)

Fig. 4. (a)Removing pcpi results in a 1dof mechanism. The shaded faces represent rigid bodies and the
other faces are flexible faces. The red vertices represent joints. (b)The blue dotted lines show the geodesic
diagonals (geodesic paths between any pair of non-incident joints). There is at least one free segment in
each flexible face.

bp

cpip

ap

(a)

bp

cpip

ap

(b)

Fig. 5. Removing pcpi results in a 1dof mechanism. The vertices pc, pa and pb belong to annulus-like body.
(The annulus-like body is made out of all black bars.) The resulting mechanism is (a)1-connected and
(b)2-connected.

convex hull edge leads to a mechanism with no other option for an edge to be placed back.
This is the reason why we do not remove them arbitrarily, and why we must take care of
such special cases separately in the detailed case analysis and in the implementation.

5 Conclusions

We presented an algorithm for enumerating all the planar minimally rigid graphs embedded
on a point set. While our main focus in this paper is to show that this can be done in
polynomial time, we expect that the complexity of our algorithm may be improved via a
combination of more sophisticated data structures and further insights into the specific
properties of planar Laman graphs (as opposed to just Laman graphs). In particular, this
depends on two open problems: how to beat O(n2) space for O(n2)-time rigid components,
and how to take advantage of planarity for computing the rigid components in better than
O(n2) time (which can be done in O(n) time for pseudo-triangulations).

10

References

1. O. Aichholzer, G. Rote, B. Speckmann, and I. Streinu. The zig-zag path of a pseudo-triangulation.
In Proc. 8th International Workshop on Algorithms and Data Structures (WADS), Lecture Notes in
Computer Science 2748, pages 377–388, Ottawa, Canada, 2003. Springer Verlag.

2. D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements
and polyhedra. Discrete and Computational Geometry, 8:295–313, 1992.

3. D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Mathematics, 65(1-3):21–46,
March 1996.

4. M. P. Bendsøe and O. Sigmund. Topology Optimization: Theory, Methods and Applications. Springer,
2003.

5. A. Berg and T. Jordán. Algorithms for graph rigidity and scene analysis. In G. D. Battista and
U. Zwick, editors, Proc. 11th Annual European Symposium on Algorithms (ESA), volume 2832 of
Lecture Notes in Computer Science, pages 78–89. Springer, 2003.

6. S. Bespamyatnikh. An efficient algorithm for enumeration of triangulations. Comput. Geom. Theory
Appl., 23(3):271–279, 2002.

7. S. Bespamyatnikh. Enumerating pseudo-triangulations in the plane. Comput. Geom. Theory Appl.,
30(3):207–222, 2005.

8. H. Brönnimann, L. Kettner, M. Pocchiola, and J. Snoeyink. Enumerating and counting pseudo-
triangulations with the greedy flip algorithm. In Proc. ALENEX, Vancouver, Canada, 2005.

9. A. Dumitrescu, B. Gärtner, S. Pedroni, and E. Welzl. Enumerating triangulation paths. Computational
Geometry: Theory and Applications, 20(1-2):3–12, 2001. A preliminary version in Proceedings of the
Twelfth Canadian Conference on Computational Geometry, 2000 (CCCG’00), 233-238.

10. J. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity. Graduate Studies in Mathematics
vol. 2. American Mathematical Society, 1993.

11. D. J. Jacobs and B. Hendrickson. An algorithm for two-dimensional rigidity percolation: the pebble
game. Journal of Computational Physics, 137:346 – 365, November 1997.

12. A. Kaveh. Structural Mechanics: Graph and Matrix Methods. Research Studies Press, Somerset, UK,,
3rd edition, 2004.

13. A. Kawamoto, M. Bendsøe, and O. Sigmund. Planar articulated mechanism design by graph theoretical
enumeration. Struct Multidisc Optim, 27:295–299, 2004.

14. G. Laman. On graphs and rigidity of plane skeletal structures. Journal of Engineering Mathematics,
4:331–340, 1970.

15. A. Lee and I. Streinu. Pebble game algorihms and sparse graphs. In Proc. EUROCOMB, Berlin,
September 2005.

16. A. Lee, I. Streinu, and L. Theran. Finding and maintaining rigid components. In Proc. Canad. Conf.
Comp. Geom., Windsor, Canada, August 2005.

17. M. Ohsaki and S. Nishiwaki. Shape design of pin-jointed multi-stable compliant mechanisms using
snapthrough behavior. Struct. Multidisc. Optim., 2005. published on-line.

18. G. Rote, F. Santos, and I. Streinu. Expansive motions and the polytope of pointed pseudo-
triangulations. In J. P. Boris Aronov, Saugata Basu and M. Sharir, editors, Discrete and Compu-
tational Geometry - The Goodman-Pollack Festschrift, Algorithms and Combinatorics, pages 699–736.
Springer Verlag, Berlin, 2003.

19. I. Streinu. A combinatorial approach to planar non-colliding robot arm motion planning. In IEEE
Symposium on Foundations of Computer Science, pages 443–453, 2000.

20. I. Streinu. Pseudo-triangulations, rigidity and motion planning. Discrete and Computational Geometry,
34:587–635, December 2005. A preliminary version appeared in [19].

11

Appendix

A Algorithm Analysis

In this Appendix we give a more detailed version of the algorithm for enumerating planar
Laman graphs and analyse its running time. We start by introducing some notation. For
two vertices pi and pj we write pi < pj when the label of pi is smaller than that of pj , and
pi = pj when they coincide. For each vertex pi ∈ V , an upper-hull edge (lower-hull edge) of
pi is defined as the upper (lower) convex hull edge of {p1, . . . , pi} incident to pi, and let pup

i

(plow
i) denote the other endpoint of the upper-hull (lower-hull) edge of pi. Note that pip

up
i

and pip
low
i are both root edges. For a given graph G, let Fpi be a set of vertices incident

to pi and whose labels are smaller than that of pi. Let pc denote the critical vertex of G.

Edge ordering. When we refer to an edge pipj , the label of pi is assumed to be larger
than that of pj . We define an edge ordering on the set of all possible edges in such a way
that: (i) an edge pipj precedes an edge pkpl whenever i < k, and (ii) when i = k holds,
pip

low
i has the smallest label among the edges incident to pi, and pip

up
i has the label next to

that of pip
low
i . If neither pipj nor pipl is a root edge, pipj precedes pipl when j < l. For exam-

ple, Fig.1(b) have the ordering 〈p2p1, p3p2, p4p3, p4p1, p4p2, p5p4, p6p3, p6p5, p6p4, p7p3, p7p4〉.
We use the notations pipj < pkpl when pipj proceeds pkpl, and pipj = pkpl when they

coincide.

A.1 Complexity of the Parent operation.

Let G be the set of all the planar Laman graphs on our point set p, and let Groot be the
root on a search tree on G. The Parent function fparent : G \ {Groot} → G is defined in
such a way that, for G ∈ G\{Groot} returns G\{papb}∪{pa′pb′}. We now give the details
of how papb and p′ap′b are determined to identify the parent node uniquely.

The edge papb to be removed is defined to be the one such that the following three
conditions hold:
PR(1) pa is a critical vertex of G,
PR(2) papb is not an edge in the root, and
PR(3) papb has the maximal label among the edges in Fpi \ {pup

a , plow
a }.

The edge pa′pb′ to be inserted is defined to be the one such that the following three
conditions hold:
PI(1) the graph obtained after performing the flip (papb, pa′pb′) is a planar Laman graph,
PI(2) it has a smaller index than that of G, and
PI(3) pa′pb′ has the maximal label among the edges satisfying PI(1) and PI(2).

From PR(1) and PI(2), pa′ ≤ pc holds. Recall that pcp
low
c has the smallest label among

the edges incident to pc, and pcp
up
c has the label next to that of pcp

low
c . Supposing that

pcp
up
c < pa′pb′ holds, the index does not decrease after performing the flip (papb, pa′pb′).

Then we have pa′pb′ ≤ pcp
up
c . From this observation, we now describe how an edge satisfying

PI(1), PI(2) and PI(3) is found:
(a) if the graph obtained after performing the flip (papb, pcp

up
c) is a planar Laman graph,

then pa′pb′ is pcp
up
c ,

12

(b) else if the graph obtained after performing the flip (papb, pcp
low
c) is a planar Laman

graph, then pa′pb′ is pcp
low
c ,

(c) else pa′ < pc and pa′pb′ has the largest label among the edges satisfying PI(1).

Removing an edge. From the definition PR(1), one endpoint pa of a removing edge
coincides with pc. The other endpoint of removing edge is a vertex of Fpa \ {pup

a , plow
a }

which has the maximum label among them.

Inserting an edge. There might be O(n2) candidates for possible edge insertions
satisfying the definition PI(1). One simple method to find an edge to be inserted is to test
a new edge one by one in the decreasing order of labels until we get planar Laman graph.
If we check planarity (in O(n) time) and rigidity (in O(n2) time by using the pebble game
algorithm of Hendrickson and Jacobs [11]), then the parent function requires O(n4) time
in the worst case. However, the parent function can be computed in O(n2) time with O(n2)
space or O(n3) time with O(n) space respectively using the data structure for maintaining
rigid components from Lee, Streinu and Theran [15, 16]. This data structure supports a
pair-find query which determines whether two vertices are spanned by a common compo-
nent in O(1) time with O(n2) space and in O(n) time with O(n) space. Therefore, after
removing one edge papb, we will calculate the rigid components of G \ {papb} in O(n2)
time. Then we maintain computing the data structure of [15, 16] so that the rigidity query
can be answered for each insertion in O(1) time afterwards with O(n2) space, or in O(n)
time with O(n) space. For the planarity test, we will calculate the visibility graph. In this
case, the visibility information is stored in an n × n matrix to answer the query in O(1)
time whether two points are visible to each other. Using the above data structures, we
conclude that the complexity of the parent function computation is O(n2) time in O(n2)
space or alternatively O(n3) time using O(n) space.

A.2 Complexity of the adjacency operation.

Suppose we are given a planar Laman graph G. First, we define remove-add flip such that,
for e1 ∈ G and e2 ∈ Kn,

Flip(G, (e1, e2)) := G \ {e1} ∪ {e2}.

If Flip(G, (e1, e2)) returns a planar Laman graph, we call a flip (e1, e2) flippable. Let LG

and LKn be the list of edges of G and Kn ordered lexicographically, let δ(G) and δ(Kn)
be the number of elements of LG and LKn and let LG(i) and LKn(i) be the i-th elements
of LG and LKn , respectively. Then, the adjacency function is defined by

Adj(G, i, j) :=

{
G \ {e1} ∪ {e2} if (e1, e2) is flippable,
null otherwise,

where e1 = LG(i) and e2 = LKn(j).
Based on the algorithm in [2, 3], we describe our algorithm as follows:

Algorithm Reverse Search
1. Groot :=the root basis of the search tree

13

2. G := Groot; i, j := 0;
3. repeat
4. while i ≤ δ(LG)
5. i := i + 1;
6. while j ≤ δ(LKG

)
7. j := j + 1;
8. if fparent(Adj(G, i, j)) = G then
9. G := Adj(G, i, j); i, j := 0;
10. Output(G)
11. endif
12. endwhile
13. endwhile
14. if G 6= Groot then
15. G′ := G; G := fparent(G);
16. determine integers pair (i, j) such that Adj(G, i, j) = G′

17. i := i− 1
18. endif
19. until G = Groot, i = δ(LG) and j = δ(LKG

)

The algorithm has δ(LG) · δ(LKG
) iterations, which is O(n3), and in each iteration

we must check fparent(Adj(G, i, j)) = G. Since the pebble game takes O(n2) time, each
execution of fparent and Adj operations take O(n2). Thus, this algorithm requires O(n5)
time. We will reduce the running time to O(n3) by further characterising the eligible
integer pairs (i, j).

For an integer i that represents a removing edge, we will show that

– Adj(G, i, j) can be calculated in O(1) time for each integer j by preprocessing the data
structure in O(n2) time with O(n2) space and

– an integer j satisfying fparent(Adj(G, i, j)) = G can be found in O(n2) time if such an
integer exists. We also show there exists at most one such an integer.

Thus, we achieve O(n3) time algorithm since we take O(n2) time for each integer i.
Let us consider the first term. We calculate rigid components of G \ LG(i) using the

pebble game as the Parent function. As we mentioned in the previous section, the data
structure for maintaining rigid components from [15, 16] supports a pair-find query by
which rigidity query can be answered for each j in O(1) time with O(n2) space. Such data
structure can be computed in O(n2) time.

Let us consider the second term. It is described by the following lemma:

Lemma 5. Let papb = LG(i) and pa′pb′ = LKn(j), and let (c, d) be the index of G.
Then, fparent(Adj(G, i, j)) = G holds if and only if the edge pair (papb, pa′pb′) satisfies the
following three conditions (A),(B) and (C).

(A) pa′pb′ is not the root edge.
(B) (B-1) if pa < pc, then pa′pb′ > pcpm, where pm is a vertex of Fpc \ {pup

c , plow
c } which

has the maximum label among them,
(B-2) else if pa = pc holds,

14

(B-2-1) if papb is neither an upper-hull edge nor a lower-hull edge of pc, then
pa′pb′ ≥ pc+1p1,

(B-2-2) else (papb is an upper-hull or lower-hull edge of pc), then pa′pb′ > pcpm,
(B-3) else if pa > pc holds, pa′pb′ ≥ pap1.

(C) pa′pb′ is an edge which has the minimum label among the edges {pkpl | papb <
pkpl, and G \ {papb} ∪ {pkpl} is planar Laman graph}.

We give some observations of these conditions since they are rather complicated. The proof
is given afterwards.

We remind the reader that the fparent is defined with the edge removal conditions
PR(1),(2) and (3) and the edge insertion conditions PI(1),(2) and (3). From the def-
inition, the Adj guarantees condition PI(1). Condition PR(2) is guaranteed by (A). The
condition (B) implies that G′ has a greater index than that of G and pa′pb′ has the
maximum label among the edges Fpc , which ensures conditions PR(1),PR(3) and PI(2).
Finally, the condition (C) implies that pa′pb′ has the minimum label among the edges
{pkpl | pkpl > papb, G \ {papb} ∪ {pkpl} is planar Laman graph} which ensures the condi-
tion PI(3).

We now describe explicitly these conditions. The second condition (B) is further divided
into three subcases depending on the inserted edge papb. From the definition of the Parent
function, the inserted edge always has a smaller index than that of the removed edge.
Therefore, the inserted edge must have a greater index than that of the removed edge
after Adj operation is performed. Then, we have papb ≤ pa′pb′ .

(B-1) When pa < pc holds, then also pa′ ≥ pc must hold, because otherwise the index
does not change. If pa′ = pc holds, pa′pb′ must have the maximum label among the edges
Fpc in the order in which each edge pa′pb′ is removed when the fparent is performed. Then
we have pa′pb′ > pcpm, where pm is a vertex of Fpc \ {pup

c , plow
c }, which has the maximum

label among them (see example Fig.6).
(B-2-1) When pa = pc holds and papb is neither an upper-hull edge nor a lower-hull

edge of pc, then the number of mismatched edges of the critical vertex is d − 1 after
removing papb. Suppose that pa′ = pc. Then the critical vertex does not change and the
critical degree becomes d after the insertion of pa′pb′ , and thus the index does not change
after performing the flip. Therefore pa′ > pc must hold (see example Fig.7).

(B-2-2) When pa = pc holds and papb is an upper-hull edge or a lower-hull edge of pc,
the number of mismatched edges of the critical vertex becomes d + 1 after removing an
upper-hull or lower-hull edge. Thus, from the definition of the critical degree d, the index
increases to d + 1 even after the edge pa′pb′ with pa′ = pc is inserted. For the same reason
as (B-1), we obtain that pa′pb′ > pcpm (see Fig.8).

(B-3) When pa > pc holds, papb is always a root edge. Then the index of G in-
creases after removing papb. Note that the subgraph of G induced by {p1, . . . , pc} is a
planar Laman graph and the subgraph of G induced by {p1, . . . , pc, . . . , pa−1} can be
constructed by a Henneberg I construction. Therefore the subgraph of G induced by
{p1, p2, . . . , pc, . . . , pa−1} is a planar Laman graph, and we cannot insert an edge pa′pb′

with pa′ < pa. Thus we have pa′pb′ ≥ pap1 (see Fig.9).
To summarize the above observations, we have the condition(B).
Now we will describe the third condition (C). Suppose there exists an edge pipj satisfy-

ing papb < pipj < pa′pb′ and G\{papb}∪{pipj} is a planar Laman graph. The inserted edge

15

cannot be papb when fparent(Adj(G, i, j)) is performed. Thus, fparent(Adj(G, i, j)) 6= G(see
example in Fig.10).

Putting together these observations, we obtain the proof of lemma 5 as follows:

Proof. The above observations implies necessity the conditions.
Suppose that the condition (A)(B) and (C) hold. From the conditions (A) and (B),

the index of G′ = Adj(G, i, j)) always increases. This implies that pa′pb′ is chosen as the
removed edge returned by the Parent function when applied to G′.

From the edge insertion condition (C), there is no edge pipj with papb < pipj < pa′pb′

such that G′ \ {pa′pb′} ∪ {pipj} is a planar Laman graph. Then papb has the maximum
label among the edges {pkpl ∈ Kn | G′ \ {pa′pb′}∪{pkpl} is a planar Laman graph}. Then
the inserted edge returned by the Parent function when applied to G′ is papb. ut

This completes the proof of Theorem 2.

6 3remove p p

7 5remove p p

7 3remove p p

6 3insert p p

3 2insert p p

7 5insert p p

7 2insert p pindex =(7,1)

index =(7,2)

index =(7,2)

adjacency function

parent function

Fig. 6. Example of the case B-1. Consider removing p6p3. p6 is less than p7 which is the critical vertex of
G. The flip (p6p3, p7p2) (in the lower diagram) is not eligible because p7p2 does not have the maximal label
among the non-root edges incident to p7 after performing the flip. Then the removed edge returned by the
parent function when applied to G′ is p7p3, not p7p2. On the other hand, the flip (p6p3, p7p5) is eligible.

16

adjacency function

parent function

7 5remove p p

8 7remove p p

7 3remove p p

8 7insert p p

7 3insert p p

7 5insert p p

6 5insert p p

index (7,1)

index (8,1)

index (7,1)

Fig. 7. Example of the case B-2-1. Consider removing p7p5. After inserting p7p3, the index of a child node
does not change. Thus, the flip (p7p5, p7p3) is not eligible. On the other hand, the flip (p7p5, p8p7) increases
the index because one endpoint of the inserted edge, namely p8, has a greater label than that of the critical
vertex of G.

index =(7,1)

7 5insert p p 7 4insert p p7 4remove p p 7 5remove p p

index =(7,2)

adjacency function

parent function

Fig. 8. Example of the case B-2-2. Consider removing p7p4, which is a root edge incident to the critical
vertex p7. The index increases even if one endpoint of the inserted edge is p7.

index =(7,1)

8 4remove p p
8 7remove p p

index =(8,1)

8 7insert p p 8 4insert p p

adjacency function

parent function

Fig. 9. Example of the case B-3. Consider removing p8p4, where p8 is greater than the critical vertex p7.
The subgraph of G induced by {p1, p2, . . . , p7} is a planar Laman graph. Then we can insert only p8p7.

17

adjacency function

parent function

5 4remove p p

6 4remove p p

7 6remove p p

6 4insert p p

7 6insert p p

5 4insert p p

6 4insert p p

Fig. 10. Example of the condition (C). The removed edge in the adjacency function and the inserted edge
in the parent function coincide in the upper diagram, and do not coincide in the lower diagram. This
follows from the fact that there is an edge p6p4 with p5p4 < p6p4 < p7p6 satisfying that G\{p5p4}∪{p6p4}
is a planar Laman graph. Only the upper flip (p5p4, p6p4) is eligible.

18

